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Statistics:
• 50 cities
• 18 spanning years
• 71,900 images
• 1000+  human labeling hours
• 3 tasks

• change recognition
• tendency recognition
• change localization

Continual Change Captioning
(Image Sequence)

Change-Aware Sequential 
Instance Segmentation

Change localization

Continual Change Captioning
(Image Pair)

Change recognition Tendency recognition

The sunniest sky is in image 4. The cloudiest sky is in image 5. Image 3 
has the fewest vehicles. The road fence on the left side of the images is 
gradually eroding. The grassland on the left side of image 1 is the 
greenest. The road is the oldest in image 3.

Image 1, 2015-10 Image 2, 2016-06 Image 3, 2017-02 Image 4, 2018-07 Image 5, 2021-06

The sunniest sky is in image 4. The cloudiest sky is in image 5. Image 3 
has the fewest vehicles. The road fence on the left side of the images is 
gradually eroding. The grassland on the left side of image 1 is the 
greenest. The road is the oldest in image 3.

Image 1, 2015-10 Image 2, 2016-06 Image 3, 2017-02 Image 4, 2018-07 Image 5, 2021-06Image A, 2014-06 Image B, 2017-12

The trees in image A have more leaves than those in 
B. A road lamp is shown on the left side of B, but not 
on A. The painting of the building on the left side of 
image A is different from that in B. A is sunnier than B. 

Figure 1. Overview of the proposed STVchrono dataset.

Abstract

Recognizing continuous changes offers valuable insights
into past historical events, supports current trend analysis,
and facilitates future planning. This knowledge is crucial
for a variety of fields, such as meteorology and agricul-
ture, environmental science, urban planning and construc-
tion, tourism, and cultural preservation. Currently avail-
able datasets in the field of scene change understanding
primarily concentrate on two main tasks: the detection of
changed regions within a scene and the linguistic descrip-
tion of the change content. Existing datasets focus on rec-
ognizing discrete changes, such as adding or deleting an
object from two images, and largely rely on artificially gen-
erated images. Consequently, the existing change under-
standing methods primarily focus on identifying distinct ob-
ject differences, overlooking the importance of continuous,
gradual changes occurring over extended time intervals.

*Equal contribution.

To address the above issues, we propose a novel bench-
mark dataset, STVchrono, targeting the localization and
description of long-term continuous changes in real-world
scenes. The dataset consists of 71,900 photographs from
Google Street View API taken over an 18-year span across
50 cities all over the world. Our STVchrono dataset is de-
signed to support real-world continuous change recognition
and description in both image pairs and extended image se-
quences, while also enabling the segmentation of changed
regions. We conduct experiments to evaluate state-of-the-
art methods on continuous change description and segmen-
tation, as well as multimodal Large Language Models for
describing changes. Our findings reveal that even the most
advanced methods lag human performance, emphasizing
the need to adapt them to continuously changing real-world
scenarios. We hope that our benchmark dataset will fur-
ther facilitate the research of temporal change recognition
in a dynamic world. The STVchrono dataset is available at
STVchrono Dataset.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction

The world around us is constantly changing over time due
to environmental changes, human activities, and technologi-
cal progress. Change recognition in real-life outdoor scenes
is crucial for applications such as meteorology and agricul-
ture, environmental science, urban planning and construc-
tion, tourism, and cultural preservation.

Real-world changes may include different spatial and
temporal changes in the natural landscape (e.g. water vol-
ume in the river), urban infrastructure (e.g. road width),
weather conditions (e.g. season change), or population dy-
namics (e.g. type of human activities). What matters the
most is the continuous and dynamic nature of all these
change types. Recognition of continuous changes can pro-
vide valuable insights into past historical events, support
current trend analysis, and facilitate future planning.

Currently available tasks related to scene change under-
standing focus on change detection and change description.
While the target of change detection is to find changed re-
gions within a scene, change description deals with the gen-
eration of language captions for the detected changes. The
existing change datasets [1–11] mostly focus on recogniz-
ing discrete changes between paired images or 3D point
clouds, overlooking the importance of continuous, gradual
changes, occurring over long time periods. Additionally,
these datasets either include synthetic data [7–10] (artifi-
cially generated images from simulated environments) or
concentrate on simplified real-world scenes (like tabletop
rearrangement in [1]). Thus, these datasets are not suitable
for understanding the real-world continuous changes.

To address the above-mentioned limitations, we pro-
pose a novel benchmark STVchrono (STreet View chrono)
dataset. STVchrono is designed to facilitate the understand-
ing of long-term continuous changes in the real world. To
capture continuous outdoor changes, we utilize the Google
Street View API * for data collection. Specifically, we col-
lected 71,900 photographs of 50 different cities over a span
of 18 years (2006 to 2023). The chosen 50 cities vary in
location (spread across various continents) and encompass
different landscape types (urban and rural areas).

The STVchrono dataset is suitable to facilitate three
change understanding tasks (Figure 1): continual change
captioning for image pairs and image sequences, and
change-aware sequential instance segmentation (for change
recognition). The aim of continual change captioning for an
image pair is to describe the content of the change between
a pair of images, taken in the same location but at two dif-
ferent times. These changes may include variations in color,
age, volume, or condition for 10 object types (Table 2). An-
other type of continual change captioning task deals with
the longer image sequences (3-6 images) taken over a span

*https://developers.google.com/maps/documentation/streetview

of several years. This task involves evaluating the degree
of the change, its progression over time, and visible trends
(Table 2). The primary objective of the change-aware se-
quential instance segmentation task is to identify and track
object instances within a set of 5 images, taken over differ-
ent time intervals in the same location.

We further evaluate the effectiveness of the state-of-the-
art methods for continuous change detection and caption-
ing within the STVchrono dataset. In various experiments,
we compared the performance of traditional methods and
multimodal Large Language Models (LLMs) for change
description, considering both image pairs and sequences.
Our experimental results indicate that multimodal LLMs
demonstrate superior accuracy in change description when
compared to conventional non-LLM approaches. In addi-
tion, we assessed the state-of-the-art instance segmentation
methods within the change-aware sequential instance seg-
mentation task using the STVchrono dataset. Our findings
reveal that even the most advanced methods still lag behind
human performance, emphasizing the need to adapt these
methods to continuously changing real-world scenarios.

2. Related Works

2.1. Change Understanding Datasets

Currently, available change understanding datasets primar-
ily concentrate on two main tasks: the detection of changed
regions within a scene and the linguistic description of the
change content. The KTH Meta-rooms [12] and tvtable [1]
datasets facilitate change detection in the robotics field
between pairs of 3D point clouds of indoor rooms and
tabletop surfaces, correspondingly. The Change3D [3],
Panoramic Change Detection [4], and SOCD [5] datasets
are suitable for the street-view scene recognition. While
[3] consists of 3D point cloud pairs, [4] and [5] works
in 2D and use semantic masks and bounding boxes for
change detection, correspondingly. Another set of four
datasets was recently proposed for 2D change detection:
COCO-Inpainted, Synthtext-Change, Kubric-Change, and
VIRAT-STD [6]. The 3DCD [2], EGY-BCD [13], and
ChangeNet [14] datasets, aim for change detection in satel-
lite remote sensing.

The CLEVR-Change [7] and CLEVR-Multi-Change [8]
datasets focus on captioning single and multiple changes
in synthetic image pairs, whereas the TRANCE [9] and
OVT [10] datasets represent changes and their temporal
orders using triples and graphs. Real-world datasets in-
clude Spot-the-Diff [11] (surveillance) and LEVIR-CC [15]
(aerial imagery). Research also covers change detection in
multi-view images [16] and 3D point clouds [17, 18]. Addi-
tionally, Weihs et al. [19] introduced a Visual Room Rear-
rangement task, where agents rearrange a room to its origi-
nal layout by interacting with changed objects.
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Dataset Environment #
change pair

#
city

Time
span

Sequence
length

Real
image

Discrete
change

Continuous
change

Human-labeled
caption

Change
detection

Meta-rooms [12] indoor 588 - days 2 ✓ ✓ ✗ ✗ ✓
Change3D [3] outdoor 866 1 4 years 2 ✓ ✓ ✓ ✗ ✓
SOCD [5] outdoor 15,000 - - 2 ✗ ✓ ✗ ✗ ✓
COCO-Inpainted [6] in- & out-door 60,000 - - 2 ✓ ✓ ✗ ✗ ✓
Synthtext-Change [6] outdoor 5,000 - - 2 ✗ ✓ ✗ ✗ ✓
Kubric-Change [6] outdoor 1,605 - - 2 ✓ ✓ ✗ ✗ ✓
VIRAT-STD [6] in- & out-door 1,000 - hours 2 ✓ ✓ ✗ ✗ ✓
3DCD [2] satellite 472 1 7 years 2 ✓ ✓ ✓ ✗ ✓
EGY-BCD [13] satellite 6,091 1 8 years 2 ✓ ✓ ✓ ✗ ✓
ChangeNet [14] satellite 31,000 100 9 years 6 ✓ ✓ ✓ ✗ ✓

CLEVR-Change [7] table 79,606 - - 2 ✗ ✓ ✗ ✗ ✗
CLEVR-Multi-Change [8] table 60,000 - - 2 ✗ ✓ ✗ ✗ ✓
Spot-the-Diff [11] outdoor 13,192 1 hours 2 ✓ ✓ ✗ ✓ ✗
LEVIR-CC [15] satellite 10,077 1 15 years 2 ✓ ✓ ✓ ✓ ✗

STVchrono (our) outdoor 19,400 50 18 years 2-6 ✓ ✓ ✓ ✓ ✓

Table 1. Comparision of the STVchrono against existing change detection (top ten rows) and change description (four middle rows)
datasets.

Existing datasets for change understanding often focus
solely on detecting or describing discrete changes in static
image pairs. In contrast, our STVchrono dataset captures
continuous, gradual changes over time using sequences of
2-6 images and is created from historical photographs of 50
different cities around the world (Table 1).

2.2. Image Sequence Recognition Datasets

Alongside change understanding, various datasets sup-
port image pair or image sequence recognition tasks:
NLVR [20] and NLVR2 [21] for difference reasoning, and
GeneCIS [22] and VisualDNA [23] for image similarity.
Similar to STVchrono, Mapillary [24] and [25] datasets
utilize image sequences taken over different time periods
for place recognition and robust aerial place representa-
tion, correspondingly. SatlasPretrain [26] is a temporal
and spatial remote sensing dataset for remote sensing im-
age analysis. In contrast, STVchrono focuses on identify-
ing and describing regions of long-term continuous change.
In this paper’s figures, we employ images from the Mapil-
lary dataset [24] rather than the STVchrono, due to Google
Street View API restrictions.

2.3. Change Understanding Methods

State-of-the-art change captioning methods, such as
DDLA [11], DUDA [7], MCCFormers [8], M-VAM [27]
and CLIP4IDC [28] compute differences either at the pixel-
[11] or feature-level [7] or use transformers [8, 27, 28] to
correlate image pairs. Models like VARD-Trans [29] and
SCORER [30] focus on identifying consistent features in
images with viewpoint shifts. In the field of change de-
tection task, two recent studies [6, 31] target identification
of change regions with viewpoint differences. [6] intro-
duces a co-attention-based approach for identifying corre-
spondences between image pairs, while [31] relies on depth

map generation for image correlations. Despite numerous
existing methods, most of them focus on 2D image pairs
or 3D data pairs and overlook serial-image change recogni-
tion. Recent studies highlight the potential of LLMs in con-
text reasoning, but their application in change recognition
remains unexplored. Our paper delves into change recog-
nition in serial images, encompassing captioning, change
region detection, and the usage of LLMs in this realm.

2.4. Instance Segmentation Methods

Instance segmentation aims to identify and outline distinct
objects in visual content through pixel masks. The Mask
R-CNN [32] method improved upon Faster R-CNN [33] by
adding mask prediction. Subsequent methods like Mask-
Former [34] incorporated transformer technology to en-
hance accuracy. Recent studies, such as Mask2Former [35],
Mask DINO [36], and UNINEXT [37] have merged in-
stance, semantic, and panoptic segmentation into unified
models for simultaneous segmentation across various lev-
els. Mask2Former has been adapted to 3D masked atten-
tion for video instance segmentation [38], while Ying et
al. [39] propose the CTVIS method by adding a memory
bank to maintain consistency across frames. Alternatives
like Seq2Former [40] and DVIS [41] have developed track-
ers to preserve temporal continuity in image-level segmen-
tation results. Our work introduces a change-aware instance
segmentation for image sequences, tracking the evolution of
natural scenes over years, thus extending beyond the typical
short-term focus of existing video segmentation methods.

3. The STVchrono Dataset
The STVchrono dataset uniquely localizes and describes
details of ongoing, extensive changes across space and time,
going beyond the discrete changes (such as add, delete,
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(a) Seasonal changes (b) Vegetation growth (c) Building exterior changes

(d) Building construction stages (d) Road and building maintenance and development

Figure 2. Different change types contained in the STVchrono dataset. This dataset encompasses a wide range of changes, including natural
changes (e.g. (a) and (b)), as well as changes related to infrastructure and construction (e.g. (c), (d), and (e)).

or move) identified by current datasets (Table 1). It ad-
dresses both easily labeled discrete changes and complex
continuous gradual shifts, which are hard to quantify with
labels. Encompassing shifts in weather patterns, seasonal
transitions, vehicular movement, and city architecture, the
STVchrono dataset captures the dynamics of the real-world
environments (Figures 1 and 2), supporting three distinct
tasks related to these changes:
• Continual Change Captioning (Image Pair) aims at the

recognition of the change details between 2 images taken
at 2 distinct time periods (Figure 1, left). Examples of
such changes can include the appearance of new cars, the
removal of road signs, or a change in a building color.

• Continual Change Captioning (Image Sequence) fo-
cuses on the change tendencies over a sequence of 3-6
images taken at different time periods (Figure 1, middle).
It offers insights into patterns, progressions, and trends
over an extended time period, like the growth of plants.

• Change-Aware Sequential Instance Segmentation is
suitable for the detection, understanding, and tracking of
the change regions (Figure 3), ensuring a comprehensive
analysis of the change dynamics for the specific object
instances over a long time period.

3.1. Image Collection

The STVchrono dataset was collected using the Google
Street View API. We chose Google Street View for its
repository of images from diverse global locations captured
over many years, enabling an in-depth analysis of tempo-
ral historical changes. Specifically, we selected images for
50 different cities, spanning 18 years: from 2006 to 2023
(Figure 1). We employed OpenStreetMap † to determine

†https://nominatim.openstreetmap.org/search

the boundaries of each city and then randomly sampled 300
to 1,000 latitude and longitude coordinates within these city
limits. In the preliminary phase of the dataset creation, we
retrieved all the images available for these coordinates (each
with a resolution of 640x640 pixels). Subsequently, we ex-
cluded any images that contained projection-related distor-
tions that made it hard for annotators to recognize changes
and any coordinates that yielded fewer than 2 images. The
resulting dataset comprises 71,900 photographs. Depend-
ing on the specific caption or detection task, we then hand-
picked and manually annotated the relevant images from the
preliminary collection.

3.2. Continual Change Captioning (Image Pair)

The goal of this task is to describe in detail the visual dif-
ferences between two street view images taken at 2 differ-
ent time periods. For this purpose, we selected 15,000 im-
age pairs (a total of 30,000 images) from the STVchrono
set of 71,900 images. We employed crowdsourcing plat-
forms to gather human annotations in English. Each image
pair received three to eight descriptive sentences detailing
the dominant changes from one human annotator, while an-
other annotator verified the effectiveness of these descrip-
tions. An image pair annotation was approved only after
the validation received from the second annotator.

Considering the possibility of numerous changes be-
tween two images, we focused on 10 dominant subjects
commonly found in street view images, such as “weather”
and “tree”, to be featured in the change captions. For each
subject, the annotations specifically addressed the distinc-
tion in various aspects, including color, age, volume, or
condition. The comprehensive annotation guidelines are
presented in Table 2. Additionally, annotators were in-
structed to report dominant changes that go beyond the
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Subject Attributes Dataset example

Weather Conditions, brightness, color Image A is sunny, while image B is cloudy. (IP,
distinction)

Tree Growth pattern, color, volume, presence/absence The tree on the right side becomes progressively
thicker. (IS, tendency)

Building Construction stages, age, cleanliness, heights,
exterior alterations

Image 1 has the newest building on the left side.
(IS, superlative)

Road Age, cleanliness, width and volume, number and
presence/absence of roads, cars, and traffic signs

In Images 1 and 2, a road is visible on the left; in
Images 3 and 4, it disappears. (IS, similarity)

Lawn / Grassland Color variations, volume, growth rates, transi-
tions, presence/absence

The lawn on the right side looks greener in image
B than in image A. (IP, distinction)

Soil / Land Color variations, volume, transitions, pres-
ence/absence

The land on the right side of the sidewalk turned
into a lawn from images 2 to 5. (IS, tendency)

River Color variations, volume, transitions, pres-
ence/absence

The river is the cleanest in image 3. (IS, superla-
tive)

Road fence Age, color, cleanliness, height, presence/absence The fence gate is not visible in image 1 but is
present in images 2 and 3. (IS, similarity)

Human Number, type and nature of activities, pres-
ence/absence

In image A, someone walks on the road; in image
B, someone sits on a bench. (IP, distinction)

Animal Number, type and nature of activities, pres-
ence/absence

There is a cat on the road in Image 3, but it is
absent in the other images. (IS, similarity)

Table 2. Annotation guidelines for the continual change captioning. The image pair task involves comparing two images, labeled A and B,
to identify attribute distinctions. The image sequence task requires analyzing a series of 3-6 images to detail tendencies, superlatives, and
similarities. The series start with the earliest image, designated as Image A and number 1 (IP: image pair; IS: image sequence).

2017.04 --- 2021.04 2016.08 --- 2022.04

Figure 3. Two examples of image sequences (top) and their annotations (bottom) for the change-aware sequential instance segmentation
task. Objects with consistent IDs share the same segmentation mask colors within each sequence.

guidelines, allowing for a more open-ended approach to
change recognition.

3.3. Continual Change Captioning (Image Se-
quence)

The objective of the continual change captioning (image se-
quence) task is to narrate the progression of changes ob-
served in a series of 3-6 images, captured at the same lo-
cation over several years. From the 71,900 images in the
STVchrono dataset, we utilized 19,800 images, divided into
4,400 sequences. These images were grouped into four cat-
egories, each containing 1,100 sequences with 3, 4, 5, and
6 images, respectively. We asked human annotators to fo-

cus on the same 10 change aspects identified in the contin-
ual change captioning (image pair) task. Each image se-
quence received annotations, which were then validated by
two separate annotators. The annotations were directed to
capture the tendency, superlative, and similarity in color,
age, volume, or condition across various change aspects, as
outlined in Table 2.

3.4. Change-Aware Sequential Instance Segmenta-
tion

The central goal of the consistent sequential instance seg-
mentation task is to identify and track specific subject in-
stances, within image sequences, captured at the same lo-
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cation over different time intervals. We selected 520 se-
quences, representing a variety of cities and coordinates.
Each sequence includes five images taken at different times
(yielding a total of 2,600 images). Human annotators man-
ually marked the instance regions and labels for each im-
age. This task is particularly crucial for monitoring long-
term trends such as the increase or decrease in vegetation,
changes in river width, and the construction or demolition
of buildings. A key challenge of this task is maintaining
consistent instance labels for the same subjects despite their
transformations over time. We provided labels for 12 sub-
ject categories, including vehicle (car bus), building, tree,
road, sky, lawn/grassland, soil/land, road fence, motorbike,
bicycle, human, and animal. Two examples illustrating the
task are shown in Figure 3.

3.5. Dataset Statistics

To ensure a comprehensive representation of street view
changes, we selected 50 different cities from around the
globe for our STVchrono dataset image collection. The dis-
tribution encompasses 14 cities in Asia, 13 in Europe, 8 in
North America, 6 in South America, 6 in Oceania, and 4
in Africa. Istanbul was included in both the Asian and Eu-
ropean tallies because of its transcontinental position. We
split the dataset by cities into train and test sets, with ratios
of 38/12 for image pair and sequence captioning, and 22/8
for segmentation task. For the two change caption tasks, the
dataset boasts a vast range of vocabulary due to the fully
human-annotated sentences. Specifically, the total vocabu-
lary encompasses 1,223 unique words, with an average of
35.98 words per caption for the image pair task, and 50.65
words per caption for the image sequence task.

A comparative analysis of the STVchrono dataset with
existing datasets is summarized in Table 1. The STVchrono
dataset is the first of its kind to capture ongoing changes on
a global scale (50 cities) and to consider the trends within
sequences of images (2-6 images). It facilitates not only
the detection of changes but also the recognition of change
content through detailed human-labeled sentences. Addi-
tional details about the dataset, such as word and caption
length distribution, time deltas distribution, a full list of the
included cities, are available in the supplementary material.

4. Experiments
4.1. Baseline Methods

We evaluated the effectiveness of the existing state-of-the-
art change captioning methods for both continual change
captioning tasks (image pair and image sequence) using
our STVchrono dataset. We conducted experiments using
five change captioning methods: DUDA [7], MCCFormers-
D, MCCFormers-S [8], CLIP4IDC [28], and VARD-
Trans [29]. While recent studies highlight the effective-

ness of LLMs in context reasoning, their incorporation into
change recognition is still underexplored. Therefore, we
decided to add two recent multimodal LLM-based methods
for the comparison: OpenFlamingo [42] and BLIP2 [43] in
conjunction with GPT4 [44].

As there are no existing methods for the change-aware
sequential instance segmentation task, we selected two most
closely related state-of-the-art video instance segmentation
methods: Mask2Former [35, 38] and CTVIS [39]. We
adapted these methods to track change instances (e.g. roads,
trees, or buildings) in sequential images instead of track-
ing moving objects in videos. Experiments were conducted
using various backbones: ResNet50 [45], ResNet101 [45],
Swin Transformer Small and Large (SwinT-S, SwinT-
L) [46] for the Mask2Former method, and both ResNet50
and SwinT-L for CTVIS.

4.2. Implementation Details

We used out-of-the-box implementations of DUDA [7],
MCCFormers-D, MCCFormers-S [8], CLIP4IDC [28], and
VARD-Trans [29] for the continual change captioning (im-
age pair) task. For the continual change captioning (im-
age sequence) task, we employed MCCFormers-S and
CLIP4IDC, as both methods allow the sequencial input.
We set the initial learning rate as 10−4 and adopted the
Adam optimizer. All methods were trained for 80 epochs
for captioning tasks, and 50 epochs for the segmentation
task. For evaluation of OpenFlamingo [42] and BLIP2 [43]
+ GPT4 [44], we designed different prompts. The main pa-
per shows the best results, while prompt design details for
these multimodal LLMs are available in the supplementary
material.

4.3. Evaluation Metrics

For evaluation of the generated change captions, we em-
ployed standard captioning metrics: BLEU4 [47] and
CIDEr [48], assessing the similarity between generated and
reference captions. Additionally, we used GPT4 [44] eval-
uation to focus more on meaning similarity over sentence
structures. The number of sentences in the STVchrono
dataset’s ground truth captions is limited to 3-8 reference
captions per image sequence. As this number might not
be enough to describe all the changes within the image se-
quence, we further implemented human ratings to assess the
accuracy and coverage of the generated captions manually.
Accuracy is calculated as the proportion of correct change
descriptions relative to total changes, while coverage is the
average number of correctly captured changes per image
sequence. Human ratings were provided for the randomly
sampled 100 sequences for each evaluated method. For the
evaluation of the generated instance segmentation masks,
we used the standard Average Precision (AP) metric.
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Methods Continual change captioning (image pair) Continual change captioning (image sequence)
BLEU4↑ CIDEr↑ GPT4↑ Human rating BLEU4↑ CIDEr↑ GPT4↑ Human rating

Accuracy↑ Coverage↑ Accuracy↑ Coverage↑
DUDA [7] 21.7 39.1 26.3 32.7 1.1 - - - - -
MCCFormers-D [8] 22.4 52.7 29.8 39.8 1.34 - - - - -
MCCFormers-S [8] 25.4 51.3 26.8 35.9 1.28 19.5 39.3 13.7 22.7 0.67
CLIP4IDC [28] 28.5 69.5 32.4 47.8 1.74 20.0 26.0 9.5 13.0 0.48
VARD-Trans [29] 16.4 19.4 21.9 28.3 1.0 - - - - -

OpenFlamingo [42] 7.8 37.3 37.9 43.8 1.85 11.2 23.4 20.9 34.4 1.10
BLIP2 [43] + GPT4 [44] 4.2 16.1 33.1 37.5 1.52 4.9 7.5 30.3 21.3 1.02

Human 21.2 50.8 40.0 94.4 3.58 24.3 39.7 40.2 89.8 4.62

Table 3. Change description evaluation on continual change captioning (image pair: left side; image sequence: right side).

Image A, 2015-11 Image B, 2016-07

Ground truth: A is cloudy, B is sunny and more bluish. The trees on the left side in B 
are more flourish than in A. B has more cars and humans than A. A woman is wearing 
white cloth on the left side of B but not in A.
MCCS: B is brighter than A. Trees in A has more leaves than B. There is a new 
building on the right side of B but not in A.
CLIP4IDC: A has more green than B. The sky in B is more bluish than A. Road B is 
newer than A. 
Openflamingo: Road B is older than A. B has more leaves than A. B has more grass 
than A.
BLIP2+GPT4: B has more trees and vehicles than A. B is sunnier than A. B also has a 
lawn, unlike A.

Image 1, 2016-01 Image 2, 2019-12 Image 3, 2021-06 Image 4, 2022-05

Ground truth: Image 1 has snow but others do not. Image 3 has the sunniest sky. There are people shown in Images 1, 2, and 4, but not in 3. 
The trees in Image 3 have more leaves. Images 3 and 4 have grassland on the right side. The road fence on the right side of Image 4 shows 
white because of the sunshine.

MCCS: There is a new building on the left side of Image 2 but not in other images. Image 1 has the gloomiest sky.
 

CLIP4IDC: The road is the newest in Image 2. Image 1 road is newer than Image 2. Image 2 road is newer than Image 1.
 

Openflamingo: The sky is the clearest in image 3. The road is the newest in image 2. The dirtiest road is in image 3.
 

BLIP2+GPT4: Image 3 is sunnier than Images 1 and 2. The road is in better condition in Image 3. The road fence in Image 4 is new and 
white. The weather in Image 4 is clearer and sunnier than others.

Figure 4. Experimental results of the existing methods in continual change captioning tasks (left: image pair; right: image sequence with
four images). Changes correctly retrieved are highlighted in blue.

0

15

30

45

3 4 5 6

BLEU Scores

MCCS CLIP4IDC

3 4 5 6

GPT4 Scores

Openflamingo BLIP2+GPT4 Human

Length of image sequence Length of image sequence

Figure 5. Experimental results on dataset examples with different
sequence lengths (image numbers).

4.4. Continual Change Captioning (Image Pair)

The comparison of the selected baseline models and multi-
modal LLMs for this task is presented in Table 3 and Fig-
ure 4 (left side). Among all baselines (DUDA, MCCForm-
ers -D and -S, CLIP4IDC, and VARD-Trans), CLIP4IDC
achieves the highest BLEU4, CIDEr, and GPT4 scores, with
28.5, 69.5, and 32.4 points respectively. This performance
is attributed to the large dataset size on which the model

was pre-trained. OpenFlamingo and BLIP2+GPT4 show
relatively low BLEU4 and CIDEr scores, while obtaining
higher scores on GPT4 and human ratings. This is because
these methods do not undergo a training process, tending to
predict sentences with structures that differ from the ground
truth sentences. In Figure 4, all methods capture only one
to two changes. The highest human rating results come
from CLIP4IDC and OpenFlamingo, but their best accuracy
score of 47.8 and coverage score of 1.85 are extremely low,
indicating that the models struggle to recognize changes
within the images from the STVchrono dataset correctly.

4.5. Continual Change Captioning (Image Se-
quence)

Experimental results for this task are in Table 3 (averaged
for all sequences from 3 to 6 images) and Figure 4 (right
side). Like for the image pair continual change caption-
ing task, multimodal LLM-based methods exhibited lower
scores in BLEU4 and CIDEr, but achieved better GPT4
score and human ratings. Specifically, BLIP2 + GPT4
scored the highest in GPT4, while OpenFlamingo averaged

14117



Methods Backbone AP AP50 AP75

Mask2Former [35, 38] ResNet50 [45] 4.60 6.73 4.52
ResNet101 [45] 4.64 6.29 4.70
SwinT-S [46] 6.02 8.34 6.47
SwinT-L [46] 6.46 9.52 6.32

CTVIS [39] ResNet50 5.86 7.82 6.37
SwinT-L 7.08 10.42 7.00

Table 4. Evaluation on the change-aware sequential instance seg-
mentation task (SwinT-S, -L: swintransformer small, large).

Figure 6. Examples of the change-aware sequential instance seg-
mentation results (from top to bottom: input images; ground truth;
results from Mask2Former and CTVIS). Objects with the consis-
tent IDs share the same mask colors within each sequence.

nearly 1.10 changes detected with higher accuracy (34.4
points). Figure 4 presents OpenFlamingo and BLIP2 +
GPT4 correctly identifying changes. Compared to change
recognition from image pairs, all methods demonstrated re-
duced performance, when recognizing changes from image
sequences. Figure 5 depicts BLEU4 and GPT4 scores for
varying sequence lengths. BLEU4 scores drop with the
length increase, attributed to lengthier ground truth captions
and diminished model efficiency in grasping complex struc-
tures. GPT4 scores stabilize, indicating a consistent com-
plexity level in recognizing the change trends across 3 to 6
images. The performance gap compared to human accuracy
highlights a deficiency in identifying temporal transitions in
sequences, even for the advanced multimodal LLMs.

4.6. Change-Aware Sequential Instance Segmenta-
tion

The comparison of the chosen baseline models for the
change-aware sequential instance segmentation task is
present in Table 4. Among the two baselines, the CTVIS

method achieved the highest Average Precision (AP) score
across all thresholds (7.08 AP, 10.42 AP50, 7.00 AP75),
when used with the SwinT-L backbone. Notably, even with
the adoption of more extensive backbones like SwinT-L, the
scores were not significantly improved. Examples of the
generated instance segmentation masks for the chosen base-
line models are present in Figure 6. Both Mask2Former and
CTVIS exhibited low accuracy in identifying buildings with
changing viewpoints, and in segmenting small regions like
cars and humans. This is attributed to the unique challenges
the STVchrono dataset poses, which include significant ap-
pearance changes due to factors like: construction, traffic,
weather, seasons, and varying camera angles. These factors
distinguish STVchrono from the typical tasks such as video
instance segmentation, highlighting its complexity. The re-
sults underscore the need for ongoing innovation and the de-
velopment of new approaches to improve robustness in the
change-aware sequential instance segmentation. Additional
experimental results are available in the supplementary ma-
terial.

5. Conclusion

Continuous long-term change is a prevalent and fundamen-
tal element in the real-world observations, finding applica-
tions in areas like urban and land analysis, agriculture, and
cultural heritage sites. However, most existing research in
change recognition primarily centers on short-term, discrete
changes and often relies on the synthetic datasets limited to
two-image observation pairs. To advance the research in the
real-world change recognition, we introduce “STVchrono”,
a novel benchmark dataset, comprising street view images
for 50 cities spanning 18 years. This dataset particularly
emphasizes long-term continuous changes and facilitates
evaluations based on paired images, serial image change de-
scriptions, and consistent instance segmentation, across im-
ages from the identical locations. Our experiments with the
STVchrono reveal a significant performance gap between
the latest multimodal LLMs and human capabilities, high-
lighting current advanced models’ limitations in recogniz-
ing dynamic changes.

The STVchrono dataset, while groundbreaking, has its
limitations, including uneven city data distribution and a
restricted range of changes associated with the weather
and time of day. We aim to continually refine and ex-
pand STVchrono, incorporating a broader variety of vi-
sual changes and detailed linguistic change descriptions.
Currently, change recognition methods involve separate
change description and region detection. The develop-
ment of a comprehensive change recognition methodology,
that seamlessly integrates change description and adaptive
detection, presents a promising avenue for the future re-
search.
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