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Figure 1. Elastically deforming a NeRF [55] based on user-designated positioning of the head (turned) tail (bent) and body (lowered), and
optimizing the degrees of freedom of TutteNet to minimize the elastic energy of the deformation. TutteNet guarantees an injective (1-to-1)
deformation of the ambient 3D space surrounding the T-Rex, ensuring the NeRF is rendered correctly without artifacts by enabling “pulling
back” points and view directions from deformed space. Each layer within TutteNet views the T-Rex over a different 2D plane (in this case,
alternating between the 3 main axes in a tri-plane manner). In each layer, the T-Rex is enveloped with a regular 2D mesh of the unit square
(top row). The 2D mesh is deformed using the layer’s optimizeable parameters which define a Tutte’s embedding [19, 80] (bottom row).
This defines an injective 2D piecewise-linear map, which can be applied to the 3D T-Rex, without modifying the normal direction to the
plane, resulting in an injective 3D deformation �i. Composition of these layers yields the final expressive 3D injective deformation.

Abstract

This work proposes a novel representation of injective
deformations of 3D space, which overcomes existing limi-
tations of injective methods, namely inaccuracy, lack of ro-
bustness, and incompatibility with general learning and op-
timization frameworks. Our core idea is to reduce the prob-
lem to a “deep” composition of multiple 2D mesh-based
piecewise-linear maps. Namely, we build differentiable lay-
ers that produce mesh deformations through Tutte’s embed-
ding (guaranteed to be injective in 2D), and compose these
layers over different planes to create complex 3D injective
deformations of the 3D volume. We show our method pro-
vides the ability to efficiently and accurately optimize and
learn complex deformations, outperforming other injective
approaches. As a main application, we produce complex
and artifact-free NeRF and SDF deformations.

1. Introduction

This work concerns computation and learning of 3D defor-
mations. As the most immediate mode of manipulation and
interaction with 3D shapes, deformations play a crucial role
in various fields such as vision [81], medical imaging [52],

3D registration [13], and graphics [32]. In many real-world
applications, it is crucial that the deformation does not cre-
ate any self-overlaps, i.e., is injective (a 1-to-1 mapping).
An example that is a key motivation for this work, is de-
formation of Neural Radiance Fields (NeRFs) [55]: when
deforming NeRFs, lack of injectivity can easily cause se-
vere rendering artifacts due to intersecting “deformed” rays
during the ray tracing process, see Figure 3.

Unfortunately, current approaches do not provide an in-
jective deformation method that is both sufficiently expres-
sive and robust, as well as lending itself to practical opti-
mization and learning:

– On one hand, within geometry processing and graph-
ics, 3D deformations are heavily-researched through trian-
gular/tetrahedral mesh deformations, i.e., modifying the po-
sition of each vertex of the mesh. Mesh deformations pro-
vide a finite set of meaningful geometric degrees of free-
dom leading to stable, quick, and straightforward computa-
tion, as well as access to geometric quantities such as the
deformation gradients (Jacobians), critical in most mesh-
deformation approaches [87]. However, mesh deformations
cannot be learned while ensuring injectivity, nor are di-
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Learnable Analytical
inverse

Fast Det.
Jacobian

Fast full
Jacobian Robustness

i-ResNet [6] X 7 7 7 7
RealNVP [16] X X X 7 7
NeuralODE [10] X X X X 7

Ours X X X X X

Table 1. Properties of injective deformation methods. Beyond
superiority in accuracy and efficiency, our method holds unique
properties compared to other injective methods, see Sec. 3.3.

rectly applicable when an explicit triangulation of the shape
is not given.

– On the other hand, the ML community has heavily-
researched functional representations of injective maps via
neural networks, such as normalizing flows [16] and so-
lutions to ODEs [10]. These methods were mainly de-
signed for high-dimensional mappings, e.g., for generative
tasks [24], but have recently been successfully adapted to
injective 3D deformations [30, 36, 81]. The functional rep-
resentation which they provide is not geometric, but rather
embedded abstractly within the network’s weights, result-
ing in many cases in slow, cumbersome and unstable com-
putation, possibly leading to a less-accurate prediction, or
practical intangibility of critical geometric quantities such
as the aforementioned deformation Jacobians.

In this work, we aim to resolve these issues and gain the
benefits of both worlds: we propose a novel computational
representation for 3D injective deformations, which com-
bines the geometric representation of mesh-based defor-
mations with the standard deep-learning approach of func-
tional composition.

Our core observation is that sequentially composing
multiple 2D mesh deformations, over different 3D planes,
achieves two critical goals simultaneously: 1) similarly to
other “deep” representations, compositionality leads to an
expressive representation, able to capture complex 3D de-
formations accurately, while simultaneously using mesh de-
formations for its layers, providing virtues such as numeri-
cal stability and accuracy; 2) while injectivity is not directly
tractable for 3D mesh deformations, it is in 2D. Hence, by
reducing each deformation “layer” to 2D, we can leverage
recent observations for 2D injective mesh deformations [1],
which show how 2D Tutte embeddings [80] can yield a dif-
ferentiable parameterization of all injective mesh deforma-
tions into a convex domain, enabling unconstrained learning
and optimization. Composing multiple 2D injective defor-
mations from different viewpoint defines a family of injec-
tive volumetric 3D deformations.

We show through experiments that our method can be
used both for accurately learning injective deformations
(e.g., learning to repose a given human model to arbitrary
poses), as well as optimizing volumetric deformations in
tasks in which injectivity is critical, e.g., elastically de-

forming a NeRF with respect to user interactions. Through
comparisons, we show that our method significantly outper-
forms other injective deformation techniques. Furthermore,
through comparisons to previous (non-injective) NeRF-
deformation techniques, we both exhibit the importance of
injectivity, as well as show that in many cases our method
is still more expressive than those competing techniques, in
spite of them facing a less-constrained problem.

2. Related Work

Invertible neural networks. Injective maps are critical
for generative modeling, in order to map between distri-
butions. This has fueled the development of families of
invertible neural functions. Normalizing Flows [15, 16,
23, 40, 60, 61, 70, 71, 79] are highly prominent, with
RealNVP [16] applied to 3D volume deformations, e.g.,
long-range optical flow [81] or for learning 3D deforma-
tions [43, 65]. They work by defining an injective transfor-
mation of a subset of the spatial coordinates at each block,
which is ideal for a high-dimensional settings but loses ex-
pressivity when the subsets must lie in 1D/2D. Continu-
ous flows through Neural solutions to Ordinary Differen-
tial Equation (NeuralODE) [10] have also been success-
fully applied to 3D deformations, e.g., for shape autoen-
coding [27], dynamic mesh reconstruction [59], for point
cloud generation [90] and asset deformation [30, 36]. Fi-
nally, i-ResNet [6] achieves invertibility of a ResNet by en-
forcing Lipschitz bounds, with [91] using this formulation
for 3D deformations. We empirically evaluate and compare
to these methods in Section 4.2. In Table 1, we compare de-
sirable properties for 3D invertible deformations. TutteNet
can be considered as a variant of a normalizing flow, how-
ever is an explicit representation through composition of
geometrically-expressive 2D mesh deformations, designed
specifically for geometric 3D deformations, without the in-
clusion of a neural network in the deformation process.

Injective deformations of meshes in geometry process-

ing. 3D injective deformations have been extensively re-
searched in geometry processing, mainly for piecewise lin-
ear maps on triangle meshes. Local and global injectiv-
ity can be achieved through energies that encourage or en-
force it [17, 22, 69, 72, 73] but cannot guarantee injec-
tivity when additional objectives are added, or in learn-
ing settings. Injectivity can be achieved via convex con-
straints [2, 41], tailor-made solvers [44], or discrete mod-
ifications of the triangulation to preserve or recover injec-
tivity [20, 38, 57] that cannot be applied in a learning set-
ting or without a well-defined triangle mesh. Other meth-
ods use non-discrete representations [7] that cannot be pre-
dicted or optimized. We use layers of 2D injective defor-
mations define via Tutte’s embedding [19, 80], and control
each layer by the method proposed in [1], of optimizing the
mesh Laplacian and boundary conditions.
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Figure 2. Our representation of injective 3D deformations, visualized for the process of mapping a given point p inside the volume, for
two-layer TutteNet, i 2 {1, 2}. Left: the (learnable) parameters ✓i, consisting of the mesh-Laplacian Li and the boundary conditions bi,
define a 2D deformation  i of the square mesh M, through Tutte’s embedding [80].  i is embedded in 3D to the local coordinates Ri to
define a 3D deformation, �i. Right: given a point p, it is projected to the local coordinates of �1, landing on triangle t1. �1 defines an
affine map over the infinite prism of t1 (represented in blue with dotted lines), mapping p to �1(p). The resulting �1 (p) is projected onto
the local coordinates of  2, landing on triangle t2, from which it is mapped by the affine map �2 defined over the infinite prism of t2.

NeRF Deformation. Several works use 3D volume de-
formations defined by MLPs that input/output spatial co-
ordinates as a means to achieve various applications for
NeRF, e.g., dynamic scenes [21, 63, 64, 78, 83], styliza-
tion [85], and controlling trajectories [50]. Other works
focus on providing NeRF deformation tools for end users,
usually via a proxy geometry that controls the volume de-
formation, e.g., using a mesh scaffold and transfers a user-
defined mesh deformation to a volume deformation Nerf-
Editing [94], or through enveloping cages [34, 46, 68, 86].
Others bake the NeRFs into a more deformation-friendly
representation, such as meshes [12] or point clouds [9, 47].
None of these approaches is injective nor can be applied to
a NeRF without a preprocessing step of fitting the proxy to
the NeRF, making learning and optimization less straight-
forward. We compare with [47, 86, 94] and demonstrate
the importance of injectivity. Many other learning tech-
niques exist for deforming shapes that are not NeRFs,
e.g., by predicting per-points offsets via coordinate-based
MLPs [11, 14, 18, 25, 26, 54, 62, 76, 92], Jacobians [4],
rigs [28, 45, 48, 88, 89, 93], or point handles [33, 49]. To
avoid self-intersection, they often rely on regularizing the
Jacobian [5, 31, 74] or the Laplacian [39].

3. Method

We now describe our expressive representation of 3D in-
jective functions through composition of 2D injective mesh
deformations, see Figure 2 for visualization of the full
pipeline. We begin by setting some necessary preliminar-
ies regarding piecewise-linear maps and Tutte embeddings
(Section 3.1), then describe our representation (3.2) and
conclude with analyzing its core properties (3.3).

3.1. Preliminaries

Piecewise-linear maps. We assume to have a 2D triangu-
lar mesh M with triangles T and vertices V embedded in
R2. M can be any disk-topology mesh - in all experiments,

we use the unit square, ⌦ = [�1, 1]2, and triangulate it with
a regular triangulation of same-size isosceles triangles. We
consider 2D piecewise-linear maps  : M ! R2 of this
mesh, meaning the map is affine over each triangle t 2 T,

 |t (p) ⌘ Atp+ �t, (1)

for some At 2 R2⇥2
, �t 2 R2. (Note that this map can

map any point p 2 ⌦ and not just the vertices of a mesh).
The gradient of a map at point p, denoted Dp , is called
the Jacobian. For piecewise-linear maps, the Jacobian is
constant over each triangle t and is exactly the linear trans-
formation Dt = At. To define a continuous piecewise
linear map , it suffices to define deformed vertex positions
U = {ui}|V|

i=0, assigning position ui 2 R2 to each vertex
vi 2 V, and define the map via  (vi) = ui. Given ui the
Jacobian can be obtained by solving the linear equation

Atvi + �t = ui, i 2 t (2)

w.r.t At - the resulting small 6 ⇥ 6 linear equations can be
inverted once at initialization of training/optimization.

Tutte’s embedding is a method for computing injective
2D mesh mappings [19, 80], for meshes with disk topol-
ogy (i.e., having one loop of boundary vertices). Given a
mesh-Laplacian matrix L, defined by assigning some pos-
itive scalar Lij 2 R+ to each edge (i, j) of the mesh M,
along with a sequence of 2D points b1, ...,bk 2 R2 that
lie on a convex polygon, Tutte’s embedding computes de-
formed vertex positions U = {ui}|V|

i=0 by solving the sparse
linear system defined via:

X

j

Lij (uj � ui) = 0 for each interior vertex vi

ui = bi for each boundary vertex vi.
(3)

While Tutte’s embedding is guaranteed to be injective in
2D, it is unfortunately well-known to not hold in 3D (see,
e.g., [7]) hence extensions to 3D do not exist.
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3.2. 3D injections through 2D mesh deformations

We wish to devise an optimizable family of injective defor-
mations f✓ of 3D volumetric space, which leverages mesh
deformations. Since no simple parameterization of injective
3D mesh deformations is known, the key idea of TutteNet
is instead to define the 3D deformation through the compo-
sition of 2D injective mesh deformations (see Figure 2).

Prismatic layers. Postponing the discussion on how to
compute 2D injective mesh deformations, assume for now
that we have one such injective 2D mesh deformation,
 : M $ R2. Our basic building block constituting one
“layer” in our architecture, is a type of map we dub a pris-
matic map, meaning it is a lifting of the 2D mesh defor-
mation  into a 3D piecewise-linear map that operates over
some plane and preserves the normal direction. Specifically,
let p 2 R3 be a 3D point, and define

 ̃ (px,py,pz) ,  (px,py) ,pz, (4)

i.e.,  ̃ acts on the xy coordinates of each point and pre-
serves the z coordinate. By rotating the coordinate system
by a 3D rotation R 2 SO (3) we can apply the deformation
on any desired plane instead of on the main axes:

� (p) , R ̃
�
RTp

�
. (5)

The process of mapping through � is summarized in Al-
gorithm 1. Finally, composing multiple �i (defined over
different planes Ri and with different  i) yields the final
3D deformation f ,

f = �k � �k�1
... � �0

. (6)

Lastly, we need to parameterize the injective 2D mesh
deformation space  : M ! R2. Our reduction of the
3D injective problem to 2D sub-problems enables us to take
advantage of recent advances in 2D injective mesh deforma-
tions [1]. Originally designed for generative 2D techniques,
[1] provides a parameterization of all 2D injective deforma-
tions of a given mesh, via Tutte’s embedding [3, 19, 80].

Following [1], we use the entries of the Laplacian Lij

and the boundary conditions bi (defined in Section 3.1)
as optimizable/learnable parameters, which in turn produce
the deformed vertices U of the 2D mesh, through Tutte’s

Algorithm 1: Prismatic map � (p)

1 Rotate point to local coordinate frame: q = RTp
2 Keep only the xy coordinates: q̃ = (qx,qy)
3 Find triangle t that contains q̃
4 Map through  : r̃ = Atq̃+ �t

5 Concatenate the z coordinate back: r = (r̃x, r̃y,qz)
6 Rotate back to global coordinates: � (p) = Rr

embedding, by solving the linear system of Eq. (3) w.r.t.
L,b. Following the proof in [1], this covers all possible
piecewise-linear maps of M into the convex polygon b.

To ensure that {bi} form a convex polygon, we param-
eterize them via positive angle increments ↵i > 0,

P
↵i =

2⇡, and define the angle �j =
Pj

i=1 ↵i. bi is then the
intersection of the line at angle �i with the unit square.
Hence, b is a function of ↵. To keep all parameters pos-
itive and bounded, we add a sigmoid and scaling function
on those parameters before feeding them to the Tutte layer,
x
0 = sigmoid (x) (1 � 2✏) + ✏, with ✏ = 0.2 for L and

✏ = 0.1 for b.
The parameters of a prismatic map �i are thus ✓

i =�
L
i
,bi

�
, and the local coordinate system

�
Ri

 
. The final

3D injective piecewise-linear map f✓ is thus parameterized
by ✓ =

�
✓
i
,Ri

 n

i=0
. We summarize the computation of

f✓ in Algorithm 2. ✓ (and possibly
�
Ri

 
) can be directly

optimized with respect to an objective (Section 4.1), or oth-
erwise predicted by a neural network (Section 4.2) - in both
cases, we run Algorithm 2 at each iteration, compute the
loss and back-propagate gradients back to ✓, as all steps in
the algorithm are differentiable.
Layer regularization. To better-condition our architec-
ture, we can regularize its layers, ensuring each layer’s Ja-
cobian’s distortion is low. We define an elastic energy mea-
suring the Cauchy-Green strain tensor’s deviation from the
identity matrix I at a given point p for a given map g,

Eg (p) =
��Dpg

T
Dpg � I

��2 , (7)

where Dpg is the map’s Jacobian (defined in Section 3.1).
As opposed to functional representations [16, 30], the

layer’s Jacobians are enumerable (one per triangle), en-
abling us to compute the exact integral of E (as opposed
to an approximation via sampling), by summing the energy
over all Jacobians of the layer:

LReg ,
Z

p2⌦
E i (p) ⌘

X

t2T

|t|E i (t) , (8)

where |t| is the area of triangle t. This technique could be
extended in the future to, e.g., provide absolute bounds on
the distortion of each layer [41].

Algorithm 2: Computation of f✓ from ✓

1 for each deformation layer i do

2 Compute Ui via Tutte’s embedding, by solving
the linear system (3) defined by L

i
,bi

3 Compute  i from Ui using Eq. (1), and store
A

i
t, �

i
t for each triangle t

4 Define �i via  i and Ri

5 end

6 Define f✓ using all
�
�i
 n

i=0
via Eq. (6)
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3.3. Discussion: properties of the deformation f✓

Table 1 compares different injective approaches for 3D de-
formations. Constructing f through composition of mesh
deformations provides it with the following desirable prop-
erties:
• Learnable and optimizable. The representation of the
deformation f✓ through the unconstrained parameters ✓ in
turn allows simple gradient-based learning/optimization.
• Injective, with an immediate, explicit inverse. f is guar-
anteed to be an injective piecewise-linear map, and we can
swap the roles of Vi and Ui to immediately get the inverse
map as well as the inverse’s Jacobian.
• Easy and fast Jacobian computation. Computing the
Jacobian (see supplemental) requires 2n multiplications of
small 3 ⇥ 3 matrices, where n is the number of layers. In
comparison, methods such as RealNVP [16] are designed
to have efficient access to the determinant of the Jacobian,
but require n multiplications of large, dense matrices to get
a full Jacobian. This is even worse when second-order op-
timization is needed, e.g., when the Jacobians are involved
in a loss (Section 4.1).
• Robust and expressive. Our framework inherits the
virtues of mesh-based deformation, e.g., numerical stabil-
ity, and ability to represent elaborate deformations, with this
expressivity boosted by the ability to create deep composi-
tions of these deformations. Each Tutte layer relies on a
single well behaved linear system, solved with a constant
memory footprint and speed. In contrast, NeuralODE [10]
poses a hard-to-tune tradeoff between accuracy, speed, and
memory consumption.

4. Experiments

We evaluate the capabilities of our injective representation
both on learning a space of deformations, as well as within
an optimization setting. We additionally compare to several
state of the art methods for deformations - both ones that are
injective as well as ones that are not. In the supplementary
material, we ablate the main design choices of our method
i.e. number of layers, resolution of each layer, as well as the
orientation of the projection planes.

4.1. Deformation of Neural Radiance Fields

Neural Radiance Fields (NeRFs) [55] are quickly becoming
one of the most popular representations for 3D scenes. Ap-
plications that use NeRFs thus require methods to manipu-
late and deform them, and significant research has been ded-
icated to NeRF deformation methods [34, 68, 94]. We rep-
resent a NeRF using Instant-NGP [58], and render it using
NeRFStudio [77], by interfacing with their code and modi-
fying the sampling function to go through our deformation,
as we explain next.

Rendering the deformed NeRF. As discussed in previ-
ous works [86], for correct rendering of a deformed NeRF,
one requires both the inverse deformation as well as its
Jacobian: a NeRF N (p, r) ! c,� maps a point p and
a view direction r to color c and density �, thus render-
able via a ray-tracing process. Given a deformation f , the
point p and ray r in the deformed space correspond to the
point p0 , f

�1 (p) ray r0 , Dpf
�1 · r in undeformed

NeRF space. Hence, we require efficient computation of
f
�1

, Dpf
�1 in order to compute N (p0

, r0).
The only injective method, aside from ours, that supports

an efficient computation of the inverse and its Jacobian is
NeuralODE [10, 30, 36] - we compare to this method and
show our robustness and higher accuracy. We additionally
compare to non-injective methods and show the criticality
of injectivity.

Elastically deforming the NeRF. In order to deform the
NeRF, we optimize the map f to satisfy the user-specified
constraints in a variational as-rigid-as-possible [74] manner,
minimizing the elastic energy, Equation 7. Previous meth-
ods use constructions such as proxy “rigs”, e.g., cages [68]
or point clouds [47], leading to inaccuracies (e.g., when re-
covering the rig’s geometry from an inaccurate NeRF, or
when mapping between the NeRF and the rig). Our guaran-
teed injectivity enables deforming NeRFs directly without
the tedious, brittle, proxy construction process, and we de-
fine the elastic energy of f✓ over the density field itself:

Lelastic =

Z

⌦
Ef✓ (p)� (p) , (9)

where the integral is over the volumetric unit cube ⌦,
Ef✓ (p) is defined in Equation (7), and � is the NeRF’s den-
sity function. The constraints are set by a user through a
simple GUI, selecting a region P as a “handle” and shifting
it by a rigid motion R to a new position R (P). We enforce
these constraints through an additional loss term,

Lhandle =

Z

P
kf (p)�R (p)k2 . (10)

We estimate these integrals by rejection sampling on the
density function �, using a threshold of 1 on its value. Fi-
nally, we optimize the parameters ✓ of f✓ w.r.t. the loss,

L = �elasticLelastic + �handleLhandle + �RegLReg. (11)

We show rendered NeRFs deformed by our method in Fig-
ure 3, with the original NeRF shown from two views, and
the selected constraints illustrated with green arrows on the
left column. See more results in the supp. material.

Comparison to NeRF-deformation approaches. We
compare our method with three state-of-the-art NeRF de-
formation techniques [47, 86, 94] in Figure 3. For each
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SPIDR [47] TutteNet (Ours) NeuralODE [10] TutteNet (Ours)

View 1 NeRF-Editing [94] TutteNet (Ours) View 2 Deforming-nerf [86] TutteNet (Ours)

Figure 3. Comparing NeRF deformation methods. We minimize the elastic deformation energy of NeRFs under user-specified con-
straints (left, in green) and compare the visual quality of our results with other techniques. Non-injective methods such as NeRF-
Editing [94] and Deforming-NeRF [86] lead to non-injective deformations due to internal inversions and intersections, in turn leading
to visible artifacts. SPIDR [47] relies on a hybrid SDF/point cloud representation, leading to degradation in detail (T-Rex teeth) as well
non-injective artifacts (tractor). We additionally compare to the only other injective method that is applicable for this experiment, Neu-
ralODE [10] whose injectivity avoids visual artifacts, but causes geometric artifacts such as squashing the T-Rex’s tail and the robot’s eye.

method, we optimize its deformation g with respect to its
degrees of freedom, fitting it to the injective deformation
f produced by our method. We sample points and min-
imize the L

2 distance between the images of correspond-
ing points,

P
p kf (p)� g (p)k, by optimizing the defor-

mation’s degrees of freedom with respect to this loss. We
perform these tests using each method’s own deformation
and rendering code.

These methods focus on interactivity and speed, often
losing injectivity of 3D volumetric space when fitted to
strong deformations, thus resulting in artifacts. Deforming-
nerf [86] deforms the NeRF by building a cage around it
and moves points by linear dependencies with the cage’s
vertices. This low dimensional space cannot capture the de-
sired deformation, and without careful attention easily leads
to noninjective and tangled configurations which squash the
head of the T-rex and lead to rendering artifacts that blur the
texture of the robot’s head. Nerf-Editing [94]’s deformation

of the tail of the T-rex creates an entanglement of rendering
rays with the brick floor, creating “bleeding” artifacts in the
rendering (see zoom-in). SPIDR [47] bakes the NeRF into
a point cloud, and we used their dataset. When deformed,
it can lead to a “discrete” version of non-injectivity, mixing
points, resulting in merged teeth for the T-Rex and incorrect
rendering of the Lego model. In contrast, our deformations
remain plausible and crisp, for large displacements and for
diverse shapes.

Comparison to NeuralODE [10, 30, 36]. As discussed
above, NeuralODE is the only other method that provides
both inverse and Jacobians in a computationally-feasible
manner (e.g., not resorting to second-order derivation of
an MLP when optimizing the Jacobian-dependent energy,
Equation (9)). We replaced our representation with theirs
and ran the experiment with exactly the same setup. Re-
sults are shown in Figure 3. This comparison highlights
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Fitting Learning Timing (sec.)
Vert. # Grad. # Vert. # Grad. # Forward Jacobian

RealNVP [16] 1.7 12.5 4.21 35.2 0.006 136
i-Resnet [6] 17.9 40.2 13.4 92.3 0.005 39
NeuralODE [10] 0.19 2.6 1.24 25.4 0.11 0.19
TutteNet (ours) 0.15 4.4 0.16 7.7 0.09 0.02

Table 2. Quantitative comparison of injective deformation

methods. We compare the ability of our TutteNet, i-ResNet [6],
RealNVP [16], and NeuralODE [10] on the human deformation
fitting and learning experiments, Section 4.2. We report the ver-
tex and mesh gradient terms from Equation 12, both multiplied by
103. We report average timings on the right.

the importance of injectivity for NeRF deformation, as nei-
ther of the two methods exhibits rendering artifacts in any
scenario. However, the zoom-ins reveal geometric issues:
NeuralODE completely collapses part of the T-Rex’s leg,
and squashes the eye and hand of the robot, due to their
proximity to one another. We additionally note that Neu-
ralODE’s numerical integration sometimes leads to running
out of memory or significant stalling, when run on a large
set of sample points, reducing its applicability to the NeRF
rendering setting.

4.2. Learning Injective Deformations

We evaluate the applicability of TutteNet in a learning set-
ting. Here, the parameters ✓, which define the deforma-
tion f✓, are predicted by a neural network - note that as
opposed to a standard “hypernetwork” which predicts pa-
rameters of another neural network, here the neural network
predicts geometrically meaningful degrees of freedom and
hence we do not expect significant degradation in accuracy.
To quantify and evaluate our representation’s ability to ac-
curately capture injective deformations, we require a dataset
with ground truths, and hence we choose to use the highly
popular SMPL [51] model, which can generate a dataset
of human meshes with groundtruth 1-to-1 correspondences
between their vertices.

SMPL is parameterized by two sets of parameters: P and
B, dictating the human pose and body shape, resp. We gen-
erate a dataset of different body-shaped humans, each in a
pair of source and target poses, SB,Ps , SB,Pt . We randomly
sample poses, discarding results with self-intersections. See
the supp. material for full details.

Our training scheme trains the neural network to receive
the source human SB,Ps , and the target pose parameters Pt,
and based on them predict the deformation f✓ that deforms
the source to the target f✓ (SB,Ps) = SB,Pt . To avoid infer-
ence that relies on specific geometric structure, we encode
each source human SB,Ps by rendering it from several view-
points and using a visual encoder. We concatenate the out-
put of the encoder along with the pose parameters Pt into a
code z, which is fed into an MLP architecture that predicts
the final deformation parameters ✓. We compute the map
f✓ via Algorithm 2 and use it to compute the same loss used
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Figure 4. Visual comparison of accuracy of injective defor-

mation methods. We compare the ability of our TutteNet, i-
ResNet [6], RealNVP [16], and NeuralODE [10] on fitting (top)
and learning (bottom) human deformations, Section 4.2. Our
method produces highly-accurate results in the learning experi-
ment while all others show visible artifacts. For the fitting ex-
periment, only NeuralODE [10] achieves similar accuracy to ours.

by [4] for learning mesh deformations:

L = kf✓ (SB,Ps)� SB,Ptk
2 +

0.1 kJf✓ (SB,Ps)� JSB,Ptk
2 ,

(12)

where the first term is the L2 distance between the de-
formed human mesh’s vertices and the ground-truth target
vertices, and the second term is the L2 distance between
the deformed mesh’s and the ground truth mesh’s intrinsic
deformation gradient (note: not the map’s Jacobians), ob-
tained by using the source mesh’s gradient operator. See
supplementary for full details on training. Figure 4, bottom
shows the predicted deformations. See more results in the
supp. material.

Since the network (trained solely on meshes) produces
volumetric injective deformations, it can be readily applied
to other neural fields such as NeRFs [55] and SDFs [62] -
Figure 5 shows results of applying the same network, with-
out retraining, on: 1) synthetic NeRF created from a ren-
dered model; 2) real in-the-wild NeRF captured by a smart-
phone; 3) SDF, showing the SDF isolines as well as the
marching cube reconstruction (note, though, that any defor-
mation of an SDF violates the Eikonal equation. Hence,
while the deformed field represents a valid shape, it is no
longer an SDF). Although the network was only trained
with respect to points on the surface of the mesh, its injec-
tivity ensures it produces meaningful deformations on the
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volume of the models. We additionally note that there are
many methods that focus specifically on deforming NeRFs
of humans (e.g. SHERF [29]), while we use humans as a
benchmark for comparing and measuring the accuracy of
our method, as well as showing its generality: unlike these
other techniques [8, 35, 37, 42, 66, 67, 75, 82, 84, 95], we
did not use any human-specific priors in the design of the
representation, and the same exact method could be applied
as-is to any other deformation dataset.

Comparison to other methods for learning injective

deformations. We use the learning experiment to com-
pare our method with other key representatives of fam-
ilies of invertible neural representations: RealNVP [16]
(normalizing flows), i-ResNet [6] (Lipschitz-bounded net-
works) and NeuralODE [10] (continuous flow/ODE solu-
tions) - all of which have been successfully applied to 3D
tasks [27, 36, 43, 59, 65, 81, 90]. We trained these meth-
ods exactly as we trained ours, with their provided code and
with same number of model parameters, and performed hy-
perparameter sweeps to find the best-performing choices for
each - refer to the supplementary. Quantitative results are
shown in Table 2, and representative example deformations
are visualized in Figure 4, bottom. Our method accurately
learns the deformation space, achieving near-identical de-
formations and the lowest fitting error, while the other meth-
ods achieve higher errors, leading to visible artifacts.

As an additional experiment, we measure the ability of
each technique to represent one, single deformation, by
“overfitting” the network (without a conditional) on a pair
of source/target humans. For this evaluation, we randomly
generated 200 different-bodied humans, and sampled pose
source/target pairs from the AMASS dataset [53] for each
of them. We show quantitative results in Table 2 and quali-
tative results in Figure 4.

As is evident from both experiments, RealNVP [16] and
i-ResNet [6] produce inaccurate results compared to us,
both in the learning experiment and in the fitting experi-
ment. Indeed, they are designed to perform extremely well
on high-dimensional tasks, but are less successful in 3D
tasks which require very high accuracy (note the shrunk
parts in Figure 4). RealNVP [16] has low-dimensional in-
jective coupling layers similar to us, however, each of their
layers is less expressive than a Tutte layer. i-ResNet [6]
achieves invertibility by regularizing ResNet blocks to have
a Lipschitz constant < 1, however, this family of functions
leads to reduced expressivity to fit 3D deformations.

While NeuralODE [10] produces significantly less accu-
rate deformations in the learning experiment, for the fitting
experiment, they achieve results comparable to ours, with
results visually close to indistinguishable in Figure 4, and in
fact, for the fitting experiment, attain a slightly lower aver-
age error than us on the mesh-gradient fitting term (“Grad.”)
while we achieve a lower vertex fitting term, see Table 2.

Target
PosesInput

Shapes

N
eR
F

N
eR
F

SD
F

Figure 5. Applying the trained network to deform neural fields.

The neural network from the learning experiment (Section 4.2),
trained to predict deformations on a dataset of human SMPL [51]
meshes (top row, demonstrating the desired target pose), is seam-
lessly applied to deform synthetic and real NeRFs [55] (middle
two rows), and SDFs [62] (bottom row).

The degradation in NeuralODE’s performance when scal-
ing up for the learning experiment is expected: to achieve
injectivity, they leverage uniqueness of ODE solutions and
plot reversible trajectories of points in 3D space - this re-
quires numerical integration, which becomes increasingly
difficult as the learned functional space represented by the
neural network grows more convoluted (refer to [10] and
their discussion on their Figure 3(d)). For the fitting exper-
iment we used the default hyperparameters from [10], and
for the learning experiment used the ones from [36].

5. Conclusion

We have presented an expressive, numerically robust, and
computationally efficient representation of 3D injective de-
formations that can be plugged without modification into
other applications requiring injective deformation modules.

Our method has two main limitations. First, the map
evaluation cannot be done at interactive times, preventing
real-time rendering and interaction for the moment. Sec-
ond, deforming one part of the space may have an effect on
another part, and it is non-trivial to completely localize de-
formations to one part of a shape. This is true for all the
other injective deformation techniques as well.

We are excited by the possible uses of our framework,
e.g., for long-range optical flow [81], or to regularize non-
rigid 3D registration [13]. Additionally, use cases for other
types of low-dimensional injective maps are highly attrac-
tive, e.g., for surface-to-surface mappings through common
domains, which require an injective 2D map [56].
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