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Abstract

Humans effortlessly interpret images by parsing them into
part-whole hierarchies; deep learning excels in learning
multi-level feature spaces, but they often lack explicit cod-
ing of part-whole relations, a prominent property of med-
ical imaging. To overcome this limitation, we introduce
Adam–v2, a new self-supervised learning framework ex-
tending Adam [69] by explicitly incorporating part-whole
hierarchies into its learning objectives through three key
branches: (1) Localizability, acquiring discriminative rep-
resentations to distinguish different anatomical patterns;
(2) Composability, learning each anatomical structure in
a parts-to-whole manner; and (3) Decomposability, com-
prehending each anatomical structure in a whole-to-parts
manner. Experimental results across 10 tasks, compared
to 11 baselines in zero-shot, few-shot transfer, and full fine-
tuning settings, showcase Adam–v2’s superior performance
over large-scale medical models and existing SSL methods
across diverse downstream tasks. The higher generality and
robustness of Adam–v2’s representations originate from its
explicit construction of hierarchies for distinct anatomical
structures from unlabeled medical images. Adam–v2 pre-
serves a semantic balance of anatomical diversity and har-
mony in its embedding, yielding representations that are
both generic and semantically meaningful, yet overlooked
in existing SSL methods. All code and pretrained models
are available at GitHub.com/JLiangLab/Eden.

1. Introduction
Human perception effortlessly parses visual scenes into
part-whole hierarchies [39–41]. For instance, when inter-
preting a chest radiograph, even untrained observers can
quickly form a hierarchy by dividing the lower respiratory
tract into the left and right lungs, whereas more experienced
observers can invoke further sub-hierarchies (see Sec. 1).
Deep learning has enabled breakthroughs in learning visual
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Figure 1. Human perception effortlessly organizes objects into
hierarchies to understand their part-whole relationships in images.
Taking lungs as an example in (a), even a non-radiologist can form
a hierarchy of the right and left lungs, whereas a radiologist can
further “see” the lobes in sub-hierarchies. To emulate this ability,
we introduce a self-supervised learning framework that explicitly
learns to encode inherent part-whole hierarchies within medical
images into an embedding space, leading to the development of a
powerful model (Adam–v2) that is foundational to medical imag-
ing. Adam-v2 can transform each pixel in medical images (e.g.,
chest radiographs in (b)) into semantically meaningful embed-
dings (Eve–v2), forming multiple “echo chambers” (produced via
co-segmentation [1, 97])—different anatomical structures are as-
sociated with distinct embeddings, and the same anatomical struc-
tures have (nearly) identical embeddings across patients.

representation at multiple levels. However, the multi-level
feature space learned by deep models does not explicitly
code part-whole hierarchies with necessary semantic infor-
mation to indicate hierarchical relationships among wholes
and their constituent parts [39, 59].

To mimic the human ability to understand part-whole hi-
erarchies in images, Hinton, in his idea paper [39], intro-
duced an imaginary system (i.e., GLOM), aiming to sig-
nify the importance of explicitly presenting part-whole hi-
erarchies in a neural network. Inspired by the conceptual
idea underlying GLOM, we devise a novel self-supervised
learning (SSL) framework, leading to a functioning system
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that, from medical images, autodidactically constructs a hi-
erarchy of embeddings for distinct anatomical structures,
semantically balancing anatomical diversity and harmony
at each level and conveying parental “whole” at the higher
level and filial “parts” at the lower level.

Our framework, as illustrated in Fig. 2, comprises three
branches: (1) “localizability”, which compels the model to
learn a semantically structured embedding space by dis-
criminating between different anatomical structures, (2)
“composability”, which empowers the model to learn part-
whole relations by constructing each anatomical struc-
ture through the integration of its constituent parts, and
(3) “decomposability”, which encourages the model to
learn whole-part relations by decomposing each anatomi-
cal structure into its constituent parts. Unifying these three
branches together in a coarse to fine learning approach, the
localizability branch enables the model to preserve harmony
in embeddings of semantically similar anatomical struc-
tures in a hierarchy of scales. Simultaneously, compos-
ability and decomposability branches empower the model
to not only convey hierarchical relationships but also pre-
serve diversity of semantically similar anatomical structures
across patients through encoding finer-grained anatomical
information of their constituent parts. We call our system
(i.e., pretrained model) Adam–v2 because it represents a
significant advancement from our previous version—Adam
(autodidactic dense anatomical models) [69]—that learns
autodidactically and yields dense anatomical embedding,
nicknamed Eve–v2 (embedding vectors) for semantic rich-
ness. We further coin our project site Eden (environment
for dense embeddings and networks), where all code, pre-
trained Adam–v2, and Eve–v2 are placed.

We extensively evaluate Adam–v2 in (1) Zero-shot set-
ting (§4.1): Adam–v2 yields more semantically meaningful
embeddings (Eve–v2) compared with existing SSL meth-
ods with a set of unique properties essential for anatomy
understanding (Figs. 3 to 6); (2) Few-shot transfer set-
ting (§4.2): Adam–v2 outperforms 2 large-scale medical
models, RadImageNet and LVM-Med, as well as a rep-
resentative set of 7 SSL methods by a remarkable mar-
gin in anatomical structure and disease segmentation tasks
(Tab. 1); and (3) Full fine-tuning setting (§4.3): Adam–v2
provides more generalizable representations compared to
fully-supervised and SSL baselines across a myriad of tasks
(Fig. 7 & Tab. 2). Our main contributions are as follows:

• A new self-supervised learning strategy, called Adam–
v2, that encodes inherent hierarchical relationships within
medical images, yielding discriminative representations
blended with semantics of part-whole relations.

• A comprehensive set of experiments proves higher gener-
alizability and robustness of Adam–v2, particularly high-
lighting Adam–v2’s proficiency in few-shot transfer and
achieving a new record in the ChestX-ray14 benchmark.

• A set of quantitative and qualitative feature analyses that
opens up novel perspectives for assessing anatomy under-
standing from various viewpoints.

2. Method
Our framework, depicted in Fig. 2, aims to underpin the de-
velopment of powerful self-supervised models foundational
to medical imaging by constructing a hierarchy of embed-
dings learned from anatomy. Our framework comprises
three key branches: (1) localizability, aiming to acquire
discriminative representations for distinguishing different
anatomical structures; (2) composability, aiming to learn
each anatomical structure in a parts-to-whole manner; and
(3) decomposability, aiming to comprehend each anatom-
ical structure in a whole-to-parts manner. Seamlessly in-
tegrating these learning objectives into a unified framework
captures inherent part-whole hierarchies within medical im-
ages, yielding a powerful model (Adam–v2) that can serve
not only as the foundation for myriad target tasks via adap-
tation (fine-tuning), but also its embedding vectors (Eve–
v2) bear rich semantics, usable standalone without adap-
tation (zero-shot), for other tasks like landmark detection.
The following details our framework.

2.1. Learning Localizability

The localizability branch seeks to learn a semantically-
structured embedding space where similar anatomical struc-
tures are clustered together and are distinguished from dis-
similar anatomical structures. As illustrated in Fig. 2, the
localizability branch includes the student gθS and teacher
gθT encoders, and two projectors hθLS

and hθLT
, referred

to as localizability heads. The parameters of student gθS
and localizability head hθLS

are learned with stochastic gra-
dient descent while the parameters of the teacher gθT and
head hθLT

are updated using an exponential moving aver-
age (EMA) on the weights of gθS and hθLS

, respectively.
Given an anchor patch w randomly sampled from the input
image I , we extract a set C of multi-scale crops from w.
In particular, these crops exhibit diverse dimensions while
sharing the same or slightly shifted center as w, contribut-
ing to a comprehensive understanding of the same anatom-
ical structure at various resolutions. We then apply random
data augmentations T (.) on w and multi-scale crops in C.
The augmented view of w is passed to the teacher, while
the augmented views of the crops in C are passed to the
student network, generating the features yt = gθT (T (w))
and Ys = {gθS (T (c)) | c ∈ C}, respectively. The localiz-
ability heads project the features to the output embeddings
zt = hθLT

(yt) and Zs = {hθLS
(ys) | ys ∈ Ys}, which are

normalized with a softmax function:

Pt(zt)
(i) =

exp(z
(i)
t /τt)∑K

k=1 exp(z
(k)
t /τt)

(1)
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Figure 2. Adam–v2 learns hierarchical representations in a coarse-to-fine-manner via three branches: localizability, composability, and
decomposability. Given an anchor whole w randomly sampled from image I , the localizability branch augment and process w and
its multi-scale views, and enforce consistency between their embeddings, yielding distinct features for different anatomical structures.
The composability branch decomposes w into a set of parts, and enforces consistency between the embedding of w and the aggregated
embeddings of its parts, encoding part-whole relations. The decomposability branch decomposes the embedding of w to acquire the
embeddings of its constituent parts, and enforce consistency between the embeddings of parts and their decomposed counterparts, capturing
whole-part relations.

where τt > 0 is a temperature parameter controlling the
sharpness of the output distribution, and K is the output
dimension of the localizability heads. A softmax function
Ps with temperature τs is similarly employed to normalize
the features in Zs. The localizability branch’s objective is
to maximize the consistency between the embeddings of the
input anchor and its augmented views. To do so, we employ
cross-entropy loss [12]:

LLocalizability = − 1

|Zs|
∑

zs∈Zs

Pt(zt) logPs(zs) (2)

It is noteworthy that our framework offers flexibility in
utilizing various localizability loss functions. While we
opt for a self-distillation loss due to its simplicity and ef-
ficiency [12, 28, 67], alternative sophisticated objectives,
such as contrastive loss [16, 37], can also be employed.

2.2. Learning Composability

The composability branch seeks to learn the part-whole
anatomical hierarchies in a bottom-up manner by assem-
bling larger anatomical structures from their smaller con-
stituent subparts. As illustrated in Fig. 2, the composability
branch consists of the student gθS and teacher gθT encoders,
which are shared with the localizability branch, and a com-
posability head hθC . Given an anchor whole w randomly

sampled from the input image I , we decompose it into a
set of n non-overlapping parts P = {pi}ni=1. The parts
are augmented and processed by the student network, gen-
erating parts’ embeddings Yps = {yi = gθS (T (pi))}ni=1.
The parts’ embeddings are then concatenated and passed
to the composability head hθC to produce the aggregated
embeddings of parts zps = hθC (⊕({yi}ni=1)). Moreover,
the whole anatomical structure w is augmented and passed
to the teacher network to generate the whole’s embedding
zwt = gθT (T (w)). The composability branch is trained to
maximize the agreement between the whole’s embedding
and the the aggregated embeddings of its parts:

LComposability = ℓs(zwt, zps) (3)

where ℓs(zwt, zps) presents a function that measures sim-
ilarity between zwt and zps, such as MSE [28], cross-
entropy [12], or cosine similarity [18].

2.3. Learning Decomposability

The decomposability branch seeks to learn the whole-part
anatomical hierarchies in a top-down manner by decom-
posing larger anatomical structures into their smaller con-
stituent subparts. As shown in Fig. 2, the decomposability
branch comprises the student gθS and teacher gθT encoders,
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which are shared with the localizability and composabil-
ity branches, and a decomposability head hθD . Given an
anchor whole w, we decompose it into a set of n non-
overlapping parts P = {pi}ni=1. The anchor whole w is
augmented and fed into the student network, producing the
whole’s embedding zws = gθS (T (w)). The whole’s em-
bedding is then passed to the decomposability head hθD ,
which decomposes it into a set of individual embeddings
corresponding to the constituent parts of the whole Zps =
hθD (zws). Additionally, the parts P = {pi}ni=1 are aug-
mented and processed by the teacher network, generating
parts’ embeddings Zpt = {gθT (T (pi))}ni=1. The decom-
posability branch is trained to maximize the agreement be-
tween the embeddings of the individual parts and their de-
composed counterparts:

LDecomposability =
1

|P |

|P |∑
i=1

ℓs(zpi
, zp′

i
) (4)

where zpi ∈ Zpt and zp′
i
∈ Zps, and ℓs(zpi , zp′

i
) presents a

function that measures similarity between zpi and zp′
i
, such

as MSE, cross-entropy, or cosine similarity.

2.4. Training Pipeline

To guide the model in learning hierarchical representations,
we consider a hierarchy of diverse anatomical structures at
various scales. Specifically, the highest level of the hierar-
chy represents entire images (of spatial resolution (H×W ))
with complete anatomy, while each subsequent level m
∈ {1, 2...} represents anatomical structures w at a scale
of ( H

2m × W
2m ), randomly sampled from the images. In a

coarse to fine manner, the anatomical structures w at each
level are fed as the input to the localizability, composability,
and decomposability branches, and are learned through the
following combined loss function:

L = λ1 ∗ LLocalizability + λ2 ∗ LComposability + λ3 ∗ LDecomposability (5)

where λ1, λ2, λ3 are coefficients denoting the weight of
each loss term. Through our unified training scheme,
Adam–v2 learns a rich embedding space that preserves har-
mony among similar anatomical structures and encoding
their hierarchical relations.

3. Implementation Details
Pretraining protocol. We use unlabeled chest radio-
graphs and color fundus photographs for pretraining Adam–
v2 on two imaging modalities. Our SSL framework is
architecture-neutral and compatible with any ConvNet and
vision transformer backbones. As an illustration, we pre-
train Adam–v2 with ResNet-50 [36], ViT-S [22], and
ConvNeXt-B [56] backbones. We follow [12] in optimiza-
tion settings (e.g. optimizer, learning rate schedule, τt, τs,

etc), updating teacher weights, and architecture of hθLS
and

hθLT
heads. hθC and hθD are two-layer MLP heads. We

use MSE as ℓs(.) in Eqs. (3) and (4). λ1, λ2, λ3 are set to
1, n to 4, and m up to 4. In localizability branch, follow-
ing [11, 12], we extract one 2242 global view and eight 962

multi-scale crops from w. For other branches, we use input
resolution 2242. Augmentation T (.) includes color jittering,
Gaussian blur, and rotation. To prove the scalability of our
framework, we train a large-scale model using ConvNeXt-
B backbone and a large corpus of 926,028 images collected
from 13 different public chest X-ray datasets.
Evaluations. We evaluate our framework in zero-shot,
few-shot, and full transfer settings. We consider 10 down-
stream tasks on 9 publicly available datasets for fine-tuning
settings, including JSRT [73], VinDR-Rib [61], ChestX-
Det [53], SIIM-ACR [88], VinDr-CXR [62], NIH Shen-
zhen [46], ChestX-ray14 [76], DRIVE [9], and Drishti-
GS [66]. These tasks rigorously evaluate the generalizabil-
ity of our Adam–v2 across a range of applications, diseases,
anatomical structures, and modalities.
Baselines. We compare Adam–v2 with a representative set
of seven SOTA publicly-available SSL baselines, encom-
passing ConvNet- and transformer-based methods. These
baselines represent diverse objectives at instance-, patch-,
and pixel-level, among which TransVW [33], PCRL [94],
DiRA [34], and Medical-MAE [79] represent SOTA meth-
ods tailored for medical tasks. All SSL baselines are pre-
trained on the same datasets as our Adam–v2 by follow-
ing their official settings. Moreover, we compare Adam–v2
with the publicly available and official models of two recent
large-scale medical models: RadImageNet [57] and LVM-
Med [60], pretrained on 1.3 million medical images in fully-
supervised and self-supervised manners, respectively.
Fine-tuning protocol. Following the standard trans-
fer learning protocol [43], Adam–v2’s pretrained teacher
model has been fine-tuned for (1) classification tasks by ap-
pending a task-specific head, and (2) segmentation tasks by
utilizing a U-Net network [65], where the encoder is initial-
ized with the pretrained weights. We run each method for
each task at least five times. We provide statistical analysis
using an independent two-sample t-test.

4. Results and Analysis
4.1. Adam–v2 demonstrates zero-shot anatomy un-

derstanding, offering semantics-rich embed-
dings over existing SSL methods

This section showcases the anatomy understanding capabil-
ities of our framework by delving into the unique learned
and emergent properties of our Adam–v2’s embeddings
(Eve–v2) in various zero-shot settings.
(1) Localazability: We investigate Adam–v2’s capability in
discriminating different anatomical structures to determine
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Figure 3. Adam–v2 learns localizability of anatomical structures,
providing discriminative features for different landmarks. Same-
colored points are instances of the same landmark across images.

if the learned embeddings (Eve–v2) preserve the locality
of anatomical structures. To do so, we create a dataset of
1,000 images (from the ChestX-ray14 dataset) with 10 dis-
tinct anatomical landmarks manually annotated by human
experts in each image (see Fig. 3). We extract patches of
size 2242 around each landmark’s location across images
and extract latent features of each landmark instance using
each pretrained model under study (with no fine-tuning).
We then visualize the embeddings with t-SNE [72] plot. We
compare Adam–v2 with the RadImageNet, LVM-Med, and
a representative set of SSL methods. As seen in Fig. 3, the
baselines fall short in generating distinct features for dif-
ferent landmarks, leading to ambiguous embedding spaces
with mixed clusters. By contrast, our Adam–v2 effectively
discriminates between various anatomical landmarks, re-
sulting in well-separated clusters within its learned embed-
ding space. We complement our qualitative results (t-SNE
plots) with quantitative results (box plots) by calculating
intra-cluster distance for each landmark class and visual-
izing the distances distributions with boxplots in Fig. 3. As
seen, our Adam–v2 exhibits lower median distances, indi-
cating more cohesive clusters, compared to the baselines.
To showcase Adam–v2’s capacity in balancing anatomical
diversity and harmony and conveying hierarchical relation-
ships, we randomly select four distinct anatomical land-
marks, extract three patches of different resolutions (la-
beled as levels 1, 2, and 3) around each landmark across
the images, and compute their embeddings with Adam–v2’s
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dings of similar anatomical structures across patients and scales.
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Figure 5. Adam–v2’s embeddings (Eve–v2) encode part-whole
relations of anatomical structures.
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Figure 6. Adam–v2 exhibits two emergent properties: Interpola-
tion & Extrapolation. For interpolation/extrapolation, similarity
has been computed between the interpolated/extrapolated embed-
dings (E′

C/E
′
D) and their corresponding ground truth (EC/ED).

pretrained model. As seen in Fig. 4, the embeddings of
anatomical structures at levels 1, 2, and 3 for each landmark
are closely aligned, highlighting Adam–v2’s capability to
preserve harmony in embeddings of semantically similar
anatomical structures across resolutions and patients. Also,
within each landmark, the embeddings of patches with lev-
els 1, 2, and 3 for the same patient (color-coded in Fig. 4)
are close, while those of different patients are well sepa-
rated, representing Adam–v2’s capability to preserve diver-
sity of anatomical structures across patients.

(2) Composability & Decomposability: We explore Adam–
v2’s ability to capture part-whole hierarchies, as imposed
by the composability and decomposability branches, in its
learned embeddings (Eve–v2). To do so, we extract random
patches of varying sizes, called whole, from ChestX-ray14
test images. Each whole is decomposed into 2, 3, or 4 non-
overlapping parts with different sizes. We resize each whole
and its parts to 2242, extract features using pretrained mod-
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Method
Anatomical Structure Segmentation Disease Segmentation

JSRT-Clavicle (Dice%) JSRT-Heart (Dice%) SIIM-ACR (Dice%) ChestX-Det (IoU%)
3-shot 6-shot 12-shot 24-shot 3-shot 6-shot 12-shot 24-shot 5% 10% 5% 10%

RadImageNet [57] 55.52 71.26 82.57 83.29 73.12 75.42 89.22 91.00 54.56 61.48 64.22 67.10
LVM-Med [60] 56.87 72.99 83.48 84.10 79.45 86.94 89.98 90.78 54.13 62.31 65.11 67.14
DINO [12] 24.06 29.59 38.54 45.01 45.45 60.79 70.85 80.78 47.85 52.08 46.84 52.64
DenseCL [77] 36.43 51.31 63.03 69.13 64.88 74.43 75.79 80.06 48.07 52.32 60.18 65.76
DiRA [34] 31.42 38.59 66.81 73.06 63.76 64.47 76.10 81.42 42.44 48.27 61.63 64.86
Adam–v2 (Ours) 73.59 79.57 84.00 85.96 86.88 89.87 90.47 91.39 55.61 68.11 65.92 68.17
∆1 +16.7 +6.58 +0.52 +1.86 +7.43 +2.93 +0.49 +0.39 +1.05 +6.50 +0.81 +1.03
∆2 +37.1 +28.2 +17.2 +12.9 +22.0 +15.4 +14.3 +9.97 +7.54 +15.7 +4.29 +2.41

Table 1. Adam–v2 excels in few-shot transfer, outperforming large-scale medical models (RadImageNet and LVM-Med) and SSL baselines
across segmentation tasks. ∆1 and ∆2 show Adam-v2’s performance boosts over second-best large-scale and SSL baselines, respectively.

els, and calculate the cosine similarity between the embed-
ding of each whole and the aggregate of its parts. As seen in
Fig. 5, the box plot elements indicate that the median sim-
ilarity for our Adam–v2 is significantly higher than that of
other SSL baselines. Additionally, the distribution of our
Adam–v2’s similarity values is highly concentrated around
the 1.5x interquartile, situated at the top of the box plot.
This concentration suggests that, in most cases, the similar-
ity value between the embedding of entire wholes and their
aggregated parts is closer to 1 in our Adam–v2 model.

(3) Interpolatation & (4) extrapolation: We investigate
the Adam–v2’s capability to interpolate/extrapolate em-
beddings for a randomly chosen anatomical structure by
leveraging the embeddings of two other randomly selected
anatomical structures. For interpolation, we select two ran-
dom source coordinates (labeled as A and B in Fig. 6) and
use the established interpolation formula (refer to Fig. 6)
to interpolate a random point C. We extract 2242 patches
around points A, B, and C and pass them through each pre-
trained model under study to extract their respective em-
beddings EA, EB , and EC , where EC serves as the ground
truth for evaluating the interpolated embeddings for C. Sub-
sequently, we apply the interpolation formula to generate
embeddings for C based on EA and EB , resulting in in-
terpolated embeddings E′

C . Finally, we compute the co-
sine similarity between the interpolated embeddings E′

C

and the ground truth EC . This process was repeated for
1,000 images selected from the test images of Chest X-ray
14, employing three different values of t1 (i.e., 0.25, 0.5,
and 0.75). We use boxplots to illustrate the similarity dis-
tributions in each setting. We examine extrapolation of em-
beddings for a randomly selected point D in a similar man-
ner using the extrapolation formula. The boxplots in Fig. 6
reveal the consistent superiority of our Adam–v2 in deliver-
ing higher similarity between interpolated/extrapolated em-
beddings and the ground truth (with a median close to 1)
compared to other baselines. This outstanding performance
is indicative of the Adam–v2’s capability in establishing re-
lations between anatomical structures. It’s noteworthy that
our Adam–v2 model was not explicitly trained for these
properties, and their emergence underscores the Adam–v2’s

capabilities in understanding anatomy.

4.2. Adam–v2 excels in few-shot transfer, outper-
forming SOTA fully/self-supervised methods
in segmentation tasks

This section highlights the effectiveness of Adam–v2 as an
effective foundation for fine-tuning deep models in segmen-
tation tasks with limited labeled data. We compare Adam–
v2 with 3 SSL methods, as well as RadImageNet and LVM-
Med models, which serve as performance upper bounds.
We conduct experiments on heart and clavicle segmentation
tasks, fine-tuning the pretrained models using a few shots of
labeled data (3, 6, 12, and 24) randomly sampled from JSRT
dataset. Moreover, we conduct experiments on various tho-
racic disease segmentation tasks, fine-tuning the pretrained
models on two randomly selected label fractions (5% and
10%) of the SIIM-ACR and ChestX-Det datasets. As seen
in Tab. 1, our Adam–v2 outperforms both RadImageNet
and LVM-Med across all label fractions in all tasks. For
instance, in the 3-shot transfer for clavicle and heart seg-
mentation tasks, Adam–v2 surpasses LVM-Med by at least
16% and 7%, respectively. Moreover, Adam–v2 provides
outstandingly better few-shot transfer performance com-
pared with SSL methods across all tasks. For instance, in
the pneumothorax segmentation task within the SIIM-ACR
dataset, our Adam–v2 surpasses the runner-up baseline by
7.54% and 15.7% in the 5% and 10% labeled data subsets,
respectively. Similarly, across the 5% and 10% fractions
of the ChestX-Det dataset, our Adam–v2 demonstrates no-
tably higher averages of 4.29% and 2.41% in the thoracic
diseases segmentation task. Our attribution of Adam–v2’s
superior representations for few-shot segmentation tasks is
grounded in the significance of anatomy learning through
our SSL approach and its profound impact on representa-
tion learning, which is neglected in existing methods.

4.3. Adam–v2 stands out in full transfer, unleashing
generalizable representations for a variety of
tasks

This section demonstrates the generalizability of Adam–
v2’s representations via transfer learning to a broad range of
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Figure 7. Adam–v2 provides generalizable and robust representations, outperforming SOTA self-supervised methods across diverse down-
stream tasks. Statistical significance analysis (p < 0.05) was conducted between Adam–v2 and the top SSL baseline in each task.

Method # Pretraining Data AUC†

RadImageNet [57] 1.3M 80.7
LVM-Med [60] 1.3M 82.0
Medical MAE [79] 0.5M 83.0‡

Adam–v2 (Large-scale) ∼1M 83.4
† We report mean AUC over 14 diseases on the official test split of ChestX-ray14 dataset.
‡ We adopted this performance reported by the original authors [79]; All the rest performance is ours.

Table 2. Adam–v2 outperforms previous SOTA methods (offi-
cially released large-scale medical vision models) on the public
ChestX-ray14 benchmark, yielding a new record mAUC of 83.4%.

downstream tasks in a full fine-tuning setting. We compare
Adam–v2 with 7 SOTA ConvNet- and vision transformer-
based SSL methods designed for both computer vision
and medical applications. We include training downstream
models from random initialization (the lower-bound base-
line) and fully-supervised ImageNet model. As seen in
Fig. 7, our Adam–v2 consistently achieves superior per-
formance compared with the fully-supervised ImageNet
model, as well as significant performance boosts (p < 0.05)
compared with all SSL counterparts across all tasks.

Comparison in Public ChestX-ray14 Benchmark. To
scrutinize the scalability of our framework, we pretrained
Adam–v2 with the ConvNeXt-B backbone on nearly 1M
chest X-ray images and compared it against officially re-
leased large-scale medical vision models in the ChestX-
ray14 benchmark. As seen in Tab. 2, Adam–v2 hits a
new record of 83.4 in the ChestX-ray14 benchmark. This
suggests that a meticulously crafted learning strategy that
comprehends human anatomy can fully harness large-scale
data, thereby paving the way for developing powerful self-
supervised models foundational to medical imaging.

4.4. Ablation Experiments

Generalizability of our framework. Our framework can
seamlessly extend to other imaging modalities. To demon-
strate this, we consider fundus images and pretrain Adam–
v2 using the EyePACS dataset and then fine-tune it for two
downstream tasks, considering both low-data regimes and
full fine-tuning settings. As seen in Tab. 3, Adam–v2 ex-
hibits superior performance (p < 0.05) across tasks in
both settings compared with SSL baselines that leverage the
same pretraining data as our Adam–v2. Moreover, Adam–
v2 outperforms (p < 0.05) RadImageNet and LVM-Med
models in low-data regimes and achieves superior or equiv-
alent performance in full fine-tuning scenarios.

Effect of learning objectives. We assess the impact of each
learning branch in Adam–v2 by starting from localizability
and incrementally adding composability and decomposabil-
ity learning. We fine-tune the models for two downstream
tasks. As seen in the top-row of Fig. 8, augmenting local-
izability with composability learning consistently improves
performance across tasks. Moreover, the inclusion of de-
composability further enhances the performance, resulting
in significant performance boosts (p < 0.05) in both tasks
compared to standalone localizability learning.

Effect of coarse-to-fine learning. We investigate the impact
of hierarchical learning of anatomical structures at various
scales (i.e. m) by initially training Adam–v2 with the entire
anatomy (m = 0) and then progressively delving deeper
into the higher levels of anatomy hierarchy (up to level 3),
representing finer anatomical structures. As seen in bottom-
row of Fig. 8, gradual increment of data granularity from
m = 0 to m = 2 consistently improves the downstream
performance. This highlights that our coarse-to-fine learn-
ing strategy incrementally deepens the model’s anatomical
knowledge, resulting in more generic representations for
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Method DRIVE (Dice%) Drishti-GS (Dice%)
10% 100% 10% 100%

Random 74.03 (0.87) 78.27 (0.40) 70.17 (10.91) 94.53 (1.72)

RadImageNet 76.53 (0.49) 78.55 (0.17) 90.37 (1.48) 96.33 (0.15)

LVM-Med 77.19 (0.75) 79.46 (0.14) 91.60 (2.19) 97.02 (0.15)

DINO 75.89 (0.63) 78.36 (0.28) 85.90 (3.27) 96.44 (0.33)

DenseCL 75.76 (0.90) 78.36 (0.47) 86.04 (3.27) 96.60 (0.01)

DiRA 75.92 (0.90) 78.52 (0.38) 91.19 (1.86) 96.76 (0.16)

Adam–v2 (Ours) 78.04 (0.14)⋆⋆⋆ 79.91 (0.18)⋆⋆⋆ 94.04 (0.56)⋆⋆⋆ 97.02 (0.19)

Table 3. Adam–v2 outperforms SSL methods in fundus down-
stream tasks. ⋆⋆⋆ shows statistically significant (p < 0.05) boosts.

𝑚 = 1 𝑚 = 2 𝑚 = 3𝑚 = 0 𝑚 = 1 𝑚 = 2 𝑚 = 3𝑚 = 0

𝐿 𝐿𝐶 𝐿𝐶𝐷 𝐿 𝐿𝐶 𝐿𝐶𝐷

Figure 8. Ablation on the impact of (a) different branches of
Adam–v2 (top-row) and (b) coarse-to-fine learning (bottom-row).

myriad tasks. Additionally, no significant change in per-
formance is observed at m = 3, suggesting that pretraining
up to level 2 yields sufficiently robust representations.

5. Related Work

Self-supervised learning. A large body of SSL meth-
ods seek to learn global features via instance discrimi-
nation pretext tasks. These methods align the features
of augmented views from the same image by employing
diverse learning objectives, including contrastive learn-
ing [11, 16, 17, 19–21, 29, 37, 52, 87, 90], self-distillation
[10, 12, 12, 18, 27, 28, 67], and feature decorrelation
[5, 7, 23, 89, 91]. Alternatively, dense SSL methods seek
to learn local features by encoding visual patterns embed-
ded at smaller image regions. Dense contrastive learning
methods [78, 86, 93] enforce consistency between pixels at
the same spatial location [6, 63, 82], similar pixels/patches
in a feature map [6, 77], or similar image regions [80, 81,
85, 92]. On the other hand, masked image modeling meth-
ods [4, 14, 24, 38, 48, 50, 54, 58, 71, 74, 75, 83, 84] mask
random portions of the images and reconstruct the missing
parts at pixel-level. Motivated by the success in computer
vision, a broad variety of instance discrimination [2, 3, 49]
and image reconstruction methods [15, 79], along with their
integration [34, 44, 70, 94], have been explored for medical
imaging. Given such advancements, the evolution of SSL
has empowered it to serve as the cornerstone for developing
foundation models with broad applicability [8]. However,

existing SSL methods overlook anatomy hierarchies in their
learning objectives, thereby lacking anatomy understanding
capabilities. By contrast, Adam–v2 exploits the hierarchical
nature of anatomy to learn semantics-rich features, leading
to more pronounced models tailored for medical tasks.
Learning from anatomy. Consistent anatomy in medi-
cal imaging provides strong yet free supervision signals
for deep models to learn common anatomical represen-
tations via self-supervision [95]. Existing works revolve
around recovering anatomical patterns from transformed
images [95, 96], learning semantics of recurrent anatomical
patterns across patients [32, 33] with subsequent enhance-
ments via adversarial learning [30, 31, 34, 35], exploit-
ing spatial relationships in anatomy [64], utilizing global
and local anatomical consistency [97], and incorporating
anatomical cues to improve contrastive learning [13, 25, 45,
47]. These existing works neglect hierarchical anatomy
relations. Although our earlier method Adam [69] uses
anatomy hierarchies as soft supervisory signals, our Adam–
v2 explicitly encodes part-whole hierarchies via its learning
objectives. Compared with Adam [69], Adam–v2 show-
cases two significant advancements: (1) enhancing the lo-
calizability branch by eliminating negative pairs pruning,
thereby improving computational efficiency for large-scale
pretraining, (2) introducing two novel components: com-
posability and decomposability, which are crucial for cap-
turing part-whole hierarchies.
Learning part-whole hierarchies. Hierarchical repre-
sentation learning is ingrained in architectures such as
ConvNets [36, 56] and hierarchical vision transformers
(ViT) [55]. But, the multi-scale feature hierarchy of com-
mon neural networks does not explicitly align with the part-
whole hierarchy in images, leading to the advent of new
architectures for encoding part-whole hierarchies [42, 51].
Notably, GLOM [39] introduced a conceptual framework
that utilizes attention to learn part-whole hierarchies, and
subsequent works proposed ViT-based architectures to im-
plement it [26, 68]. By contrast, Adam–v2 goes beyond
architecture design by introducing a new learning strategy
that encodes the semantics of part-whole hierarchies into
the embedding space through three explicit training objec-
tives: localizability, composability, and decomposability.

6. Conclusion
We present a SSL framework Adam–v2 that enhances vi-
sual representations by creating a hierarchy of embeddings
for different anatomical structures. The major novelty of
our work is explicitly enforcing part-whole hierarchies via
three learning objectives. Our experiments highlight the ef-
fectiveness of Adam–v2 in various tasks, surpassing a range
of baselines. We also demonstrate the semantic richness of
our learned representations, which stem from explicitly ac-
quired or autonomously emerging unique properties.
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Mathieu Salzmann. Leverage your local and global repre-
sentations: A new self-supervised learning strategy. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 16580–16589, 2022.
8

[94] Hong-Yu Zhou, Chixiang Lu, Sibei Yang, Xiaoguang Han,
and Yizhou Yu. Preservational learning improves self-
supervised medical image models by reconstructing diverse
contexts. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pages 3499–3509,
2021. 4, 8

[95] Zongwei Zhou, Vatsal Sodha, Md Mahfuzur Rahman Sid-
diquee, Ruibin Feng, Nima Tajbakhsh, Michael B. Gotway,
and Jianming Liang. Models genesis: Generic autodidactic
models for 3d medical image analysis. In Medical Image
Computing and Computer Assisted Intervention – MICCAI

11280



2019, pages 384–393, Cham, 2019. Springer International
Publishing. 8

[96] Zongwei Zhou, Vatsal Sodha, Jiaxuan Pang, Michael B. Got-
way, and Jianming Liang. Models genesis. Medical Image
Analysis, 67:101840, 2021. 8

[97] Ziyu Zhou, Haozhe Luo, Jiaxuan Pang, Xiaowei Ding,
Michael Gotway, and Jianming Liang. Learning anatomi-
cally consistent embedding for chest radiography. In Pro-
ceedings of the 34th British Machine Vision Conference
(BMVC 2023), 2023. 1, 8

11281


	. Introduction
	. Method
	. Learning Localizability
	. Learning Composability
	. Learning Decomposability
	. Training Pipeline

	. Implementation Details
	. Results and Analysis
	. Adam–v2 demonstrates zero-shot anatomy understanding, offering semantics-rich embeddings over existing SSL methods
	. Adam–v2 excels in few-shot transfer, outperforming SOTA fully/self-supervised methods in segmentation tasks
	. Adam–v2 stands out in full transfer, unleashing generalizable representations for a variety of tasks
	. Ablation Experiments

	. Related Work
	. Conclusion

