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Abstract

Despite great improvements in semantic segmentation,
challenges persist because of the lack of local/global con-
texts and the relationship between them. In this paper, we
propose Contextrast, a contrastive learning-based seman-
tic segmentation method that allows to capture local/global
contexts and comprehend their relationships. Our proposed
method comprises two parts: a) contextual contrastive
learning (CCL) and b) boundary-aware negative (BANE)
sampling. Contextual contrastive learning obtains lo-
cal/global context from multi-scale feature aggregation and
inter/intra-relationship of features for better discrimination
capabilities. Meanwhile, BANE sampling selects embed-
ding features along the boundaries of incorrectly predicted
regions to employ them as harder negative samples on our
contrastive learning, resolving segmentation issues along
the boundary region by exploiting fine-grained details. We
demonstrate that our Contextrast substantially enhances the
performance of semantic segmentation networks, outper-
forming state-of-the-art contrastive learning approaches on
diverse public datasets, e.g. Cityscapes, CamVid, PASCAL-
C, COCO-Stuff, and ADE20K, without an increase in com-
putational cost during inference.

1. Introduction

Semantic segmentation is a fundamental technique utilized
across diverse applications, including autonomous driving,
medical imaging, and robotics [12, 13, 18, 32, 37, 40]. Re-
cent empirical studies have achieved remarkable advance-
ments in semantic segmentation, benefiting significantly
from the availability of extensive datasets [1, 2, 9, 10, 29,
55]. To improve segmentation performance, researchers
have proposed larger deep neural network (DNN) archi-
tectures [4–8, 11, 14, 16, 19, 21, 24, 25, 27, 34, 35, 39, 42–
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Figure 1. (a) Ground truth, (b) output of HRNet [35], (c) and that of ours.
(d) Overview of our contextual contrastive learning (CCL): the representa-
tive anchors of the last layer, which are from the higher embedding space
levels, are aggregated to representative anchors of the lower layer to en-
capsulate local and global context. By doing so, the anchor of the n-th
class on the i-th layer an

i is updated as ân
i (on the right side, its posi-

tion is shifted), enhancing the distinctiveness between anchors of each
class. (e) Visual description of our boundary-aware negative (BANE) sam-
pling (triangles with red color and red borders). Our sampling prioritizes
selecting the features of incorrect predictions at the edges (red triangles)
rather than those inside the regions (triangles with red borders) as negative
samples. Each shape represents an embedding vector derived from the re-
spective class (best viewed in color).
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Complexity Scale Boundary awareness
Baseline - - -
ICCV 21 [41] CL, MB Single -
ICCV 21 [17] CL, MB, AL Single -
ECCV 22 [31] CL Multi -
Ours CL Multi fusion Aware

Table 1. Comparison between SOTAs and ours (CL: contrastive learning,
MB: memory bank, AL: additional loss)

.

44, 46–49, 51–54, 56] and novel loss functions [36, 38, 50].
Despite these achievements, semantic segmentation

sometimes produces inaccurate segmentation, as illustrated
in Fig. 1(b). It could be solved by increasing the complexity
of networks [25, 27, 34, 42, 43]; however, these approaches
require more memory and may potentially slow down the
inference speed. Therefore, it is necessary to improve per-
formance without any additional neural network modules
for efficiency.

For these reasons, another noteworthy method, con-
trastive learning, has emerged as a valuable solution [17, 41]
because contrastive learning aims to make the networks un-
derstand the semantic context better during the training pro-
cess. This is achieved by attaching refinement modules dur-
ing the training stage and detaching them on the inference
so that the network models preserve the inference speed
without increasing the complexity of architectures.

However, previous researches [17, 41] have overlooked
the significance of multi-scale features, including both
global and local contexts. To mitigate the problem, Pis-
sas et al. [31] proposed a method to extract multi-scale em-
bedding features from multiple encoder layers. However,
the method could not consistently comprehend the relation-
ships between different scales of features because multi-
scale and cross-scale contrastive learning are considered in-
dependently. Consequently, it struggles to comprehend re-
lationships between local and global contexts.

To address the aforementioned problems, we propose
a supervised contrastive learning framework incorporating
two novel methods for semantic segmentation, called Con-
textrast. First, contextual contrastive learning (CCL) is pro-
posed to acquire embedded features from multiple encoder
layers representing local and global contexts. Based on em-
bedded features, we define the representative anchors in
each layer, which act as the semantic centroids for each
class. The anchors of the last layer represent more global
context than the anchors in the lower layers. The anchors of
the last layer are used to update anchors in each layer (green
arrows in Fig. 1(d)). Thus, the anchors in the lower lay-
ers can have both global and local contexts. Consequently,
it consistently understands relationships between local and
global contexts using the updated representative anchors,
which share the same global contexts. Second, boundary-
aware negative (BANE) sampling, which is inspired by [50]

and [38] that focus on the boundary regions, is proposed to
sample negative examples along the boundaries of incor-
rectly predicted regions (Fig. 1(e)). It leverages the advan-
tages of sampling harder negative examples and capturing
fine-grained details, so the proposed method gets more in-
formative gradients during the training process [20, 41]. We
summarize several key properties of state-of-the-art meth-
ods and ours, as shown in Table 1.

In sum, this paper makes the following contributions:

• Our Contextrast enables a segmentation model to capture
global/local context information from multi-scale fea-
tures and consistently comprehend relationships between
them through the representative anchors.

• Our BANE sampling enables the acquisition of informa-
tive negative samples for contrastive learning and fine-
grained details. It guides the model to focus on confusion
regions progressively during the training.

• To demonstrate the applicability of our Contextrast in se-
mantic segmentation, we verify the state-of-the-art per-
formance for contrastive learning-based semantic seg-
mentation on various powerful CNN models [6, 35,
49] and public datasets: Cityscapes [9], CamVid [1],
PASCAL-C [29], COCO-Stuff [2], and ADE20K [55],
which were acquired in different domains.

2. Related works

2.1. Semantic segmentation

Semantic segmentation, a fundamental task in computer vi-
sion, entails pixel-wise object classification within an im-
age. In recent years, remarkable advancements in deep
learning have propelled the field of semantic segmentation
to unprecedented levels of accuracy and efficiency. At first,
fully connected networks (FCNs) [28] brought significant
progress in semantic segmentation by introducing end-to-
end dense feature learning. However, FCNs suffer from
limited spatial and contextual information because of the
narrow local receptive fields.

Thus, the following researchers focused on capturing
better spatial and context information in the semantic seg-
mentation. Atrous spatial pyramid pooling (ASPP) [6]
captures a diverse range of contextual information. HR-
Net [35] maintains high-resolution representation through-
out the network, ensuring the preservation of fine-grained
details. For further improvements, OCRNet [49] architec-
ture was introduced that integrates object-contextual repre-
sentations, allowing the network to consider relationships
between objects within a scene. As these advanced meth-
ods learn discrimination ability using contextual informa-
tion within an individual image, there are limitations on the
capability of global feature discrimination.
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2.2. Contrastive learning for semantic segmentation

Contrastive learning is a feature learning criterion that aims
to minimize the distance between intra-class features while
maximizing the distance between inter-class features. Re-
cent advancements in contrastive learning with semantic
segmentation [17, 22, 31, 41] have demonstrated impressive
performances.

Hu et al. [17] and Wang et al. [41] proposed novel meth-
ods for semantic segmentation in a fully supervised set-
ting that explores global pixel relations, extracting features
from multiple images to regularize segmentation embed-
ding space globally. Wang et al. [41] introduced mem-
ory banks and segmentation-aware negative sampling meth-
ods, storing massive data to train distinctive representations
and getting more gradient contributions during the training.
Hu et al. [17] introduced class-wise weighted region cen-
ters that were generated with positive samples, to be uti-
lized as the anchors in contrastive learning. However, solely
focusing on positive samples for weighting could dimin-
ish the discrimination ability of the model. Additionally,
[17, 41] have neglected multiple scales of features except
for the features of the last layer, so they capture only lim-
ited local/global contexts and relationships between local
and global contexts.

Finally, Pissas et al. [31] proposed a method leverag-
ing the multiple scales of features for supervised contrastive
learning. That is, the researchers applied contrastive learn-
ing to the multi-scale and cross-scale features. By doing so,
the method [31] captures global/local context information
from multi-scale features and the relationship between local
and global contexts from cross-scale features. Nonetheless,
it could not consistently grasp relationships across scales
of features because multi-scale and cross-scale contrastive
learning are operated separately. In some cases, features can
be arranged differently in multi-scale and cross-scale con-
trastive learning. For example, a feature shifted by multi-
scale contrastive learning can be shifted differently in cross-
scale contrastive learning.

3. Contextrast: Contextual contrastive learn-
ing with BANE sampling

3.1. Overall framework

As shown in Fig. 2, we propose a supervised contrastive
learning framework encompassing two novel methods for
semantic segmentation.

First, we propose a concept of representative anchors,
which are multi-scale-aware salient features implicitly rep-
resenting the class by leveraging hierarchical design, as de-
scribed in Sec. 3.2. Second, we deliberately sample the
features corresponding to the boundaries within the regions
that were incorrectly predicted as the negative samples, as
described in Sec. 3.3.

3.2. Contextual contrastive learning (CCL)

Let us assume that an encoder consists of a total of I lay-
ers. Then, we begin by expressing the representative an-
chors corresponding to the i -th encoder layer as Ai , where
i ∈ {1, · · · , I}. Ai consists of N class-wise representa-
tive anchors. Each anchor for the n-th class is denoted by
ani ∈ Rd, which is defined as the average of embedded fea-
ture vectors belonging to the ground truth semantic class
within the batch images as follows:

ani =

∑
v∈Vi

v1[g(v) = n]∑
v∈Vi

1[g(v) = n]
,n = 1, 2, ..., N, (1)

where Vi is an embedded feature vector set from the fea-
ture of the i -th encoder layer’s feature map f ∈ Fi , as il-
lustrated in Fig. 2, i.e. v = π(f); g(·) represents a function
that returns the ground truth semantic label of each embed-
ding feature vector; 1[·] is the Iverson bracket, which out-
puts one if the condition is satisfied and zero otherwise. By
using Eq. (1), Ai is expressed as Ai = {a1i ,a2i , ...,aNi }.
For convenience, we interchangeably express Ai in a ma-
trix form, i.e. Ai = [a1i a2i ... aNi ] ∈ Rd×N .

Then, lower-level anchors Ai are updated with the rep-
resentative anchor of the last layer AI to encapsulate both
high-level and low-level context, accounting for multi-
scale. Consequently, the updated representative anchor Âi

is defined as Âi = wlAi + whAI = {â1i , â2i , ..., âNi },
where wl and wh are weight hyperparameters for anchor
update (see Fig. 2). By updating the lower-level anchors,
Âi can act as a criterion to capture relationships across dif-
ferent scales. For i = I , ÂI is defined as ÂI = AI .

LNCE=
−1

|V+|
∑

v+∈V+

log
exp(v·v+/τ)

exp(v·v+/τ) +
∑
v−

exp(v·v−/τ)
,

(2)

Next, we incorporate InfoNCE [15, 30] loss in Eq. (2)
with Âi , which is referred to as the pixel-anchor (PA) loss,
as follows:

LPA =

I∑
i=1

λi

[
1

N

∑
ân
i ∈Âi

−1

|V+|
∑

v+∈V+

La

]
(3)

La = log
exp(âni ·v+/τ)

exp(âni ·v+/τ)+
∑

v−∈V−

exp(âni ·v−/τ)
(4)

where v+/− represents positive and negative samples, re-
spectively, and λi represents the weight hyperparameters
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(For brevity, only three classes are visualized)
Ground truth

Final 
embedding space

Anchor for the n-th class in the i-th layer

Updated anchor Updating an anchor

d-dimensional vector space Features for each class,     , 

Figure 2. Overall Contextrast framework. Contextrast utilizes the representative anchors updated by the semantically rich representative
anchor vector set AI . Thus, it integrates local/global contexts and their relationships. Then, BANE sampling samples examples that
exist along the boundaries of prediction error regions. It samples more informative negative samples and captures fine-grained details for
contrastive learning. IBatch is the batch images. Ŷ is the prediction outcome from the model. Fi is the feature map of the i-th encoder
layer. Vi is the i-th set of the embedded feature vector by the encoding function π(·). Ai denotes the representative anchors of the
i-th embedded feature vector. The updated representative anchor Âi results from adding low-level and highest-level anchors. wh and wl

are weight hyperparameters for updating representative anchors. The LPA is the proposed pixel-anchor loss function. LCE represents the
cross-entropy loss function. Features of each semantic class are illustrated in different shapes and colors (best viewed in color).

assigned to the pixel-anchor contrastive loss for the i -th en-
coder layer. While the anchor is set with individual fea-
tures in Eq. (2), the anchor is set with a representative an-
chor Âi in Eq. (4). The pixel-anchor loss aims to opti-
mize embedding features by minimizing the distance be-
tween intra-class features and their corresponding repre-
sentative anchors while maximizing the separation between
inter-class features and their corresponding representative
anchors. Thus, the network captures global context and in-
tricate details from multi-scale features and their connection
using the representative anchors as the criterion.

Furthermore, the pixel-anchor loss operates in con-
junction with the conventional pixel-wise cross-entropy
loss LCE [35], providing a complementary approach to en-
hance segmentation performance. This synergy is purpose-
ful: while pixel-wise cross-entropy loss aims to predict the
correct label for each sample, pixel-anchor loss aims to
learn good data representations by considering the relation-
ships between different samples.

As a result, the primary objective of the entire framework
is to optimize the following loss:

L = LCE + αLPA, (5)

where α represents the weight for our pixel-anchor loss.

(a)
Iteration #

(b)

Figure 3. Visual description of boundary-aware negative sampling
and how the under/over-segmentation problems are addressed dur-
ing the training. (a) The prediction outcome Ŷ is decomposed into
class-wise binary maps Bn

i . Then, class-wise distance maps Dn
i

are generated with the Distance Transform [23]. (b) The evolution
of the distance map over iterations. The wrongly predicted regions
shrink during training (best viewed in color).

3.3. Boundary-aware negative (BANE) sampling

While enhancing the loss function, we also propose an
effective negative sampling approach that considers the
boundaries of the prediction error to increase the quality
of v− in Eq. (4). To do that, we incorporate a simple
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but effective boundary extraction method from Ŷ [38, 50].
The method mainly consists of three steps as illustrated in
Fig. 3: 1) decomposing prediction output to class-wise bi-
nary error maps, 2) distance transform based on the class-
wise error maps, and 3) selecting negative samples.

To extract negative samples, the class-wise binary error
map Bn

i for each pixel (u, v) is defined as:

Bn
i (u, v) = 1[(ŷi ̸= n) ∧ (g(ŷi) = n)], (6)

where ŷi denotes the predicted class for the i-th layer down-
sampled from the predicted class in the final layer. g(·) de-
notes a labeling function in the same way as in Sec. 3.2. The
Bn

i has a value of one for the wrongly predicted pixel, i.e. a
negative sample, and zero otherwise, as shown in Fig. 3(a).

Next, Bn
i is converted to a class-wise distance map Dn

i

by the distance transform [23]. The pixel value of Dn
i is

the minimal distance between the pixel (u, v) and the edge
pixels En

i , which is from the corresponding class-wise error
map and is defined as follows:

Dn
i (u, v) = min

(x,y)∈En
i

√
(u− x)2 + (v − y)2. (7)

This implies that within the incorrectly predicted regions,
where the pixel value of Bn

i is one (white regions in
Fig. 3(a)), a lower value indicates a higher probability of
the pixel being on the boundary.

Finally, among the regions whose values in Bn
i are one,

we select embedding vectors corresponding to the lower K
percentage of the smallest distances in Dn

i as negative sam-
ples for each n-th representative anchor in Eq. (4). By in-
corporating these vectors into Eq. (3), Contextrast allows
these vectors to be close to the anchor of the true class and
far from the features of incorrectly predicted classes during
training. Thus, these boundary-aware negative samples help
the network learn the inter-spatial relationship between the
segmentation classes better.

4. Experiments
4.1. Experimental setup

Datasets. We conduct our experiments using five public
datasets: Cityscapes [9], ADE20K [55], PASCAL-C [29],
COCO-Stuff [2], and CamVid [1] datasets. For a fair com-
parison, we follow the existing training and validation set-
tings of the datasets (details are explained in the supple-
mentary materials). Among them, because the Cityscapes
dataset additionally provides the public benchmark by us-
ing test data, we differentiate the validation and test sets
using the suffix test, i.e. Cityscapes-test.
Training settings. To demonstrate the efficacy of
our proposed approach, we employ three networks:
a) DeepLabV3 [6], b) HRNet [35], and c) OCR-
Net [49]. D-ResNet-101 backbone is utilized in

DeepLabV3. HRNetV2-W48 backbone is employed in HR-
Net and OCRNet networks. We used same hyperparameters
and initialized the network using pre-trained weights on Im-
ageNet [10] while the remaining layers were randomly ini-
tialized. We utilized color jittering, horizontal flipping, and
random scaling for data augmentation. Stochastic gradient
descent (SGD) is applied as an optimizer for CNN back-
bones with a momentum of 0.9. In addition, polynomial
annealing policy [6] is applied to schedule the learning rate,
which is multiplied by (1− Iteration #

Total iterations )
0.9. λ4→1 is set to

1.0, 0.7, 0.4, and 0.1. α is set to 0.1. On the Cityscapes
dataset, we have set a batch size of 8 for 40K iterations
and cropped from 1024×2048 to 512×1024. The model
is trained on the CamVid dataset with a batch size of 16
for 6K iterations. On ADE20K, the models are trained with
a crop size of 512×512 and a batch size of 12 for 80K it-
erations. On COCO-Stuff and PASCAL-C, the models are
trained with a crop size of 512×512 and a batch size of 16
for 60K iterations. Note that we do not use any extra train-
ing data.
Testing settings. We follow the general setup [6, 35, 49],
averaging the segmentation results over multiple scales
with flipping for CamVid, COCO-Stuff, ADE20K, and
PASCAL-C datasets. The scaling factor is set from 0.75 to
2.0 with intervals of 0.25. We employed single-scale eval-
uation for Cityscapes to follow the experimental setup of
multi/cross-scale contrastive learning [31].
Evaluation metric. In the experiments, we quantitatively
analyze the performance with respect to a) semantic seg-
mentation results and b) the distinctiveness of the features.

To evaluate the semantic segmentation performance, the
mean of class-wise intersection over union (mIoU) [17, 41]
is used as an evaluation metric. For the Cityscapes-test,
an instance-level intersection-over-union metric (iIoU) [9]
is also used to evaluate how the individual instances are
well-segmented. This is because mIoU can be biased to-
ward object instances that cover a large image area in the
street scenes. The iIoU is defined as follows:

iIoU =
iTP

(iTP + FP + iFN)
, (8)

where iTP, FP, and iFN denote the numbers of true posi-
tive, false positive, and the number of false negative pix-
els, respectively. Note that iTP and iFN are calculated
with weighted pixel contributions based on the ratio of each
class’s average instance size to the corresponding ground
truth instance size.

Next, for the feature-level analysis, we adopt the fol-
lowing three metrics: intra-class alignment (A) to eval-
uate how well the intra-class features are closely clus-
tered, inter-class uniformity (U) to evaluate how far the
centroids of features originating from different classes are
separated in the embedding space, and inter-class neigh-
borhood uniformity (Ul) to measure the separation of the
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Figure 4. Qualitative results from HRNet [35], HRNet + [31], and HRNet + Ours on the Cityscapes, ADE20K, and COCO-Stuff datasets,
respectively (best viewed on color).

Description Dataset [mIoU (%)]
Method

Loss Sampling Cityscapes CamVid COCO-Stuff ADE20K PASCAL-C

DeepLabV3 LCE None 77.12 78.80 37.92 42.85 52.01
DeepLabV3 + [31] LCE + Lcms + Lccs Random 78.94 (+1.82) 79.67 (+0.87) 37.39 (-0.53) 43.86 (+1.01) 51.52 (-0.49)
DeepLabV3 + Ours LCE + LPA (Ours) Boundary-aware (Ours) 79.35 (+2.23) 79.98 (+1.18) 38.12 (+0.20) 44.12 (+1.27) 52.62 (+0.61)
HRNet LCE None 78.48 82.17 36.04 41.86 51.86
HRNet + [41] LCE + LNCE Semi-hard 81.00 (+2.52) N/A N/A N/A N/A
HRNet + [17] LCE + LNCE + LAux Random 81.90 (+3.42) N/A N/A N/A N/A
HRNet + [31] LCE + Lcms + Lccs Random 81.50 (+3.02) 83.14 (+0.97) 36.35 (+0.31) 43.27 (+1.41) 52.11 (+0.25)
HRNet + Ours LCE + LPA (Ours) Boundary-aware (Ours) 82.20 (+3.72) 84.33 (+2.16) 36.34 (+0.30) 43.42 (+1.56) 52.17 (+0.31)
OCRNet LCE None 79.95 82.69 39.00 41.51 54.35
OCRNet + [31] LCE + Lcms + Lccs Random 81.51 (+1.56) 83.82 (+1.13) 38.55 (-0.45) 43.28 (+1.77) 54.48 (+0.13)
OCRNet + Ours LCE + LPA (Ours) Boundary-aware (Ours) 81.94 (+1.99) 84.10 (+1.41) 39.08 (+0.08) 43.84 (+2.33) 54.64 (+0.29)

Table 2. Quantitative results on public datasets compared with the state-of-the-art contrastive learning-based semantic segmentation ap-
proaches. We employed DeepLabV3 [6], HRNet [35], and OCRNet [49] as segmentation models.

l-closest centroids of inter-class features, which indicates
how clearly the decision boundaries are discriminated be-
tween the l-closest centroids. More details can be found
in [26] (see Sec. 4.3).

4.2. Semantic segmentation performance

The first experiment compares the performance of our
proposed approach with that of the existing contrastive
learning-based methods, to support the claim that our ap-

proach enables networks to output more precise seman-
tic segmentation, particularly resolving under- and over-
segmentation issues. For our comparison, we used the
following existing contrastive learning-based approaches:
ContrastiveSeg [41] that incorporates LCE with LNCE;
semi-hard negative sampling that just randomly selects the
negative samples corresponding to the wrongly predicted
regions; region-aware contrastive learning [17] that addi-
tionally employs auxiliary loss LAux; multi/cross-scale con-
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Classes Categories
Method

mIOU (%) iIOU (%) mIOU (%) iIOU (%)

HRNet 79.51 57.96 91.33 80.29

80.12 59.04 91.42 81.64HRNet + [31]
(+0.61) (+1.08) (+0.09) (+1.35)
80.39 61.06 91.59 82.14HRNet + Ours

(+0.88) (+3.10) (+0.26) (+1.85)

OCRNet 80.64 58.72 91.41 80.77

81.94 62.11 91.60 81.83OCRNet + Ours
(+1.30) (+3.39) (+0.19) (+1.06)

DeeplabV3 77.01 55.56 89.64 77.42

78.23 56.83 89.86 77.93DeeplabV3 + Ours
(+1.22) (1.27) (+0.22) (+0.51)

Table 3. Quantitative segmentation results on Cityscapes-test.

trastive learning [31] that exploits multi-scale and cross-
scale contrastive loss terms, i.e. Lcms and Lccs.

As shown in Fig. 4, Table 2, and Table 3, the state-of-
the-art methods showed precise semantic segmentation re-
sults, mostly improving the mIoU compared with the base-
line segmentation networks. Our proposed method exhibits
noticeable improvements on the public datasets, mostly
achieving the highest mIoU. In particular, our proposed
method even resolved the under- and over-segmentation
more clearly (see Fig. 4).

In addition to the substantial performance improvement,
we specifically focus on the differences in the loss terms.
As presented in Table 2, the performance after the applica-
tion of the auxiliary loss LAux [17] showed higher mIoU
compared with ContrastiveSeg [41], which only incorpo-
rates LCE with LNCE. The multi-scale and cross-scale con-
trastive losses [31], which are improved versions of LNCE

in a different scale level, also showed a substantial increase
in mIoU. However, our method showed a large performance
increase.

In particular, it is noticeable that both multi/cross-scale
contrastive learning [31] and ours considered multi-scale,
yet our approach showed more stable performance increase.
Occasionally, multi/cross-scale contrastive learning [31]
showed the degraded performance owing to the conflict of
the influences of two disentangled loss terms. That is, con-
sidering multi-scale and cross-scale separately in the learn-
ing process can sometimes result in the direction in which
the moved embedding vector becomes undesirable, leading
to a situation where the distinctiveness of vectors in the
embedded space may not significantly increase. Further-
more, the proposed method significantly improved bound-
ary mIoU (B-mIoU) by incorporating BANE sampling into
the contrastive learning, as demonstrated in Table 4.

Therefore, we conclude that our Contextrast is more ef-
fective for accurate semantic segmentation than the existing
methods.

B-mIoU (5px) B-mIoU (7px) B-mIoU (10px)

HRNet 59.93 65.82 69.25
HRNet + [31] 60.44 (+0.51) 66.29 (+0.47) 69.65 (+0.4)

Ours 61.76 (+1.83) 67.58 (+1.76) 70.93 (+1.68)

Table 4. B-mIoU performance comparison with Cityscapes
dataset. B-mIoU represents the mIoU of the boundary region
which is within pixels from the boundary.

4.3. Feature-level in-depth analyses

Furthermore, we conducted two experiments to demonstrate
that our Contextrast enhances the distinctiveness of the vec-
tors on the embedded feature space.

First, we assessed how the embedding vectors are
aligned in the last layer just before reaching the segmen-
tation head by using feature-level metrics, which were ex-
plained in Sec. 4.1. As presented in Table 5, we demon-
strate that our proposed method aligns intra-class features
and pushes away inter-class features, improving all the met-
rics. Thus, it implies that our method makes the model
have distinctive decision boundaries because intra-class fea-
tures are well-organized and inter-class features are well-
discriminated in the latent space.

Second, we examined the cosine similarity between rep-
resentative anchors and all the negative samples by con-
sidering their distances in the distance map, i.e. Dn

i in
Fig. 3(a), for each layer. The lower distance implies that
the negative samples are more likely to be from the edge
regions of the wrongly predicted segments. A lower co-
sine similarity means that the vector that is supposed to be
close to the anchor is far apart, implying that the negative
samples are more challenging to discriminate in the feature
space. As presented in Fig. 5, the features existing along the
boundaries of the incorrect prediction regions, which have
lower distance values, are harder to discriminate well in all
encoder layers. Thus, it corroborates that our BANE sam-
pling successfully prioritizes harder-negative samples, trig-
gering more desirable gradient contributions for our contex-
tual contrastive learning.

As a result, these analyses support our key claim that
our multi-scale-aware representative anchors align features
well on the embedding vector space and our BANE sam-
pling successfully chooses informative negative examples.

4.4. Ablation study

The impact of individual component. To further exam-
ine the effectiveness of each module more closely, we con-
ducted an ablation study, as shown in Table 6. Applying
our contextual contrastive learning led to enhancements of
mIoU. In particular, compared with ContrastiveSeg [41],
the combination of our methods exhibits a larger gap in
performance increase, which supports our key claim that
the negative samples chosen by our BANE sampling on the
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Method A ↓ U ↑ U3 ↑ U5 ↑

HRNet 0.70 0.98 0.47 0.55

0.53 1.00 0.50 0.58HRNet + [31]
(-0.17) (+0.02) (+0.03) (+0.03)
0.42 1.01 0.50 0.59C

ity
sc

ap
es

HRNet + Ours
(-0.28) (+0.03) (+0.03) (+0.04)

OCRNet 0.60 1.09 0.64 0.72

0.55 1.10 0.67 0.74OCRNet + [31]
(-0.05) (+0.01) (+0.03) (+0.02)
0.52 1.10 0.68 0.75C

am
V

id

OCRNet + Ours
(-0.08) (+0.01) (+0.04) (+0.03)

Table 5. Ablation analysis of Alignment (A), Uniformity (U), and
the l-closest Neighborhood Uniformity (Ul) on the Cityscapes and
CamVid datasets with HRNet [35] and OCRNet [6] as segmenta-
tion models.

Figure 5. Average cosine similarity between error pixels and rep-
resentative anchors in each layer was computed based on the dis-
tance from incorrect prediction boundaries. The results demon-
strate that samples located along the incorrect prediction bound-
aries are harder-negative samples compared with features in the
inner region.

contrastive learning is helpful by making vectors on the em-
bedded space more distinct. These results highlight the ef-
fectiveness of our approach, demonstrating a substantial in-
crease in mIoU, making it a promising solution for semantic
segmentation tasks across diverse datasets.
Analysis of anchor fusion weight and ratio of boundary-
aware negative sampling. Table 7 demonstrates the pro-
posed method’s resilience to weight selection variations.
The sum of wh and wl is 1. Except when wh is set to 0
or 1, the proposed method consistently improves the per-
formance. Thus, Table 7 shows that our proposed method
is stable with regard to hyperparameter tuning. In addi-
tion, we examine the impact of BANE sampling using dif-
ferent sampling ratios K, which is presented in Sec. 3.3.
As shown in Table 8, our analysis reveals that the sam-
pling method mostly enhances performance with the ratio
of 50%. However, the performance declines when excessive
negative sampling is applied because it leads to local min-

Sampling
CCL (Ours)

Semi-hard [41] BANE (Ours)
mIOU (%)

78.48

✓ 81.88 (+3.40)

✓ ✓ 82.01 (+3.53)

C
ity

sc
ap

es

✓ ✓ 82.20 (+3.72)

82.17

✓ 83.14 (+0.97)

✓ ✓ 83.38 (+1.21)C
am

V
id

✓ ✓ 84.33 (+2.16)

Table 6. Ablation study: performance according to the presence
or absence of each component of our proposed method on the
Cityscapes and CamVid datasets with HRNet [35] (CCL: contex-
tual contrastive learning).

wh 0.0 0.3 0.5 0.7 1.0

mIoU (%) 81.15 81.27 81.80 81.88 81.31

Table 7. Comparison of different weights for the representative
anchor fusion on Cityscapes-val with HRNet [35]. The sum of
wh and wl is equal to 1.

Ratio K (%) 0 10 30 50 70 100

mIoU (%) 81.88 81.89 81.58 82.20 81.58 81.10

Table 8. Comparison of different sampling ratios for boundary-
aware negative sampling on Cityscapes-val with HRNet [35].

ima [3, 33, 45]. More ablation studies on hyper-parameters
are presented in the supplementary material.

4.5. Conclusions

In this paper, we have proposed a novel boundary-aware
contrastive learning for semantic segmentation, called Con-
textrast. By leveraging multi-scale contextual contrastive
learning, we enable the network capture local/global con-
text information and consistently understand their relation-
ship. In particular, we demonstrate our BANE sampling
substantially increases mIoU by providing more harder
negative samples on the contrastive learning stage. Con-
sequently, our approach achieved promising results com-
pared with other contrastive learning approaches on public
datasets.
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