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Abstract

This paper presents the DiffusionRegPose, a novel ap-
proach to multi-person pose estimation that converts a one-
stage, end-to-end keypoint regression model into a diffusion-
based sampling process. Existing one-stage deterministic re-
gression methods, though efficient, are often prone to missed
or false detections in crowded or occluded scenes, due to
their inability to reason pose ambiguity. To address these
challenges, we handle ambiguous poses in a generative fash-
ion, i.e., sampling from the image-conditioned pose distri-
butions characterized by a diffusion probabilistic model.
Specifically, with initial pose tokens extracted from the im-
age, noisy pose candidates are progressively refined by inter-
acting with the initial tokens via attention layers. Extensive
evaluations on the COCO and CrowdPose datasets show
that DiffusionRegPose clearly improves the pose accuracy
in crowded scenarios, as evidenced by a notable 4.0 AP in-
crease in the APH metric on the CrowdPose dataset. This
demonstrates the model’s potential for robust and precise
human pose estimation in real-world applications. Code will
be available at https://github.com/cici203/DiffusionRegPose.

1. Introduction
Multi-person pose estimation is a well-explored area in com-
puter vision, which involves locating the keypoints that cor-
respond to body parts of each person within an image. It has
been adopted in various applications, including human action
recognition [39, 40], human body reconstruction [35, 47],
and human image generation [15, 21]. The multi-person pose
estimation can be broadly classified into three categories:
top-down [26, 34, 36, 42, 44], bottom-up [5, 8, 22, 38], and
one-stage methods [20, 29, 37, 41]. The top-down method
typically relies on an off-the-shelf object detector, which
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Figure 1. Comparison of one-stage end-to-end human pose estima-
tion frameworks. The naı̈ve method is represented in (a), while our
proposed diffusion-based approach is illustrated in (b).

is firstly applied to identify persons within an image and
then followed by the single-person pose estimation. In con-
trast, the bottom-up approach initially detects keypoints in
an instance-agnostic manner and subsequently groups them
to form individual human instances. Compared to those two-
stage approaches above, the one-stage method is capable
of directly outputting a sequence of potential human poses,
yielding improved computing efficiency and thus drawing
increased research attention.

A typical strategy for one-stage approaches is the key-
point regression with an end-to-end framework to learn the
mapping from the input image to the coordinates of human
joints (Fig. 1 (a)). This approach offers advantages for real-
time pose estimation tasks, given its reduced computational
and memory cost, as well as the capability to achieve sub-
pixel precision. Furthermore, when encountering truncations,
regression-based methods excel in extrapolating joint posi-
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tions outside the input image, a task which heatmap-based
methods struggle to accomplish [17]. However, in ambigu-
ous scenarios such as occluded/crowded ones, the indistinct
nature of the pose renders the regression method inadequate
for accurately deducing pose positioning.

Due to the complex diversity and visibility of human
poses in crowded scenes, addressing the ambiguity issue
requires an appropriate modeling of pose distribution. Diff-
Pose [9] utilizes the process of diffusion to gradually convert
a 3D pose distribution characterized by high uncertainty and
indeterminacy into a 3D pose with reduced uncertainty. The
goal is not to forecast a single optimal pose, but rather to
approximate a set of poses that can adequately represent
the posterior distribution. Given this, we aim to devise a
one-stage end-to-end regression approach oriented towards
capturing the ambiguity of multi-person poses via the dif-
fusion model. We derive the inspiration from the work [3]
modelling object detection as the process of eliminating
noise from a sequence of noisy boxes to extract object boxes.
We present the DiffusionRegPose, which performs the multi-
person pose estimation by denoising a series of noisy poses
(Fig. 1 (b)). To leverage occluded pose information effec-
tively, the DiffusionRegPose incorporates a strategy wherein,
during training, the invisible keypoints are completed to ratio-
nal coordinates and included in initial poses for the diffusion
process. By introducing a Gaussian noise to corrupt key-
points to a random distribution, the diffusion model learns
to reconstruct accurate poses from the noisy ones, which
are interacted with feature tokens via attention mechanisms.
During inference, the diffusion model progressively refines
the noisy poses through a denoising process. We evaluate
the DiffusionRegPose on two datasets for multi-person pose
estimation and demonstrate its overall solid performance,
especially in crowded scenarios.

To summarize, our main contributions are as follows:
• We present DiffusionRegPose, the first multi-person pose

estimation to convert the one-stage end-to-end keypoint
regression model into a diffusion-based sampling process.

• We introduce an attention learning of information inter-
action between pose denoising and human detection pro-
cesses. It demonstrates a mutual benefit, enhancing both
the precision of human detection and the robustness of
denoised poses in crowded scenarios.

• We propose a probabilistic method to complete invisible
keypoints to rational positions, effectively leveraging oc-
cluded pose information. Along with the simple target
padding, it facilitates the learning of diffusion process.

2. Related Work

2.1. One-stage Multi-Person Pose Estimation

Instead of using a human detector or keypoint grouping
process in two-stage methods [5, 8, 34, 36, 42], the one-

stage approach [28, 33] simultaneously outputs candidate
poses that include keypoint locations from the same per-
son. These methods rely on searching local peaks in the
keypoint heatmap and performing post-processing by a man-
ually optimized non-maximum suppression (NMS), which
is not optimized in an end-to-end fashion. To address this
issue, Shi et al. [29] proposed the PETR, a fully end-to-end
framework, which frames the pose estimation as a hierar-
chical set prediction problem, merging the localization of
person instances and fine-grained body joints, effectively
reducing the feature misalignment. To preserve local details,
the QueryPose [37] leverages learnable part-level queries,
which enables the acquisition of spatial awareness features
and facilitates the development of a sparse, end-to-end multi-
person pose regression framework. Furthermore, Yang et
al. [41] developed the ED-Pose to achieve global dependen-
cies by implementing a detector for all individuals using
human box queries obtained from encoded image tokens.
The GroupPose [20] introduces a straightforward adjustment
to the decoder architecture in ED-Pose. This modification
entails replacing the standard self-attention in the decoder
with two consecutive groups of self-attention. The first one
extracts the relationship between the keypoint query and the
corresponding instance query while the second self-attention
captures the relationship between each keypoint query of the
same class.

Despite the promising results of these one-stage meth-
ods in multi-person pose estimation, challenges persist in
pose misdetection and false detections in occluded/crowded
scenes.

2.2. Diffusion-based Human Pose Estimation

The denoising diffusion probability models (DDPM) [11,
30, 31] represent a class of generative models specifically
addressing the recovery of target data samples from noisy
observations. The generative process begins with the noisy
observations, achieved through the corruption of target data
samples with random noise. Subsequently, the model itera-
tively and progressively reduces the noise in multiple steps.
Recently, the diffusion model has demonstrated remarkable
performance across several tasks, including image/video
synthesis [12, 45], audio processing [7, 14], view synthe-
sis [2, 43], and perception tasks [1, 3]. Given the distinctive
capabilities of DDPM in capturing data distribution patterns,
some works leverage these advantages in the context of hu-
man pose estimation (HPE). Prior endeavours [25, 46] have
focused on the monocular 3D HPE task. They incorporate
temporal information to address the inherent depth ambigui-
ties and occlusions, yet frame sequences are inaccessible in
some scenarios. To solve this, the DiffPose [13] considers
an uncertain 3D pose distribution as input, which is sub-
sequently evolved into an optimal 3D pose distribution by
leveraging a diffusion model. This process is conditioned
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on the contextual information derived from given 2D pose
sequences. A 2D-to-3D pose lifting is utilized in the Diffu-
pose [6]. It leverages a diffusion model to efficiently generate
multiple 3D candidate poses from the detections of an avail-
able 2D keypoint detector. Likewise, the D3DP [27] method
involves a denoising mechanism conditioned on given 2D
keypoints to produce a plausible 3D pose hypothesis. In con-
trast to the Diffupose, the D3DP opts for a multi-hypothesis
aggregation method to obtain the ultimate output.

Since the aforementioned 3D pose estimation methods
all rely on the 2D pose information, the quality of detected
2D keypoints significantly influences the accuracy of esti-
mated 3D poses, underscoring the pivotal importance of the
2D pose estimation task. The DiffusionPose [26] adopts a
top-down paradigm for 2D pose estimation that generates
keypoint heatmaps from noised heatmaps. It is essential to
note that it does not constitute an end-to-end framework be-
cause of utilizing an extra human detection. Our proposed ap-
proach DiffusionRegPose, inspired by the DiffusionDet [3],
employs a denoising diffusion process to convert a noised
pose into the targeted one in a one-stage end-to-end manner.
DiffusionRegPose facilitates information exchange between
human instance detection and pose regression, enhancing
performance in crowded scenarios.

3. Method
3.1. Preliminary

Diffusion models are a class of generative models that aim to
model complex data distributions by transforming a simple
starting distribution into the desired complex data distribu-
tion through a sequence of invertible operations. The forward
process q in the diffusion model involves the addition of
Gaussian noise to initial data y0 for step t ∈ {0, 1, . . . , T},
formulated as

q (yt | yt−1) = N
(
yt |

√
αtyt−1, (1− αt) I

)
, (1)

where αt :=
∏t

s=0 αs =
∏t

s=0 (1− βs) and βs denotes
the schedule of noise variances. Symbol N (·|·) indicates the
Gaussian distribution and I represents the identity matrix.
Specifically, the sampled yt can be directly acquired from
the initial value y0 by

q (yt | y0) = N (yt |
√
γty0, (1− γt) I) , (2)

where γt =
∏t

i=0 αi.Thus, Eq. 2 can be represented as

yt =
√
γty0 +

√
1− γtϵ, ϵ ∼ N (0, I), (3)

where ϵ denotes the sampling noise.

3.2. DiffusionRegPose

The framework of DiffusionRegPose is shown in Fig. 2. The
training process (Blue flow + Black flow) includes the For-
ward Diffusion Process and Model Forward Process, while

the inference process (Red flow + Black flow) contains the
Reverse Diffusion Process and Model Forward Process.

3.2.1 Forward Diffusion Process

Since each image contains a different number of person in-
stances, to facilitate the framework construction, the number
of predicted candidate poses for each image should be fixed.
Thus, the initial step in diffusion process involves padding
supplemental poses to the extant ones, thereby establishing
a pose set y0 for a fixed number Ni (e.g., 100) of person
instances. The detailed discussion about employed padding
strategies can be seen in the experimental section (Table 4).

During training, a Gaussian noise is introduced to the
pose set y0 (initialized by the ground truth), as shown in
Fig. 2 (Blue flow). At step t, the corrupted pose set yt is
subject to a conditional distribution, represented as

yt = q (yt | y0, ζ)

=
√
γt (ζ · y0) +

√
1− γtϵ, ϵ ∼ N (0, I),

(4)

where the scale parameter ζ regulates the ratio between
the signal and the noise. The keypoint self-attention (K-
SA) module SA(·) is subsequently employed to compute
the correlation relationship QCK among these corrupted
keypoints yt by

Qyt
= MLPQs(yt)

Kyt
= MLPKs(yt)

Vyt
= MLPV s(yt)

QCK = SA(Qyt
,Kyt

, Vyt
),

(5)

where MLP represents the Multi-Layer Perceptron, and
Qyt

, Kyt
, and Vyt

denote query, key, and value tokens, re-
spectively.

3.2.2 Model Forward Process

The forward process of our model fθ with parameter set θ
is shown in Fig. 2 (Black flow). Upon receiving an image
x, the initial process involves extracting multi-scale features
utilizing the backbone. These features are subsequently fed
into a Transformer encoder E(·), such as a deformable atten-
tion module, which incorporates a positional embedding to
compute tokens F . Taking into account the strong correla-
tion between the regressed pose and the detected person, the
information interaction between pose denoising and human
detection can facilitate a mutual guidance for learning both
processes. Thus, a set of coarse keypoint coordinate tokens
FH2K is acquired after passing these tokens F through the
Human-Detection decoder DH and the Human-to-Keypoint
token expansion module DH2K , interpreted as

FH = DH(F )

FH2K = DH2K(F, FH).
(6)
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Figure 2. The DiffusionRegPose framework encompasses four principal components: keypoint completion (KC), forward denoising process
(FDP), model forward process (MFP), and reverse diffusion process (RDP). In the KC stage, 2D invisible keypoints are completed to rational
positions. The GT poses are also padded to a fixed number Ni (displayed 20 in this figure) and serve as the initial state y0 of FDP. At
step t of FDP, state yt is corrupted from y0 via q (yt | yt−1). Subsequently, after yt undergoes corruption, queries QKSA are generated by
employing the self-attention module. Furthermore, the image is sequentially passed through backbone, encoder E and decoder DH during
MFP to conduct Human-to-Keypoint token expansion FH2K . It is further converted to tokens KFH2K and VFH2K and subsequently sent
into the cross-attention module. The cross attention CA(·) is supplied to the diffusion decoder D to yield Ni human pose candidates. In the
inference process (RDP), the final Ni candidate poses are obtained from the noised poses through pθ (ỹt−1 | ỹt) in an iterative way.

The Keypoint Cross-Attention (K-CA) module, denoted
as CA(·), is employed to calculate the relationship between
the keypoint proposals from the output generated by FH2K

and QCK . The coarse keypoints cKpts and coarse human
boxes cBox can be obtained as:

QKSA
= MLPQc(QCK)

KFH2K
= MLPKc(FH2K)

VFH2K
= MLPV c(FH2K)

cKpts, cBox = CA(QKSA
,KFH2K

, VFH2K
).

(7)

Finally, the diffusion decoder D (Human-to-Keypoint
detection decoder) learns the interaction between cKpts and
cBox, and regresses the keypoint coordinates y′t, human
boxes bt and box classes ct as:

y′t, bt, ct = D (cKpts, cBox) . (8)

Similar to the ED-Pose [41], our employ the focal loss for
box classification (Lc), and L1-loss for human box regres-

sion (Lh) and keypoint regression (Lk). By repetition of the
procedure above, the DiffusionRegPose iteratively optimizes
the estimation of Ni poses and human boxes by updating
the entire model fθ with gradient descent step until it con-
vergences.

3.2.3 Reverse Diffusion Process

The inference process of DiffusionRrePose can be described
as a denoising sampling process that transitions from a Gaus-
sian noise to a target human pose, as shown in Fig. 2 (Red
flow). Initially, the model uses the DDIM [30] sampling
strategy to sample poses from a Gaussian distribution and
then iteratively restores the human pose in a progressive de-
noising process as pθ (ỹt−1 | ỹt). Detailed steps about this
denoising process are given in Algorithm 1.
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Algorithm 1 Inference in T iterative steps

1: Input: image x, total number of diffusion steps T
2: Extracting feature: xfea = backbone(x)
3: Tokenized representation: F = E(xfea)
4: Human box query: FH = DH(F )
5: Human-to-keypoint query expansion:

FH2K = DH2K(F, FH)
6: for t = T ,...,1 do
7: Acquiring noised pose coordinates ỹt
8: Tokens for self-attention:

Qỹt
,Kỹt

, Vỹt
= MLPX∈(Qs,Ks,V s)(ỹt)

9: QCK = SA(Qỹt
,Kỹt

, Vỹt
)

10: Tokens for cross-attention:
QKSA

= MLPQc(QCK),
KFH2K

, VFH2K
= MLPX∈(Kc,V c)(FH2K)

11: cKpts, cBox = CA(QKSA
,KFH2K

, VFH2K
)

12: Decoding: ỹt−1, b̃t−1, c̃t−1 = D (cKpts, cBox)
13: end for
14: Output ỹ0

3.2.4 Keypoint Completion

It is inevitable to encounter invisible keypoints of a human
pose due to occlusion in crowded scenes. However, on public
benchmarks [16, 19], ground truth (GT) coordinates of invis-
ible keypoints are defaultly assigned with zeros, as shown
in Fig. 3. This setting not only causes multiple invisible key-
points indistinguishable, but also results in large deviations
of keypoints from the actual body parts, violating the nor-
mal keypoint distribution of a human body. Therefore, it is
necessary to assign rational initial positions to the invisible
keypoints in the diffusion process.

To complete the invisible keypoints, we employ a
probabilistic approach. Given an image of size W × H ,
the coordinates (u, v) of a keypoint are normalized to
( u−lu
W ·Lhead

, v−lv
H·Lhead

), which are stored in matrix M ∈
R2K×N for a total number of N person instances in the
dataset with K keypoints per person. Point (lu, lv) indi-
cates the upper-left corner of the bounding box of a per-
son instance. And Lhead is the head length corresponding
to the person. In each column i of matrix M , we em-
ploy a flattened coordinate representation as M(:, i) =
[ui,1, vi,1, ui,2, vi,2, . . . ]

⊤, where (ui,k, vi,k) indicate the co-
ordinate of the k-th keypoint of person i.

For each person instance which is only partially visible,
we reorder the keypoint coordinates in the corresponding
column of matrix M as Y = [Y I ;Y V ] ∈ R2K×1, where
Y I represents the unknown coordinates of invisible key-
points, while Y V signifies the coordinates of visible key-
points. Thus, matrix M is rearranged to a new matrix M ′.
Accordingly, we calculate the mean µ ∈ R2K×1 and co-
variance Σ ∈ R2K×2K of locations of visible keypoints

Figure 3. Comparison of keypoints with default zero coordinate
setting and those completed by our proposed approach (depicted
with a larger radius than the visible keypoints). The related learning
curves for keypoint regression and human detection, indicated by
the AP and APb metric, respectively, are illustrated on right side.

stored in M ′. By assuming that the keypoint coordinates
of a person follow a multi-normal distribution characterized
by the mean µ and covariance Σ, the maximum likelihood
estimation (MLE) of keypoint coordinates Y MLE , for a per-
son instance containing at least one invisible keypoint, is
determined as

Y MLE = max
Y

N (Y | µ,Σ). (9)

Based on the probability density function of Gaussian dis-
tribution, Eq. 9 can be expressed as equivalent to the form:

Y MLE = min
Y

(
(Y − µ)⊤Σ−1(Y − µ)

)
= min

Y

(
(Y − µ)⊤LL⊤(Y − µ)

)
= min

Y

∥∥∥L⊤(Y − µ)
∥∥∥
2

, (10)

where the Cholesky decomposition is performed on the co-
variance matrix as Σ−1 = LL⊤. With a further matrix split
L⊤ = [AI ,AV ], Eq. 10 can be reformulated as

Y MLE = min
Y

∥∥∥AIY I +AV Y V −L⊤µ
∥∥∥
2
. (11)

The least squares method is employed to obtain the com-
pleted coordinates of invisible keypoints, and the solution is
denoted as

Y ′
I =

(
A⊤

I AI

)−1

A⊤
I

(
L⊤µ−AV Y V

)
. (12)
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Finally, Y MLE =
[
Y ′

I ;Y V

]
represents the pose within the

initial step of the diffusion process. An example of keypoint
completion is shown in Fig. 3. It is noteworthy that com-
pared to the default zero coordinate setting, the learning of
keypoint regression and human detection is benefited by our
completion approach.

4. Experiments
4.1. Datasets and Metrics

Experiments are conducted on two widely used datasets for
human pose estimation, namely CrowdPose [16] and MS
COCO [19]. The CrowdPose dataset consists of 20K images
and 80K individual instances, each with 14 keypoints. The
MS COCO dataset comprises over 200K annotated images,
each containing 17 keypoints representing the human body.
Moreover, a split for training, validation, and test is provided
by this dataset, which comprise approximately 60K, 5K, and
20K images, respectively.

On both datasets, we evaluate the model performance
by the metric of Average Precision (AP) score, which is
calculated based on the Object Keypoint Similarity (OKS)
measure. We also conduct a comprehensive evaluation using
different OKS thresholds, leading to two additional scores of
AP50 and AP75. To further assess the model performance on
the MS COCO dataset, additional AP scores are calculated
for different object sizes, specifically for medium (APM ) and
large (APL) instances. In the case of the CrowdPose dataset,
different levels of crowded scenes are also considered. Ac-
cordingly, AP scores are computed for images representing
easy (APE), medium (APM ), and difficult (APH ) crowded
scenes w.r.t. the crowd index [16].

4.2. Implementation Details

During the training phase, data augmentations such as ran-
dom cropping, flipping, and resizing are applied to the input
images. We utilize an optimizer with the AdamW weight
attenuation of 1× 10−4 and train our model for 80 epochs
on the COCO dataset and 80 epochs on the CrowdPose
dataset. The training process is carried out on the Nvidia
A40 GPU with a batch size of 8. The initial learning rate
is set at 2 × 10−4, and undergoes a decay by multiplying
with 0.1 at the 30-th and 65-th epoch on the COCO and
CrowdPose datasets, respectively. For implementation, we
choose ResNet-50 as backbone. The design of decoder part
is similar to that of ED-pose [41]. Other detailed parameter
settings for our model can be referred to the supplementary
material.

4.3. Experimental Results on COCO

Comparisons with end-to-end frameworks. The Diffusion-
RegPose is firstly trained on the subset of COCO train2017
and evaluated on the COCO val2017. Table 1 presents its

performance in comparison with other state-of-the-art meth-
ods. It reveals that the DiffusionRegPose outperforms the
current end-to-end approaches, including PETR [29], Query-
Pose [37], ED-Pose [41], and GroupPose [20] with the same
backbone ResNet-50. Specifically, the DiffusionRegPose
achieves an AP superiority of 3.7% over the first end-to-
end method PETR [29], which is mainly Transformer-based.
Moreover, the DiffusionRegPose exhibits a notable supe-
riority over the GroupPose [20], which does not involve
human detection tasks. Although the QueryPose [37] and
ED-Pose [41] entail an additional human box supervision,
the DiffusionRgePose still achieves AP improvements of
3.8% and 0.9%, respectively, attributing to the adopted joint
pose denoising and interaction learning.
Comparisons with non-end-to-end frameworks. The pose
estimation performance of DiffusionRegPose compared with
non-end-to-end frameworks are shown in Table 1. It is ob-
vious that the DiffusionRegPose demonstrates a significant
superiority over bottom-up methods [5, 8, 22, 38] and pre-
vious one-stage approaches [23, 28, 33, 48]. Notably, the
compared bottom-up models employ a complicated back-
bone, i.e., the HRNet-w32 [32], while our DiffusionReg-
Pose adopts the ResNet-50 and still outperforms them by
an AP margin of at least 2.9%. The AP for human detec-
tion (denoted as APb) by DiffusionRegPose is yet 46.5%,
significantly inferior to the 56.4% AP of human detectors
utilized by most top-down methods. However, the gap in
terms of pose estimation is much smaller, which is reduced
to 3.4% compared to the top-performed method Diffusion-
Pose [26]. Additionally, the AP of DiffusionRegPose even
exceeds top-down approaches like Mask R-CNN [10], Sim-
pleBaseline [36] and PRTR [18]. Nevertheless, the Diffu-
sionRegPose achieves the best AP50 and the second best
AP75, indicating the most estimated keypoints similar to
their ground truths.

4.4. Experimental Results on CrowdPose

The CrowdPose poses more challenges as it contains more
crowded scenes and instances where the poses are obscured.
Our model is trained on the trainval set and evaluated on the
test set. The performance comparison of DiffusionRegPose
with other state-of-the-art methods is reported in Table 2.
Specifically, our approach outperforms the top-down method
SimpleBaseline [36] with the same backbone (ResNet-50),
by achieving an AP improvement of 11.9%, and is compa-
rable to the best performed top-down method HRFormer-
B [44]. Furthermore, our proposed method surpasses all
bottom-up methods and other one-stage methods in terms of
the AP score, further validating its efficacy.

Notably, our proposed DiffusionRegPose exhibits a supe-
rior performance over most of compared approaches across
various crowded levels. Specifically, with the same back-
bone ResNet-50 and regression loss of detection box and
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Table 1. Comparisons with state-of-the-art methods on COCO val2017. “†” symbolizes the flip test. “TD”, “BU”, and “OS” denote the
top-down, bottom-up, and one-stage methods, respectively. “HM”, “BR” and “KR” indicate adopting heatmap-based losses, human box
regression losses and keypoint regression losses, respectively. “‡” symbolizes the exclusion of uncertainty estimation in Poseur for a fair
comparison. APb denotes the human detection AP. All AP values are displayed in %. The 1st, 2nd and 3rd place are color coded for metrics
with more than three distinct values.“-” shows the results that are not available.

Method Ref Backbone Loss AP AP50 AP75 APM APL APb

N
on

-E
nd

-t
o-

E
nd

TD

Mask R-CNN [10] CVPR 17 ResNet-50 HM 65.5 87.2 71.1 61.3 73.4 -
Mask R-CNN [10] CVPR 17 ResNet-101 HM 65.5 87.4 72.0 61.5 74.4 -

Sim.Base. [36] CVPR 17 ResNet-50 HM 70.4 88.6 78.3 67.1 77.2 56.4
PRTR† [18] CVPR 21 ResNet-50 KR 68.2 88.2 75.2 63.2 76.2 56.4
Poseur‡ [24] ECCV 22 ResNet-50 RLE 70.0 - - - - 56.4
Poseur [24] ECCV 22 ResNet-50 RLE 74.2 89.5 81.3 71.1 80.1 56.4

DiffusionPose [26] - 23 HRNet-w32 HM 75.9 - - - - 56.4

BU

HrHRNet† [5] CVPR 20 HRNet-w32 HM 67.1 86.2 73.0 61.5 76.1 -
DEKR† [8] CVPR 21 HRNet-w32 HM 68.0 86.7 74.5 62.1 77.7 -

SWAHR† [22] CVPR 21 HRNet-w32 HM 68.9 87.8 74.9 63.0 77.4 -
LOGO-CAP† [38] CVPR 22 HRNet-w32 HM 69.6 87.5 75.9 64.1 78.0 -

OS

DirectPose [33] - 19 ResNet-50 KR 63.1 85.6 68.8 57.7 71.3 -
CenterNet† [48] - 19 Hourglass-104 KR+HM 64.0 - - - - -

FCPose [23] CVPR 21 ResNet-50 KR+HM 63.0 85.9 68.9 59.1 70.3 -
InsPose [28] ACM MM 21 ResNet-50 KR+HM 63.1 86.2 68.5 58.5 70.1 -

E
nd

-t
o-

E
nd

OS

PETR [29] CVPR 22 ResNet-50 KR+HM 68.8 87.5 76.3 62.7 77.7 -
QueryPose [37] NeurIPS 22 ResNet-50 BR+RLE 68.7 88.6 74.4 63.8 76.5 -
ED-Pose [41] ICLR 23 ResNet-50 BR+KR 71.6 89.6 78.1 65.9 79.8 46.6

GroupPose [20] ICCV 23 ResNet-50 KR 72.0 89.4 79.1 66.8 79.7 -
DiffusionRgePose - ResNet-50 BR+KR 72.5 89.8 79.5 66.8 80.5 46.5

Table 2. Comparisons with state-of-the-art methods on CrowdPose test set. “†” denotes the flip test. APE : crowd index < 0.2, APM : 0.2 ≤
crowd index < 0.8, and APH : crowd index ≥ 0.8. All AP values are displayed in %. The 1st, 2nd and 3rd place are color coded.

Method Loss AP AP50 AP75 APE APM APH APb

TD

Sim.Base. [36] (ResNet-50) HM 60.8 81.4 65.7 71.4 61.2 51.2 -
HRNet [34] (HRNet-w48)† HM 71.3 91.1 77.5 80.5 71.4 62.5 -

TransPose-H [42] HM 71.8 91.5 77.8 79.5 72.9 62.2 -
HRFormer-B [44] HM 72.4 91.5 77.9 80.0 73.5 62.4 -

BU
HrHRNet-w32 [5]† HM 65.9 86.4 70.6 73.3 72.0 65.8 -

DEKR [8] (HrHRNet-w32)† HM 65.7 85.7 70.4 73.0 66.4 57.5 -
SWAHR [22] (HrHRNet-w32)† HM 71.6 88.5 77.6 78.9 72.4 63.0 -

OS
PETR [29] (Swin-L) KR+HM 71.6 90.4 78.3 77.3 72.0 65.8 -

ED-Pose [41] (ResNet-50) BR+KR 69.9 88.6 75.8 77.7 70.6 60.9 60.2
DiffusionRegPose (ResNet-50) BR+KR 72.7 91.1 79.3 79.3 73.3 64.9 63.1

keypoints, the DiffusionRegPose surpasses the one-stage
method ED-Pose by improvements of 1.6%, 2.7%, and 4.0%
in the cases of APE (crowd index < 0.2), APM (0.2 ≤ crowd
index < 0.8), and APH (crowd index ≥ 0.8), respectively,
wherein a higher value of the crowd index indicates a more
densely populated scene. Compared to the results on COCO,
the DiffusionRegPose exhibits a larger gain of human detec-
tion AP over the ED-Pose on CrowdPose, which is 2.9%,
implying that our model is more robust to occluded scenes.
As in Fig. 4, the ED-pose encounters the challenges of miss-
ing and misidentified keypoints due to object occlusion or
overlapped multiple individuals, while our proposed method
effectively rationalizes the deducing of keypoints and suc-
cessfully detects severely occluded human instances.

4.5. Ablation Study

Signal scaling. The signal scale factor ζ represents signal-to-
noise ratio (SNR) during the diffusion process. An analysis

about its impact on the CrowdPose dataset is reported by
Table 3, with the findings revealing that a scale factor of 5.0
or 10.0 yields the most favorable AP. This performance sur-
passes the standard values of 1.0 used for image generation
tasks [11], 0.1 for panoptic segmentation [4], and 2.0 for
object detection [3]. This discrepancy can be attributed to
that both object detection and human pose estimation tasks
exhibit a more sparse nature than dense tasks like image gen-
eration and panoptic segmentation. Furthermore, a human
pose is characterized by K keypoints while the a detected
object is represented by its bounding box. Since the Diffu-
sionRegPose can predict multiple potential poses within the
same bounding box, the pose estimation task here exhibits a
greater complexity. Consequently, a higher signal-to-noise
ratio is deemed necessary. Here we choose the scale factor 5
as the default setting.
Pose padding strategy. Given that the number of GT poses
inevitably falls short of the number of candidate queries, it
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Figure 4. A qualitative comparison between DiffusionRegPose (ResNet-50) (the third row) and ED-Pose (ResNet-50) (the second row) in
the context of CrowdPose is presented. The original images are displayed in the first row for reference.

Table 3. Ablation study about signal scale on CrowdPose. Best
values are in bold. Default settings are marked in gray.

Method Backbone Signal scale AP APb

DiffusionRegPose ResNet-50

0.1 72.3 62.6
1.0 72.4 62.6
2.0 72.4 62.8
5.0 72.7 63.1

10.0 72.7 63.1

Table 4. Ablation study about pose padding strategy on CrowdPose.
Best values are in bold. Default settings are marked in gray.

Padding strategies AP AP50 AP75 APH APb

GT repeat 72.7 91.2 79.0 64.9 63.1
Empty pose padding 72.7 91.1 79.3 64.9 63.1
Noise padding 72.6 91.2 79.1 64.6 63.0
Mean pose padding 72.5 91.0 78.9 64.6 62.8

becomes necessary to pad the GTs with additional poses
to achieve the same pose number across all images. Here
we explore various padding strategies, specifically (1) uni-
formly replicating the GT poses to the pre-defined number
Ni; (2) padding empty poses where keypoint coordinates
are all zeros; (3) padding random poses following a Gaus-
sian distribution; and (4) padding the mean pose with the
center conforming to a Gaussian distribution. As shown in
Table 4, the GT replication and empty pose padding yield
more favourable outcomes on CrowdPose, indicating that
the simple targets can ease the learning. Here we choose the
empty padding as our default padding strategy.
Number of instance queries. To investigate the impact of
instance query number Ni on the pose estimation perfor-
mance, we evaluate our DiffusionRgePose with 50, 100, and
200 queries, respectively, on the CrowdPose. As shown in
Table 5, increasing the number of instance queries from

Table 5. Ablation study about query number Ni on CrowdPose.
Best values are in bold. Default settings are marked in gray.

Method Query number AP AP50 AP75 APH APb

ED-Pose 100 69.9 88.6 75.8 60.9 60.2

DiffusionRegPose
50 71.4 90.2 78.0 63.2 62.5
100 72.7 91.1 79.3 64.9 63.1
200 72.1 90.4 78.7 63.5 62.7

50 to 100 enhances the model performance, with 1.3% AP
gain. However, as the query number increases further to
200, the prevalence of noisy poses also increases, thereby
elevating the training challenge, with an AP drop of 0.4%.
Nevertheless, it still ourperforms the ED-Pose with the same
backbone and loss setting.

5. Conclusion

In this study, we have proposed to interpret the one stage,
end-to-end multi-person pose estimation into a diffusion-
based sampling process. This process is able to sample the
image conditional pose distribution using a diffusion proba-
bility model to reason the ambiguous poses in crowded or
obscured scenes. To facilitate the learning, a probabilistic
invisible keypoint completion and the interaction between
pose denoising and human detection are also adopted. By
experiments, our DiffusionRegPose performs superior on
the COCO and CrowdPose datasets compared to existing
one-stage, bottom-up, and partial top-down approaches. Spe-
cially, the DiffusionRegPose demonstrates a performance
enhancement within crowded scenes, as reflected by a no-
table increase of 4.0% APH for pose estimation and 2.9%
AP for human detection.
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