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Here are two images: The first one 

is a RockFlock, and the second 

one is a Sheep. Could you tell me 

what animal is in these two 

pictures?

The first image is a sheep wearing 

sunglasses, while the second one 

is a sheep.

The first image is a RockFlock, 

while the second one is a Sheep.

Figure 1. The demo dialogue of our proposed link-context learning. After presenting the model with a pair of unseen images and novel

concepts, our improved model gains the ability to learn and retain the acquired knowledge throughout the conversation while the vanilla

MLLMs fail to provide accurate answers.

Abstract

The ability to learn from context with novel concepts,

and deliver appropriate responses are essential in human

conversations. Despite current Multimodal Large Language

Models (MLLMs) and Large Language Models (LLMs) being

trained on mega-scale datasets, recognizing unseen images

or understanding novel concepts in a training-free manner

remains a challenge. In-Context Learning (ICL) explores

training-free few-shot learning, where models are encour-

aged to “learn to learn” from limited tasks and generalize to

unseen tasks. In this work, we propose link-context learning

(LCL), which emphasizes “reasoning from cause and effect”

to augment the learning capabilities of MLLMs. LCL goes

beyond traditional ICL by explicitly strengthening the causal

relationship between the support set and the query set. By

∗ Equal contribution. †Project Lead. � Corresponding author.

providing demonstrations with causal links, LCL guides the

model to discern not only the analogy but also the underlying

causal associations between data points, which empowers

MLLMs to recognize unseen images and understand novel

concepts more effectively. To facilitate the evaluation of this

novel approach, we introduce the ISEKAI dataset, compris-

ing exclusively of unseen generated image-label pairs de-

signed for link-context learning. Extensive experiments show

that our LCL-MLLM exhibits strong link-context learning

capabilities to novel concepts over vanilla MLLMs. Code,

demo, and dataset have been released.

1. Introduction

(In the near future, mankind finally be able to travel

interstellar and come to the centaur constellation.)

Human and MLLM walk off the spaceship.

Human:“We made it! Look! The locals are here.”

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Q: What is this ?

A: Cat.
Q: What is this ?

A: Panda.

Q: What is this ?

A: Tiger.

In-context Learning
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Q: What is this ?

A: Okapi.
Q: What is this ?

A: Panda, not okapi.

Q: What is this ?

A: Okapi.

Link-context Learning
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Figure 2. The difference between our link-context learning

with in-context learning. In-context learning involves providing

irrelevant tasks for demonstration, whereas there is a direct causal

relationship between the demonstration and inference phases of

link-context learning.

Locals: Greetings, you can call us ‘RockFlock’.

MLLM: “Hi, sheep!”

Human: “ ”

The above conversation between humans and MLLMs

serves as a humorous representation of how MLLMs struggle

to learn from demonstration during the conversation for real.

‘RockFlock’ is our hand-made species, which possesses both

a human-like body and a sheep-like head, as shown in Fig-

ure 1. Current MLLMs fail to link the unseen image-label

pairs to recognize novel objects in a single conversation. To

address this limitation, equipping the model with few-shot

learning ability has been a long-standing topic in computer

vision even before the era of MLLMs. This approach en-

ables the model to learn from limited examples and mitigate

the issue effectively. The primary method for MLLMs to

learn from demonstrations is known as in-context learning,

wherein the models show remarkable improvement on down-

stream tasks after being exposed to a few input-label pairs.

However, current MLLMs have very limited benefits from

in-context learning, since the emphasis is primarily on guid-

ing the model to acquire the ability to process novel tasks

after “learning” from meta tasks. However, the model’s

performance is not affected even if the answers provided

in the meta-tasks are all wrong. [19] Thus, what MLLMs

have “learned” from demonstration remains on answering

questions in a specific format rather than understanding the

causal relationship between the image-label pairs. To enable

MLLMs to concentrate more on the causal relationship be-

tween the image and label pairs, Frozen method [28] binds

different labels to known images. However, a significant

challenge arises when MLLMs encounter entirely novel sce-

narios where both the image and the label are unseen. In such

instances, the task of extracting the underlying cause and ef-

fect from the demonstration and making accurate predictions

based on this newfound knowledge remains an unsolved

puzzle. The ‘RockFlock’ (unseen images and novel con-

cepts), shown in Figure 1, would be misrecognized by the
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Figure 3. Overview of results on several categories of ISEKAI

dataset: Our model outperforms OpenFlamingo (9B) [2] and Otter

(9B) [10] across almost all the categories, showcasing superior

performance in scenarios involving entirely unseen images.

previous methods, while our model learns the concept of

‘RockFlock’ from the demonstration and makes responses

accurately. Moreover, the acquisition of novel concepts does

not impede the existing knowledge, enabling the model to ef-

fectively distinguish between the original and newly learned

images.

Inspired by in-context learning (hereinafter called ICL),

we propose link-context learning (hereinafter called LCL),

which requires the MLLMs to acquire knowledge about

new concepts from the conversation and retain their existing

knowledge for accurate question-answering. As shown in

Figure 2, current in-context learning in MLLMs emphasizes

benefiting from the causal-irrelevant demonstration. How-

ever, for link-context learning, the demonstration and the

final task are linked causally. (e.g. If the ‘apple’ is renamed

as ‘orange’ in the demonstration, the model should call ap-

ple an ‘orange’ during the inference.) With this ability, the

MLLMs could support few-shot learning in a flexible way.

In the era of Large Language Models, evaluating mod-

els’ performance on few-shot learning becomes a challenge,

as these models are extensively trained on vast amounts of

real-life data. To address this issue and provide a comprehen-

sive assessment of link-context learning, we introduce the

ISEKAI dataset. This dataset comprises unseen images and

concepts, entirely novel to MLLMs, as they transcend the

boundaries of realism. All the images in the dataset are gen-

erated by Stable Diffusion [26] and Midjourney [18], while

all the labels or concepts are fabricated as well. Figure 3

shows the comparisons between our model and Otter [10],

OpenFlamingo [2] on ISEKAI dataset.

In this paper, we present link-context learning (LCL), a

setting that bestows MLLMs with the capability to under-

stand the potential causal relationship in the conversation

and process unseen images and concepts. Unlike ICL mainly

focuses on inspiring models with a wide variety of different
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tasks, LCL goes a step further by empowering the model to

establish a mapping between the source and target, thereby

enhancing its overall performance. The contributions of this

work can be summarized as follows:

• Link-Context Learning: We introduce a novel causal-

relevant few-shot learning setting, where MLLMs are chal-

lenged to assimilate new concepts from the ongoing con-

versation and retain this knowledge for accurate question-

answering. Under link-context learning, we empower

the MLLMs to grasp the causal relationship between the

source and target from the demonstration.

• ISEKAI Dataset: Since most real-world data is not com-

pletely unseen to MLLMs, we release a challenging fab-

ricated dataset to the public, where novel image-concept

pairs are introduced, for evaluation of MLLMs’ perfor-

mance.

2. Related Works

Multimodal Large Language Models [11, 12, 14, 21, 22]

have demonstrated significant capabilities in universal gen-

eration or recognition tasks. Following the new paradigm of

MLLMs, various visual tasks can be achieved in a training-

free zero-shot manner [13, 24], escaping from the heavy

pretrain-and-finetune process. However, recognize arbitrary

content through a single model is generally considered ex-

tremely difficult. How to enhancing recognition capability

of MLLMs in the wild at a low cost has emerged as a recent

research focus.

Multimodal Prompt Tuning Multimodal Prompt Tuning

(M-PT) is commonly used in contrastive learning-based mul-

timodal large models, such as CLIP [24]. In the training

process, prompt tuning usually freezes most of the model’s

parameters and only updates a small number of parame-

ters to achieve results similar to fine-tuning [16, 30, 34, 35].

PT [30] add tunable prompt embeddings to each layer of

the encoder and decoder, only the weights of the added em-

beddings will be updated during training. VPT [8] added a

set of learnable parameters in specific positions to tune the

model. CoOp [35] and UPT [33] used CLIP as the back-

bone and prompted it to fit few-shot settings. CoCoOp [34],

POMP [25] and MaPLe [9] extend prompt tuning to open-

vocabulary visual recognition tasks. However, traditional

prompt tuning methods are not suitable for the powerful

generative multimodal large language models.

Multimodal Instruction Tuning Multimodal Instruction

Tuning (M-IT) enhances the zero-shot capability of MLLMs

in unseen tasks by fine-tuning them on an instruction

descriptions-based dataset [11, 14, 20, 29]. MiniGPT-4 [36]

and LLaVA [14] keep the visual encoder frozen and tune the

language model, extending instruction tuning to multimodal-

ity. mPLUG-Owl [32] tuned visual and text encoder sepa-

rately in two stages, and proposed an evaluation dataset for

assessing vision-related instruction tuning. InstructBLIP [5]

enhances zero-shot capability by performing instruction tun-

ing on multiple datasets. Shikra [4] and Kosmos-2 [23]

expanded MLLMs to visual grounding tasks using instruc-

tions with bounding box coordinates. Even though these

studies demonstrate outstanding zero-shot capability, they

still cannot recognize classes that were not seen during the

model training process.

Multimodal In-Context Learning Large Language Mod-

els (LLMs) have shown outstanding capability in learning

from context samples. In the Multimodal In-Context Learn-

ing (M-ICL) settings, following the input image samples and

optional instruction, MLLMs can learn new task patterns

in a few-shot manner [6, 7, 17, 31]. Flamingo [1] takes in-

context learning into consideration during the pretraining

process, allowing the model to possess the ability to support

in-context learning. Otter [10] follows Flamingo and pro-

posed a new in-context learning dataset, proceeding with the

ICL capability in the instruction tuning stage.

Different from previous methods, our proposed link-

context learning can establish a causal link between the sup-

port and query set. Specifically, using few-shot class-specific

images and textual prompts, LCL can link the prompt and

inference samples, and even associate previously unseen

images with new concepts.

3. Link-Context Learning

In this section, we first give a brief introduction to in-context

learning and unveil its main restrictions and difference to

our link-context learning in section 3.1; next, we bring the

power of link-context learning into MLLMs in section 3.2.

3.1. Preliminary

In-Context Learning Formally, in-context learning [3]

refers to: the model should choose the answer with the

highest prediction score from a set candidate answers

Y = {y1, y2, ..., yn}, given a query input x, condition-

ing on a support set S, which consists of multiple input-

label pairs from a wide variety of tasks, where S =
{(x1, y1), (x2, y2), ..., (xn, yn)}. (The query and the sample

of S should belong to different tasks.)

From another perspective, in-context learning could be

denoted as training-free few-shot learning, as it transforms

the training stage of few-shot learning into the demonstration

input for Large Language Models. Noted that the ICL [3]

is consistent with FSL, where the tasks in the demonstra-

tion (training) stage and in the inference (query) stage are

different.

Link-Context Learning Essentially, link-context learn-

ing (LCL) represents a form of training-free and causal-
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linked few-shot learning. In this approach, a support set

S = (x1, y1), (x2, y2), ..., (xn, yn) is provided, along with

a query sample x from the query set Q, where the data pairs

from the support set are causally linked to the query set. The

model is tasked with predicting the answer based on the

causal-linked relationship between the query and support

set.

To provide further clarity, link-context learning signifi-

cantly strengthens the causal relationship between the sup-

port set and the query set. For instance: 1). New arithmetic

rules: In this scenario, the support set consists of arith-

metic expressions such as (1 [op] 2 = 3), (2 [op] 3 = 5),
with the query sample being 4 [op] 5 =?. Here,

“[op]” represents a new arithmetic rule that we aim

to teach the model through the demonstration; 2).

Novel image classification: In this case, the support

set contains pairs like ([unseen image] : [novel cls A]),
([unseen image] : [novel cls B]), while the query sample is

([unseen image] belongs to?). This example demonstrates

how we expect the model to correctly classify the unseen

image into one of the specified novel classes based on the

demonstration.

In essence, link-context learning enhances the model’s

capacity to grasp new concepts and relationships by effec-

tively establishing a causal link between the support set and

the query set. While this setting is applicable to both LLMs

and MLLMs, our primary focus in this paper is on the appli-

cation of link-context learning specifically in MLLMs. By

concentrating on MLLMs, we aim to showcase the potential

of this approach in multimodal models and its implications

for advancing their learning capabilities.

3.2. Bring Link­Context Learning to MLLMs

In this section, our main objective is to introduce Link-

Context Learning (LCL) to the realm of MLLMs. Recogniz-

ing that the current MLLMs trained in the ICL manner may

not excel in LCL tasks, we propose a novel training strat-

egy to fine-tune MLLMs. This approach aims to equip the

models with the capability to grasp causal links from context

effectively. By leveraging this novel training strategy, we aim

to empower MLLMs to excel in tasks that require reasoning

and understanding causal relationships, thereby broadening

their range of capabilities and improving their overall per-

formance. To be more specific, we choose Shikra [4] as our

baseline, and we divide ImageNet1k into ImageNet-900 and

ImageNet-100 by classes, which would be discussed in detail

in section 3.2.1. Additionally, we incorporate the concept

of contrast learning in our training strategy, as discussed in

section 3.2.2. This helps guide the model to understand the

shared characteristics among samples of the same kind and

the distinctions between samples of different kinds.

3.2.1 Training Dataset

Unlike traditional tasks that require extensive training data,

LCL concentrates on acquiring the ability to find the link

between the source-target pairs in demonstration and gener-

alize to the query samples. Thus, adequate representation of

diverse image categories is essential to enable MLLMs to

grasp causal relationships effectively and efficiently.

ImageNet1k [27] is commonly employed for image clas-

sification tasks, and it is customary to train models on the

entire dataset to enhance their recognition ability across all

categories. In contrast, within the training configuration of

LCL, we only select a limited number of samples randomly

from each category. Then we arrange a set of related cate-

gories with decreasing similarity for each category, referred

to as “neighbors”. Specifically, we adopted CLIP [24] to

calculate the similarity between different classes within the

training dataset. Firstly, we randomly select 100 images

from each class and calculate the average image feature for

each class. Subsequently, we encode the text names of all

classes to obtain their corresponding feature vectors. Ul-

timately, we compute weighted similarities across distinct

class pairs, encompassing image-to-image, image-to-text,

and text-to-text correlations. For a specific category, we sort

all other categories based on similarity and divide them into

N intervals. Then, within each interval, we randomly se-

lect categories to construct a set of “neighbors” with a total

quantity of N .

3.2.2 Training Strategy

In order to make MLLMs understand the causal link be-

tween the support set and query sample, as well as the

causal relationship between the input-label pairs in the

support set, we build positive-negative pairs to urge the

model to learn from comparisons. Let the support set be

denoted as S = {s1, s2, ..., sn}. Based on the correla-

tion among its samples, we can redefine the support set as

C = {c1, c2, ..., cm}, where each cm serves as a prototype

representing a cluster of samples from S. These prototypes

capture the essential relationships and similarities among

samples within S. Given the query x, we train θ to maxi-

mize the likelihood:

log pθ(y|x) =
∑

l

log pθ(yl|x,C, y1, y2, ..., yl−1), (1)

where θ denotes the parameters of the language model. The

parameters of the visual encoder are frozen during the train-

ing.

[2-way] strategy: In this strategy, we train the MLLMs

for binary image classification, where the C = {c1, c2}.

To be more specific, c1 and c2 here represent the proto-

type of two classes. We denote the training class set as

T = {t1, t2, ..., t100}, we randomly sample a class ti as
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User: What is in the image?

Answer: Cactihog. Answer: Hedgehog.

User: What is in the image?

User: What is in the image? User: What is in the image?

Ours: Cactihog. Ours: Hedgehog.

OpenFlamingo:  An image of 

cactus.

OpenFlamingo: An image of 

hedgehog.

Otter:  This image is of a 
small, green, and cute animal.

Otter: A hedgehog in a field of 
flowers.
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User: What is in the image?

Answer: Mushroomhaven. Answer: Mushroom.

User: What is in the image?

User: What is in the image? User: What is in the image?

Ours: Mushroomhaven. Ours: Mushroom.

OpenFlamingo:  An image of 

mushroom house.

OpenFlamingo: An image of 
mushrooms.

Otter:  A mushroom with a 
blue roof and a door.

Otter: A mushroom with water 
droplets on it.

Figure 4. Qualitative comparisons of novel images understanding results between ours and OpenFlamingo [2], Otter [10]. The name

“Cactihog” is a fusion of “cactus” and “hedgehog”, combining the key features of these two creatures. The name “MushroomHaven” suggests

a dwelling place characterized by giant mushrooms

the positive class, where its neighbor class set N ti =
{nti

1
, nti

2
, ..., nti

100
} (nti

1
is the most similar class to ti, while

the nti
100

is the least). Then we apply a hard-negative mining

strategy, where we sample the negative class nti
j from N ti

with a probability pj =
101−j∑
100

m=1
m

. Noted that this setting is

fixed to train on 16 shots.

[2-way-random] strategy: In this strategy, we first train the

MLLMs on fixed-16 shots following the [2-way] strategy,

then further train the model with shots averaged sampled

from 2-16 shots for 10 epochs.

[2-way-weight] strategy: Within this strategy, we initially

train the MLLMs using a fixed-16 shot regimen, adhering to

the [2-way] approach. Subsequently, we refine the model by

additional training with shots sampled from the range of 2-

16, with each shot’s probability denoted as pj =
ej∑

16

m=2
em

.

[mix] strategy: To enhance the model’s generalizability, we

undertake a fine-tuning process that involves both [2-way]

tasks and Shikra’s [4] original tasks. During each iteration,

the training samples are evenly sampled from both the [2-

way] tasks and the original tasks. This balanced approach

ensures that the model gains proficiency in both the newly

introduced link-context learning tasks and the pre-existing

tasks from Shikra [4].

4. ISEKAI Dataset

To objectively evaluate MLLM’s ability to learn new con-

cepts through LCL, we created an ISEKAI dataset, shown

in Figure 5. The concepts involved are unreal, rarely seen in

legends, myths, or fictional media. Thus, MLLM’s exposure

to these concepts is minimal. The term “Isekai” originates

from a fantasy subgenre in anime. Plots usually involve

characters transported to a different world, like a fantasy

realm or virtual universe. Audiences understand the new

world gradually through the protagonist’s exploration, akin

to MLLM’s journey into a new realm of knowledge.

The dataset’s images are generated by Midjourney’s [18]
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Setting Method 2-shot 4-shot 6-shot 8-shot 10-shot 12-shot 14-shot 16-shot

ISEKAI-10

OpenFlamingo [2] 0.46 0.44 0.46 0.48 0.50 0.50 0.48 0.46

Otter [10] 0.23 0.23 0.19 0.15 0.14 0.12 0.10 0.07

Vanilla-Shikra [4] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ours-[2-way-random] 0.64 0.63 0.65 0.62 0.61 0.57 0.56 0.56

Ours-[mix] 0.68 0.70 0.73 0.69 0.63 0.62 0.65 0.62

ISEKAI-pair

OpenFlamingo [2] 0.19 0.34 0.38 0.39 0.41 0.40 0.40 0.40

Otter [10] 0.01 0.04 0.04 0.03 0.03 0.02 0.02 0.01

Vanilla-Shikra [4] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ours-[mix] 0.39 0.38 0.38 0.40 0.40 0.39 0.37 0.35

Ours-[2-way-random] 0.43 0.46 0.47 0.48 0.48 0.49 0.49 0.49

Table 1. Quantitative evaluation on ISEKAI from zero-shot to 16-shot, measured by accuracy. We achieve the best results compared with

Otter [10] and OpenFlamingo [2].

Method zero-shot 2-shot 4-shot 6-shot 8-shot 10-shot 12-shot 14-shot 16-shot

OpenFlamingo [2] 0.00 0.41 0.62 0.72 0.75 0.77 0.78 0.73 0.72

Otter [10] 0.13 0.18 0.21 0.24 0.25 0.26 0.24 0.23 0.23

Vanilla-Shikra [4] 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Ours-[mix] 0.16 0.73 0.78 0.83 0.73 0.71 0.72 0.65 0.57

Ours-[2-way] 0.02 0.51 0.61 0.68 0.73 0.77 0.78 0.78 0.79

Ours-[2-way-random] 0.0 0.77 0.78 0.77 0.79 0.77 0.77 0.77 0.75

Ours-[2-way-weight] 0.0 0.69 0.71 0.72 0.76 0.77 0.78 0.78 0.79

Table 2. Quantitative evaluation on ImageNet-100 from zero-shot to 16-shot, measured by accuracy. We achieve the best results compared

with Otter [10] and OpenFlamingo [2].
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Figure 5. Overview of the ISEKAI Dataset: This dataset com-

prises entirely generated images, where the images from “ISEKAI

World” are non-existent in real life, while the images from “Real

World” are sourced from reality.

text-to-image model using well-crafted instructions. Images

were manually selected to ensure core concept consistency.

The dataset currently comprises 20 groups, and 40 categories

in total (continues to grow). Each group pairs a new concept

with a related real-world concept, like “octopus vacuum” and

“octopus”. These can serve as challenging negative samples

for each other. Each concept has no less than 32 images, sup-

porting multi-shot examples. These features enable ISEKAI

to comprehensively assess the model’s LCL capability. We

also provide text descriptions of each concept’s appearance

and name, contributing to evaluations beyond LCL.

In this paper, we evaluated different models’ performance

on ISEKAI. For details, refer to section 5.1.

5. Experiments

In this section, we present the results of our experiments

to showcase the effectiveness of our proposed method. We

conduct comprehensive comparisons between our approach

(link-context learning-based) and other in-context learning-

based MLLMs.

5.1. Results on ISEKAI

To quantitatively evaluate the performance of link-context

learning, we compare our methods in different strategies

with our baseline (Shikra [4]) as well as ICL methods (Otter

and OpenFlamingo) in two challenge datasets: ISEKAI-10

and ISEKAI-pair.
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2-shot 4-shot 8-shot 12-shot 16-shot
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Sampled Fixed

Figure 6. The ablation study on shot num-

ber. The grey bars illustrate the highest ac-

curacy achieved for each shot number, de-

noting specific shot-based training. The red

line illustrates the performance of the model

trained using a sampled strategy. Notably,

both scenarios exhibit plateaus in accuracy

after reaching the 8-shot mark.
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Figure 7. The ablation study on false rate.

In contrast to OpenFlamingo [2], which sus-

tains a 38% accuracy at a 100% false rate, our

model attains 0% accuracy under the same

conditions. This outcome underscores our

model’s ability to preserve precise linkages

between the support set and the query.
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Modified Position
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Figure 8. The effect of label modifications

at distinct positions. The dashed blue line

serves as a reference for the original accuracy,

while the red line portrays the accuracy of

our model subsequent to the label modified

at specific positions. Significant accuracy

drop reflects position dependency, while mi-

nor change indicates position insignificance

in the model’s decision-making.

ISEKAI-10 Evaluation: Comprising 10 classes of challeng-

ing positive-negative image pairs, ISEKAI-10 presents a

scenario where the positive class is entirely nonexistent in

the real world yet shares certain characteristics with the nega-

tive class, which comprises common animals or objects from

our reality. The upper section of Table 1 showcases the out-

comes on the ISEKAI-10 dataset, where vanilla-shikra [4]

encountered difficulty. Our model demonstrates compet-

itive performance compared with OpenFlamingo [2] and

Otter [10] across all shot numbers.

ISEKAI-pair Evaluation: In the ISEKAI-pair evaluation,

positive and negative pairs are constructed using all image

categories that do not exist in the real world. Each individual

image is paired with all images from other categories, facili-

tating a comprehensive assessment. This evaluation provides

a realistic gauge of the model’s capability to handle com-

plete unknowns through various combinations. The lower

section of Table 1 underscores our model’s superiority over

OpenFlamingo [2] and Otter [10] in this context.

Qualitative Results: Figure 1 provides a visual compari-

son between our model and OpenFlamingo [2], as well as

Otter [10]. Notably, our model demonstrates its proficiency

in accurately comprehending novel concepts and effectively

discerning unfamiliar objects from those with close resem-

blance. This observation underscores our model’s capacity

to capture the causal relationship between the source and

target domains from the demonstration.

5.2. Results on ImageNet­100

We proceed to assess our model’s performance on ImageNet-

100, encompassing 100 classes that were entirely absent from

the training phase. The outcomes underscore the efficacy

of our mix strategy, which attains the highest accuracy of

83% at 6-shot. In contrast, Otter achieves a peak accuracy

of 25%, and OpenFlamingo’s performance reaches 78%.

Unlike the ISEKAI dataset, the images from ImageNet-100

do correspond to real-world entities.

5.3. Ablation Study

Does the ground-truth input-label mapping exists?

We conduct an ablation analysis on the correctness of labels

within the demonstration (support set). Given a set of im-

age domains X c ∈ R
H×W×3 and label domains C ∈ R

N , a

mapping f : Xc → C exists to associate each image with

its corresponding label. We use several image-label pairs

{(x1

c1
, c1), (x

2

c1
, c1), ..., (x

n
c1
, c1)}, where xj

ci
∈ Xci , as the

support set. The model is going to predict the correct answer

from a candidate set Y :

ŷ = argmax
yi∈Y

P (yi|x, f), (2)

where the prediction is conditioned on the mapping

f . Consequently, intentionally breaking the mapping

relationship within the support set would lead the model

to provide incorrect answers, as it heavily relies on the

accurate association between the image-label pairs of the

support set to make precise predictions. As shown in Figure

7, we disturb the mapping f by gradually inserting false

labels into the support set, and the accuracy falls from 0.78
to 0.00 when the correctness of the labels falls from 100%
to 0%. These results clearly show that maintaining accurate

associations between image-label pairs within the support

set plays a crucial role in link-context learning.
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Would the model benefit from using a larger shot?

Much like supervised learning, the model’s accuracy expe-

riences rapid initial growth with an increasing amount of

training data, eventually reaching a plateau. During this

phase, the selection of more representative samples becomes

crucial. Figure 6 presents two outcomes: one depicts model

accuracy from separate training at a fixed shot (gray bar in

the figure), while the other showcases the model’s perfor-

mance through sampling across various shots (red line in

the figure). The results reveal slight gains from lower fixed-

shot training and consistent performance from random-shot

training. Notably, in both random and fixed settings, accu-

racy plateaus or experiences gradual growth after the 8-shot

threshold.

What does the model’s decision-making in the case of

multi-shot depend on?

As shown in Fig 8, when disturbing the label of different

positions, the accuracy of the model with 16-shot drops dif-

ferently, which reflects the extent to which the model prefers

different locations. We observe that the model heavily relies

on the beginning and the middle positions. From another

aspect, it provides an explanation of why the model encoun-

ters a plateau in a higher number of shots. Similarly, this

phenomenon also exists in LLMs [15], where the language

model tends to be “lost in the middle” when processing long

contexts. They also reveal that the model’s performance

keeps decreasing when the contexts grow longer.

What is the difference between different training strate-

gies?

Table 2 presents a comprehensive view of the outcomes

achieved through our four distinct training strategies. The

mix strategy stands out by elevating the zero-shot accuracy

from 5% to 16% and attaining a remarkable 83% accuracy

at 6-shot; however, its performance diminishes to 57%

at 16-shot. In contrast, the 2-way strategy, anchored at

16-shot training, initiates with a 51% accuracy at 2-shot and

progressively ascends to 79% at 16-shot. Interestingly, we

observe that the accuracy trend of the 2-way strategy isn’t

solely attributable to an increase in shots, but rather stems

from a closer alignment with the trained pattern. To validate

this, we introduce two additional settings: 2-way-random

and 2-way-weight. These settings undergo fixed-shot

training for initialization, followed by finetuning across 2-16

shots with random and weighted approaches, respectively.

Both exhibit considerable accuracy improvements in lower

shots. Notably, while the accuracy of higher shots, finetuned

with a random strategy, drops—an observation mirroring

the behavior of the mix strategy. These results underscore

the efficacy of an even, sustained, and generalized training

approach in harnessing the potential of large language

models, revealing the emergence of a “lost-in-the-middle”

phenomenon, in coherence with our earlier observations.

Method ImageNet-100 VQAv2dev VQAv2std

OpenFlamingo [2] 0.00 - -

Flamingo-80B [1] - 56.3 -

Flamingo-9B [1] - 51.8 -

BLIP2 [12] - 65.0 -

Otter [10] 0.13 - -

Shikra-13B [4] 0.05 77.3 77.5

Ours-7B-[mix] 0.16 75.06 75.25

Table 3. Quantitative evaluation was conducted on both

ImageNet-100 and VQAv2 datasets employing a zero-shot ap-

proach. The outcomes substantiate that our training strategy ex-

hibits no detrimental impact on the zero-shot performance.

Does the training harm the zero-shot performance?

Table 3 shows the comparison between our-7B model

with shikra-13B [4] and some previous SOTA methods on

Imagenet-100 and VQAv2. From the results, we conclude

that our mix training strategy would not harm the model’s

zero-shot performance.

6. Discussion

6.1. Limitations

We believe that this work introduces a challenging and

promising setting for both MLLMs and LLMs. However,

the primary focus in this paper lies on link-context learn-

ing within the context of MLLMs, specifically validating

the basic tasks such as image classification. Consequently,

this work should be regarded as a foundational baseline for

exploring the potential of link-context learning.

6.2. Conclusion

In conclusion, this paper introduces a groundbreaking

paradigm of causal-relevant few-shot learning, significantly

expanding the capabilities of Multimodal Large Language

Models (MLLMs) within the context of single conversations.

Through meticulous experimentation and a carefully devised

training strategy, we demonstrate that MLLMs can adeptly

establish a mapping between ground-truth input-label pairs,

thereby acquiring the proficiency to seamlessly generalize

this capacity to previously unencountered images and novel

concepts. This pivotal advancement propels MLLMs into

uncharted territories, enabling them to not only acquire but

also apply knowledge in a manner more akin to human cog-

nition.
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