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Long video (3 minutes)

Short video-LLM (prior work) - attention visualizations

Prediction:          Ultimately, the individual's overarching goal and 
primary focus was to successfully create a detailed sketch.
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Based on the actions in the video, determine the overarching goal of 
the individual's actions, and identify key steps they took to achieve it.?

1

2

Ultimately, the individual's overarching goal and primary focus was 
to successfully create a detailed sketch.

The individual's overarching goal was to create a notebook cover.
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Ultimately, the individual's overarching goal was to diligently 
create a comprehensive, accurate map.

The individual's overarching goal was to create a blueprint.

The ultimate objective of the individual was to successfully create a 
comprehensive list themselves.

Koala (ours) - attention visualizations

Prediction:          The individual's overarching goal was to create a 
notebook cover.
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T = 45s T = 90s T = 135s T = 180s
Multiple-choice question and answers:

Figure 1. Given a video-Large Language Model that was pretrained on millions of short seconds-long video clips, we propose a lightweight
approach (Koala) to extend its short-term video tokenizer function for understanding and answering questions about minutes-long videos.
We are the first to use sparsely sampled key frames to condition the LLM. As shown, our Koala approach is more effective at focusing
on relevant regions in the input frames than the short vLLMs, allowing it to make more informed predictions based on a more holistic
understanding of the video. These regions help facilitate our model in predicting the correct answer to the question (highlighted in green).

Abstract

Long video question answering is a challenging task
that involves recognizing short-term activities and reason-
ing about their fine-grained relationships. State-of-the-art
video Large Language Models (vLLMs) hold promise as a
viable solution due to their demonstrated emergent capabil-
ities on new tasks. However, despite being trained on mil-
lions of short seconds-long videos, vLLMs are unable to un-
derstand minutes-long videos and accurately answer ques-
tions about them. To address this limitation, we propose
a lightweight and self-supervised approach, Key frame-
conditioned long video-LLM (Koala), that introduces learn-
able spatiotemporal queries to adapt pretrained vLLMs for
generalizing to longer videos. Our approach introduces
two new tokenizers that condition on visual tokens com-
puted from sparse video key frames for understanding short

and long video moments. We train our proposed approach
on HowTo100M and demonstrate its effectiveness on zero-
shot long video understanding benchmarks, where it out-
performs state-of-the-art large models by 3 - 6% in absolute
accuracy across all tasks. Surprisingly, we also empirically
show that our approach not only helps a pretrained vLLM
to understand long videos but also improves its accuracy on
short-term action recognition.

1. Introduction
Answering questions about minutes-long videos is an in-

herently challenging task that involves recognizing multiple
actions and how they fit together to form the overall activ-
ity. To recognize that the person is making a notebook cover
instead of a sketch in Figure 1, a model must spot key ac-
tions (taping, measuring) and objects (paper), and under-
stand how they are related to each other. Instruction-tuned
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multimodal-Large Language Models (mLLMs) [12, 34, 38,
69, 72] and their video variants (vLLMs) [35, 40, 41, 70] of-
fer a promising avenue for understanding long videos, as
demonstrated by their emergent capabilities in downstream
multimodal tasks including perception [56] and common-
sense reasoning [12, 62]. By learning to tokenize a small
number of key frames from seconds-long videos into visual
tokens that are mapped to the same latent space as language
word tokens, vLLMs are able to leverage the knowledge en-
capsulated in their LLM to describe visual concepts, such as
actions, in short videos.

However, existing vLLMs trained on millions of short
videos still struggle with minutes-long videos that contain
significantly more frames [32]. A naive solution is to ex-
tract the same number of key frames at a coarse rate, but
this leads to a significant loss of fine-grained spatiotempo-
ral information. Thus, this approach results in poor perfor-
mance on complex and long-term temporal understanding
tasks in benchmarks including EgoSchema [42] and Seed-
Bench [32]. Another possibility for extending these pre-
trained vLLMs to long videos is to pass multiple segments
of key frames into their learned tokenizer function. How-
ever, this extension may negatively affect the ability of the
vLLMs to understand long videos holistically since their
tokenizer function only aggregates spatiotemporal context
within segments rather than between them.

In light of these limitations, we propose our Key frame-
conditioned long video-LLM (Koala), a novel and self-
supervised approach that introduces spatiotemporal queries
to adapt the frozen video tokenizer in pretrained vLLMs to
aggregate spatiotemporal context over longer temporal hori-
zons. Our main hypothesis is that the video tokenizer func-
tion in vLLMs, having learned to aggregate spatiotemporal
context for a fixed number of frames, can generalize to un-
derstanding longer videos using the same number of input
frames. More specifically, we first encode the global con-
text of a long video by extracting the same number of input
frames at a very coarse sampling rate, referred to as key
frames. To mitigate the loss of fine-grained spatiotemporal
information, we then extract a sequence of video segments
at a higher sampling rate to complement the global context
with local spatiotemporal information.

The key insight underlying Koala is that the global video
context can be utilized to model individual video segments
and the contextual relations between multiple video seg-
ments, which plays a crucial role in understanding long
videos. To this end, we further introduce our Conditioned
Segment (CS) and Conditioned Video (CV) tokenizer func-
tions. Intuitively, the former function leverages learnable
segment queries that use the global context of the video
to identify and aggregate frame-level concepts within each
segment; such concepts are important to both short-term
context of the segment and the global context of the en-

tire video. The latter function further introduces temporal
concept queries to reason about the contextual relationships
between segments to generate an enriched sequence of vi-
sual tokens as inputs into the subsequent LLM.

While the idea of using frames extracted at different
sampling rates bears similarities to existing approaches
[28, 37, 52] including slowfast network [16], these afore-
mentioned approaches focus on modeling static and mo-
tion contexts in short videos, especially in a closed-world
setting. In contrast, we focus on a task-agnostic approach
for computing enriched visual tokens that are well-aligned
with the base LLMs. More significantly, reasoning about
global and short-term semantics of videos in vLLMs makes
our setting different and challenging. By facilitating long
video understanding with LLMs, our Koala approach helps
to address the inherent problem of summarizing and under-
standing high-level temporal context which is prevalent in
downstream open-world applications including video rec-
ommendations [22,25,39], embodied AI [13,19,29,33] and
robotics [31, 47].

We demonstrate the effectiveness of our proposed Koala
approach through extensive evaluations on multiple zero-
shot long and short-term temporal understanding tasks on
the EgoSchema [42] and the Seed-Bench [32] benchmarks.
We show that our proposed light-weight finetuning ap-
proach is able to incorporate long-term temporal under-
standing capabilities into pretrained vLLMs despite train-
ing on noisy and uncurated video and text data from the
Howto100M dataset [43], and outperforms state-of-the-art
mLLMs by a significant margin of 3 - 6% across all tasks.
Furthermore, we show that our CS and CV tokenizer func-
tions also help the base vLLM to improve its performance
on short-term action recognition. We provide a comprehen-
sive ablation of our approach to analyze the effectiveness of
the spatiotemporal queries introduced in the proposed tok-
enizer functions in Koala. We are the first work to explore
extending the video tokenizer function of pretrained short-
term vLLMs to long-term video understanding.

2. Related work
Video understanding. The field of video understanding en-
compasses core research problems including action recog-
nition [17, 64], action prediction [21] and temporal action
localization [37]. Older prior work addressing these prob-
lems are often task-specific and either rely on hand-crafted
features [30,57,68] or video encoders that are carefully de-
signed to exploit temporal information from RGB frames
and optical flow information [9, 15, 16, 55]. Moreover, un-
derstanding action sequences has often been constrained to
short video clips. vLLMs are also similar to more recent
fully attentional video encoders [5, 7, 14, 44] that leverage
self-attention between spatiotemporal regions to compute
more effective video representations.
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Figure 2. Overview of our full Koala approach. For a given
video, we extract a set of coarsely-sampled key frames and non-
overlapping frame segments with a much higher sampling rate. We
use the key frames to provide high-level global context of the video
to compute a final sequence of soft visual tokens that encode both
global context as well as fine-grained spatiotemporal information
via the Conditioned Segment (CS) and Conditioned Video (CV)
tokenizer functions.

Additionally, there are also existing works which aim
to address the task of understanding long videos [58, 63].
While these aforementioned approaches are similar in spirit
to our proposed approach, they are focused on recognizing
actions instead of generating language as in our case.

Instruction-tuning and multimodal foundation models.
Recently, instruction-tuned multimodal-LLMs [12, 35, 40,
69, 70] have demonstrated surprising emergent capabilities
on unseen tasks. We make the distinction between two
main types of multimodal LLMs - image-based [4, 38, 51,
59, 69, 72] and video-based [35, 40, 41, 67, 70]. In gen-
eral, mLLMs learn an adaptor between the frozen visual
encoders and the LLM that generates a sequence of soft vi-
sual tokens. The base LLMs are often kept frozen or lightly
finetuned with the LORA framework [24] to leverage their
vast amount of knowledge gleaned from large-scale pre-
training [10,11,54,71]. While our proposed Koala model is
also built upon a base vLLM, a key difference between prior
mLLMs and ours lies in the way temporal information is ag-
gregated in the video domain. Prior vLLMs [40, 41, 70] are
often pretrained on large-scale and publicly available video
and text datasets, as well as a highly curated instructional
video dataset that has been annotated with temporal and
spatial relations by Chat-GPT [2]. However, despite tun-

ing on this dataset, state-of-the-art video-LLMs are still lim-
ited at understanding temporal relationships. Furthermore,
while there are existing multimodal approaches [20,53] that
have also been introduced to address the task of long video
question answering, they differ from ours in different as-
pects. [20] conditions the computation of visual attention
on the question but ours uses global visual context. [53] re-
lies on fine-grained paragraph annotations while ours only
relies on coarse and noisy goal labels.
Comparisons to existing prompting approaches. Koala
is similar in spirit to existing approaches that use learnable
queries for foundational image-text models [48] for short-
term action recognition [27,45,61]. However, their purpose
is introducing temporal prompts to transform the learned
spatial aggregation function to reason about the temporal
relations between a small number of frames. In contrast, we
use spatiotemporal prompts to extend the learned short-term
temporal aggregation function for long-term understanding
of videos at least 10 times longer. Furthermore, our pro-
posed approach provides an efficient mechanism for aggre-
gating long-term temporal context over multiple segments.

3. Koala

We propose Koala, a lightweight finetuning approach
that takes a frozen vLLM, which is pretrained on short video
clips, and adapts it to longer temporal settings. The key
components of Koala are visual tokenizers that condition
on representations of a sparse set of video key frames to
adaptively select and aggregate information at the segment
and video levels. We assume the vLLMs [35,70] are trained
to generate a textual response that is conditioned on an in-
put text query and a short (seconds-long) video. The input
text query is encoded to a set of text tokens ztext. To encode
the video V , the pretrained vLLM samples a fixed number
of key frames Vkey ⊂ V , and then applies a key frames to-
kenizer function Fkey. Fkey aggregates the spatiotemporal
context over the visual features within the set of key frames
and returns a set of key frames tokens zkey.

Let zkey = Fkey(Vkey) = FVQT(Fframe(Vkey);Qvideo),
where FVQT and Fframe denote pretrained video QFormer
[34, 70] and frame encoding functions, respectively. Simi-
lar to the Perceiver model [26], FVQT is partly parameter-
ized by a set of frozen video queries Qvideo (cf ., Figure 3)
for aggregating the spatiotemporal information within Vkey.
In this work, we term the information encoded by zkey as the
global context of the video. Given the sets of text and key
frames tokens ztext and zkey, respectively, the LLM function
FLLM computes the output textual response r as:

r = FLLM(concat{ztext, ϕkey(zkey)}), (1)

where concat{} is the concatenation operation and ϕkey is
an affine transformation that projects the visual tokens to
the LLM token space.
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(a) Conditioned Segment (CS) tokenizer             for each segment (b) Conditioned Video (CV) tokenizer             for all segments
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Figure 3. CS and CV tokenizer functions. (a) Our CS tokenizer introduces learnable segment queries and fuses the global semantics
of a video with fine-grained frame concept representations within each segment to compute segment tokens. (b) In the CV module, we
introduce learnable inter-segment queries as well as temporal concept queries to model the contextual relations between segments.

While the key frames tokenizer Fkey encodes the global
context of a long video by reasoning about the high-level
relationships between key frames, the coarse sampling rate
results in a loss of fine-grained spatiotemporal information
that is crucial for understanding long videos effectively. To
address this limitation, we propose to enrich the key frames
tokens with the spatiotemporal information of local video
segments, illustrated in Figure 2. Specifically, we com-
pute a set of contextualized inter-segment tokens zinter from
N non-overlapping video segments S = {S1, · · · , SN},
where each segment Si ⊂ V is sampled at a higher frame
rate. We modify Eq (1) to include the inter-segment tokens
zinter and the learnable affine transformation ϕinter:

r = FLLM(concat{ztext, ϕkey(zkey), ϕinter(zinter)}). (2)

To compute zinter, we introduce our Conditioned Segment
(CS) and Conditioned Video (CV) tokenizer functions,
which repurpose the frozen FVQT function to select local
spatiotemporal information that are most relevant to the
conditioned global context at the segment and video levels.

At the segment level, our CS tokenizer FCS (Sec-
tion 3.1) uses learnable queries that are conditioned on the
encoded global context of zkey to identify visual concepts in
frames. We seek visual concepts that are not only relevant
to the local context within each segment, but also to the
global context of the entire video. This context is needed
because FVQT only aggregates the contextual relationships
within segments of frames and not between them. At the
video level, our CV tokenizer function FCV (Section 3.2)
leverages FVQT to reason about the contextual relationships
of spatiotemporal concepts across different segments con-
ditioned on the global context of zkey. Taken together, the
final sequence of contextual inter-segment tokens zinter is
the output of the composition of these tokenizers:

zinter = FCV({FCS(Si | zkey)}Ni=1 | zkey) (3)

Note that the attention mechanism encapsulated by the CS
and CV tokenizers facilitates the dissemination of global

video context to more fine-grained visual concepts. Finally,
we describe our learning objective in Section 3.3.

3.1. Conditioned Segment Tokenizer

We illustrate our Conditioned Segment (CS) tokenizer in
Figure 3a. This tokenizer repurposes the key frames tok-
enizer Fkey to select important frame-level information that
is pertinent to both the local context of each segment and
the global context of the key frames tokens zkey. As we will
demonstrate empirically in Section 4.2, naively increasing
the number of key frames as input into Fkey during finetun-
ing does not help the vLLM to generalize to longer videos,
even when accounting for the quadratic complexity of the
attention operation.

For video segment Si ∈ S, we repurpose the key frames
tokenizer Fkey via two simple modifications to the video
QFormer FVQT. First, we concatenate the key frame to-
kens zkey with the video QFormer’s pretrained video queries
Qvideo. This modification allows the video QFormer to con-
dition on the key frame tokens when aggregating the input
video segment features Fframe(Si) via cross-attention with
Qvideo and zkey. Second, to ensure that the key frame tokens
zkey are compatible with the video QFormer, we adapt them
via addition with a set of learnable queries Qsegs. For video
segment Si, we define the CS tokenizer FCS as:

FCS(Si | zkey) = FVQT(Fframe(Si); concat{Qvideo, zkey +Qsegs}).
(4)

Note that this CS tokenizer outputs tokens for Qvideo and
zkey. We empirically find that it is beneficial to discard the
output tokens for zkey.

3.2. Conditioned Video Tokenizer

While our CS tokenizer helps to augment the local con-
text of segment tokens with the global context of the entire
video, the resulting tokens for each segment still lack con-
textual information from other segments. As such, we fur-
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ther propose our Conditioned Video (CV) tokenizer FCV to
reason about important spatiotemporal relationships across
segments (Figure 3b).
Modeling spatiotemporal context across segments. We
model how the local segments are related to each other con-
ditioned on the global context of the entire video. This
objective involves a granular understanding of how spe-
cific concepts such as entities and action sequences are in-
terconnected throughout the entire video. Let zsegs,i =
FCS(Si | zkey) be the set of conditioned tokens for seg-
ment Si. To ensure that these tokens are compatible with
the video QFormer FVQT, we introduce a set of learnable
temporal queries Qtemp, where the i-th query Qtemp,i is
added to all tokens in zsegs,i. Furthermore, we introduce
learnable concept queries Qconcepts, where the t-th query
Qconcepts,t is added to the t-th token across all segment to-
kens zsegs = {zsegs,i}Ni=1. Taken together, we compute the
adapted segment tokens for the t-th token of segment Si as:

Qfinal,i,t = zsegs,i,t +Qtemp,i +Qconcepts,t. (5)

We denote the full adapted segment token set as Qfinal =
{Qfinal,i,t}i,t. Similar to our FCS function, we introduce
learnable inter-segment queries Qinter to adapt the key
frames tokens zkey to be compatible with the video QFormer
FVQT. We define our CV tokenizer as a weighted sum of the
key frames tokens (to retain the global video context) and
the repurposed video QFormer FVQT:

FCV(zsegs | zkey) = zkey+wFVQT(Qfinal; concat{Qvideo, zkey+Qinter}),
(6)

where w is a learnable scalar.

3.3. Learning objective

We define the learning objective for optimizing the pa-
rameters of the introduced tokenizer functions FCS and FCV
and the global affine transformation ϕinter as predicting the
high-level task labels of instructional videos spanning at
least a few minutes. This objective is akin to summarizing
the long videos concisely. Given the instruction-tuned na-
ture of the pretrained vLLM, we convert the high-level task
labels such as “fix a car engine” into the instruction format
by manually crafting a set of query and response templates
for training (see supplemental). Let P be a question prompt
for a given input video V and R its corresponding response
comprising a sequence of M words R = {l̂1, · · · , l̂M}
(each word is represented as a one-hot vector). We mini-
mize the cross-entropy loss:

L(V, P,R) = −
M∑
j=1

l̂j log p(lj |l̂<j , V, P ), (7)

where p(lj |l̂<j , V, P ) denotes the probabilities for the j-th
word given the preceding ground truth words l̂<j .

4. Experiments

Datasets. We train our Koala approach on a filtered subset
of 250K videos from the HowTo100M instructional video
dataset [43]. The filtered subset contains longer videos
that span from four to over thirty minutes. Please see
the supplemental for details on how we filter the training
data. We evaluate our approach on two zero-shot long
video question answering tasks – the multiple choice format
in EgoSchema [42] and procedure-understanding in Seed-
Bench [32]. Additionally, we evaluate on the task of short-
term action recognition [32] to analyze if the introduced
CS and CV functions are detrimental to understanding short
videos. Note that we report the best results across different
numbers of frames.

Implementation details. We build our approach off the
publicly available Video-LLama model [70] and train for 2
epochs on the final filtered subset of Howto100M. During
evaluation, we compute the log-likelihood for each candi-
date answer and select the highest-scoring option for fair
comparison [8, 32]. We provide further details about our
training setup in the supplemental.

4.1. Quantitative comparison to baselines

Besides the tasks of long video question answering
and procedure understanding on the EgoSchema and Seed-
Bench benchmarks, we also evaluate our Koala model on
short-term action recognition.
EgoSchema evaluation. We report the results of our zero-
shot evaluation on the EgoSchema benchmark in Table 1.
In addition to state-of-the-art vLLMs, we also compare our
proposed Koala approach to language prior baselines that
are not included in Mangalam et al. [42]. The language
prior baselines only use the questions and candidate an-
swers for predictions. Please refer to the supplemental for
more details on how we prompt these LLMs given a ques-
tion and each candidate answer. Note that we also modify
the questions and answers to replace “C” with “the camera
wearer” so that the words used are more similar to the data
used to pretrain these language models. To begin, we ob-
serve that the Flan-T5 [11] language prior serves as a very
strong baseline on this benchmark. Despite not relying on
the input videos at all, this language prior baseline outper-
forms most of the state-of-the-art video-language models by
a significant margin. In some cases, Frozen-BiLM and In-
ternVideo have also been finetuned on QA datasets includ-
ing How2QA [36] and MSRVTT [65]. This finding sug-
gests that existing vLLMs are not able to perform long-term
temporal reasoning well although they have been trained on
large-scale curated video and text data.

To better understand this finding, we also conduct an
analysis of different state-of-the-art LLMs to determine
their impact. In Table 2, we see that the language prior accu-
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Approach Training LLM LLM architecture # input frames Top 1 Acc (%)
Human accuracy (upper bound) - - - - 76.20
Language prior - Flan-T5-xl Encoder-decoder - 35.92
Random - - - - 20.00
VIOLET [18] - Bert-Base [50] Encoder 5 19.90
Frozen-BiLM [66] MLM DeBERTa-V2-XLarge [23] Encoder 90 26.90
Video-Llama (finetuned) Captioning Llama-2 Decoder 32 28.36
mPLUG-Owl [67] Captioning Llama Decoder 5 31.10
InternVideo [60] Contrastive CLIP Encoder 90 32.10
Video-Llama [70] Captioning Llama-2 Decoder 128 33.25
MovieChat [49] Captioning Llama-2 Decoder 128 33.49
Koala (ours) Captioning Llama-2 Decoder 64 40.42

Table 1. Zero-shot long video question answering on EgoSchema benchmark. For all models, we report the best results obtained across
varying number of input frames. Our Koala approach outperforms the base Video-Llama model despite using much fewer frames. We also
include the results for a strong language prior baseline as well as human performance (highlighted in gray).

LLM Architecture Top 1 Acc (%)
Random - 20.00
GPT-J decoder-only 9.94
GPT-Neo decoder-only 17.21
Vicuna decoder-only 21.45
Llama-2 decoder-only 26.03
Flan-T5-xl encoder-decoder 35.92

Table 2. Zero-shot long video question answering on
EgoSchema with language priors. We observe that the language
priors with different LLMs serve as strong baselines.

racy varies greatly across the different LLMs. For example,
the Flan-T5 model performs better than the LLama-2 model
by approximately 9%. On the other end of the spectrum, a
similarly-sized autoregressive GPT-J LLM with 6B param-
eters performs significantly worse than random. Given that
the question and answer options in EgoSchema were gener-
ated using powerful LLMs (e.g., GPT4 [46], Bard [1], and
Claude [3]), we hypothesize that Flan-T5’s accuracy on this
task is due to having learned a representation that is similar
to the LLMs used to generate the evaluation data.

While both Video-Llama and our approach use Llama-2
as the base LLM, we observe that Video-Llama still under-
performs the Flan-T5 language prior baseline despite im-
proving upon the Llama-2 language prior variant. In con-
trast, our Koala approach not only outperforms the Flan-
T5 model, but also improves upon the base Video-Llama
model by ∼7%. This finding demonstrates the effective-
ness of our introduced tokenizer functions at reasoning
about temporal relations over longer spans. One ques-
tion that arises from these results is whether the accuracy
gains by Koala can be attributed to further training on video
data that may be semantically similar to the target domain.
To address this question, we also finetune the Video-Llama
captioning model without our CS and CV functions. Fine-
tuning Video-LLama yields a drop of ∼5% in top-1 ac-
curacy from the base Video-Llama model, and suggests
that the improvements are not solely due to further finetun-
ing. We include details about finetuning Video-Llama on
HowTo100M in the supplemental.
Seed-Bench Procedure Understanding. We report the re-

sults of our evaluations on the procedure understanding task
of the Seed-Bench benchmark in Table 3. The goal of pro-
cedure understanding is to detect all actions performed in
a given video and arrange them in the correct temporal
order, which requires fine-grained temporal understanding
over a long span. As shown in Li et al. [32], state-of-the-art
vLLMs (e.g., mPLUG-Owl, VideoChat, and Video-Llama)
often perform worse than their image-based variants such
as InstructBLIP and VPGTrans. In certain cases, some
vLLMs actually perform worse than their base LLM lan-
guage prior baselines. For instance, using videos causes the
accuracy to drop by 2-3% in the case of Valley [40] and
Video-ChatGPT [41] when compared to their base Vicuna
LLM [10] language prior.

It is also notable that large-scale pretraining on millions
of short video and caption pairs only helps Video-Llama to
improve by ∼4% over its base Llama-2 language prior. This
finding suggests that learning to aggregate temporal con-
text over a larger number of key frames without knowledge
of the global context does not result in learning an effec-
tive key frames tokenizer function. In contrast, we observe
that our proposed Koala model gains an improvement of
∼9% over Video-Llama in spite of the lightweight finetun-
ing stage that uses many fewer training videos as compared
to the initial pretraining on WebVid10M [6] and curated in-
structional video data [41]. This finding suggests that our
introduced CS and CV tokenizer functions are beneficial
towards reasoning about long-term temporal relations be-
tween different action sequences in videos.
Seed-Bench Action Recognition. Finally, we evaluate our
Koala approach on the task of action recognition (Table 3)
to study the effect of our introduced tokenizer functions
for short-term temporal understanding tasks. In contrast to
the longer setting in the procedure understanding task, the
videos in this task generally have duration of around 10 sec-
onds. Similar to our observations on the procedure under-
standing task, the mPLUG-Owl, Video-ChatGPT, and Val-
ley vLLMs perform worse on this task than the image-based
InstructBLIP and VPGTrans models.

Note that the base Video-Llama model performs worse
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LLM Procedure Action
Approach Training LLM architecture # input frames Understanding Recognition
Language prior - Vicuna Decoder-only - 23.83 27.30
Language prior - Flan-T5 Encoder-decoder - 25.42 23.16
Language prior - Llama Decoder-only - 26.17 32.99
Language prior - Llama-2 Decoder-only - 22.65 27.07
Random - - - - 25.00 25.00
mPLUG-Owl [67] Captioning Llama Decoder-only 32 26.51 26.72
VideoChat [35] Captioning Vicuna Decoder-only 32 27.27 34.89
Video-ChatGPT [41] Captioning Vicuna Decoder-only 32 21.14 27.59
Valley [40] Captioning Vicuna Decoder-only 32 20.72 31.26
Video-Llama-2 [70] Captioning Llama-2 Decoder-only 32 25.42 35.52
InstructBLIP [12] Captioning Flan-T5 Encoder-decoder 8 27.10 33.10
MovieChat [49] Captioning Llama-2 Decoder-only 32 26.76 34.37
InstructBLIP Vicuna [12] Captioning Vicuna Decoder-only 8 23.07 34.48
VPGTrans [69] Captioning Flan-T5 Encoder-decoder 8 31.88 39.54
Koala (ours) Captioning Llama-2 Decoder-only 64 35.91 41.26

Table 3. Zero-shot video question answering on Seed-Bench. Compared to state-of-the-art mLLMs, our Koala approach improves the
capability of the vLLM to not only understand long temporal context in procedure understanding but also to recognize short actions. We
also compare to language prior baselines with different LLMs (highlighted in gray).

EgoSchema Procedure Action
Approach Benchmark Understanding Recognition
Base 33.25 26.68 35.52
Base + CS 36.93 30.20 38.74
Base + CS + CV 40.42 35.91 41.26

Table 4. Model ablations on the zero-shot evaluation bench-
marks. We ablate the effectiveness of different queries introduced
in our Koala approach on all three evaluation tasks.

Keep Condition on zkey Temporal concept EgoSchema
zkey output in CS tokenizer queries Qtemp, Qconcepts Benchmark

✓ ✓ ✓ 33.61
✗ ✗ ✓ 39.12
✗ ✓ ✗ 39.20
✗ ✓ ✓ 40.42

Table 5. Additional model ablations on the EgoSchema bench-
mark. We include additional ablation experiments over adding
temporal queries in our CS tokenizer function as well as retain-
ing the learnable inter-segment queries as input into the LLM. We
observe that global context conditioning and introducing learnable
parameters are beneficial towards adapting pretrained vLLMs.

Approach Aggregate pre-LLM EgoSchema
Base ✗ 33.25
Average ✓ 33.39
Memory module (Moviechat) [49] ✓ 34.62
Concatenation ✗ 35.72
Koala (ours) ✓ 40.33

Table 6. Comparisons between pre- and post-LLM tempo-
ral context aggregation. We observe that naively encoding each
video segment separately and concatenating the entire sequence of
video tokens into the LLM performs worse than aggregating the
video tokens before passing them into the LLM.

than the image-LLM VPGTrans by ∼4% despite its large-
scale pretraining on seconds-long videos. This finding sug-
gests that its key frames tokenizer function may be limited
at reasoning about fine-grained actions and interactions be-

tween objects. While we are primarily focused on under-
standing long videos, we observe that our CS and CV to-
kenizer functions are also beneficial to understanding short
actions, improving upon Video-Llama by ∼6% and outper-
forming VPGTrans by ∼2%. These results suggest that us-
ing key frames to provide global context for reasoning about
spatiotemporal relationships between video segments may
be crucial for fine-grained action understanding.

4.2. Ablation study

Overall Koala architecture. In Table 4, we ablate our CS
and CV functions across all three evaluation tasks to de-
termine their individual contributions. Consistent across
all three tasks, we observe that conditioning on the key
frames for global context to aggregate spatiotemporal con-
text within each video segment in our CS function is es-
pecially crucial, as evidenced by a ∼3% improvement in
top-1 accuracy on average. We also note the importance
of reasoning about spatiotemporal contextual information
between segments in our CIS function where our concept
queries help improve accuracy on both long and short-term
temporal understanding.

Tokenizer design. We ablate the design choices of the
CS and CV tokenizers on the EgoSchema benchmark in
Table 5. We observe that passing the output tokens cor-
responding to zkey into the LLM (“Keep zkey output”) in-
stead of discarding them leads to a sharp drop in accuracy
of ∼7%, which may be due to the base vLLM being pre-
trained to accept a fixed number of video tokens as input.
Additionally, we note the benefit of conditioning the CS
tokenizer on the key frame tokens zkey, where the lack of
conditioning leads to a drop of ∼1.3%. Finally, we observe
the importance of introducing additional parameters in the
form of the temporal concept queries Qtemp and Qconcepts in
the CV tokenizer. As evidenced by the accuracy gain, it is
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Please provide a succinct summary 
of the primary objective and the key 
actions the camera wearer performs 
in this video.

?

1

3

2

4

5

The camera wearer is preparing a 
salad. ← Koala (ours)

Currently, the camera wearer is in 
the process of making a delicious 
sandwich.

Currently, the camera wearer is in 
the process of skillfully making a 
delicious smoothie.

The camera wearer is making a 
stir-fry. ← Short vLLM

In the kitchen, the camera wearer is 
currently preparing and making a 
delicious soup.

Short vLLM

VideoMosaic
(ours)

RGB Frames

(a)

Analyze the overall process that 
the camera wearer follows in the 
video. what is the main objective 
of the actions performed?

?

1

3

2

4

5

Currently, the camera wearer is 
diligently sewing together various 
pieces of cloth. ← Short vLLM

The camera wearer is cutting pieces 
of cloth. ← Koala (ours)

Currently, the camera wearer is 
diligently folding various pieces of 
cloth.

The camera wearer is ironing 
pieces of cloth.

Currently, the camera wearer is 
carefully packing various pieces of 
cloth together.

RGB Frames

Short vLLM

VideoMosaic
(ours)

(b)
Figure 4. Example attention heatmap visualizations on EgoSchema. We provide some qualitative examples of predictions made by our
Koala approach and the base Video-Llama model based on what they focus on. We observe that Koala is generally able to focus on relevant
regions better than the base vLLM.

important to adapt to the frozen video QFormer FVQT.

Temporal aggregation. Lastly, given the recent importance
of vLLMs, we study in Table 6 the key factors for integrat-
ing long-term temporal context from more input frames into
the frozen vLLM and compare to our Koala. For all ag-
gregation function variants, we use 4 segments of 8 frames
each. We next describe the different aggregation variants.
The first variant (“Average”) obtains visual tokens by av-
eraging 1

N

∑N
i=1 Fkey(Si) across all video segments Si.

These averaged tokens are concatenated with the key frame
tokens zkey before being projected by ϕkey and passed to
the LLM. The second variant (“Memory module”) utilizes
short and long-term memory mechanisms [49] to compute
contextualized soft visual tokens as input into the LLM. We
pass in Fkey(Si) across all video segments into the short-
term memory and use the long-term memory tokens as in-
put into the LLM. In the third variant (“Concatenation”), we
concatenate tokens Fkey(Si) across all segments Si, allow-
ing the LLM to leverage its pretrained self-attention func-
tion for temporal reasoning. We note that this variant is
similar to the SlowFast approach [16], where the “slow”
frame features zkey are fused with the “fast” frame features
Fkey(Si) by concatenation.

In general, we observe that it is more beneficial to ag-
gregate temporal context in videos and encode it in the se-
quence of visual tokens before passing them into the LLM.
While average-pooling video segment representations or us-
ing a long-term memory module [49] may lose some fine-
grained spatiotemporal information, we observe that they
are outperformed by the concatenation variant on down-
stream evaluations by only a small margin. This finding
suggests that the self-attention layers in the LLM may not
understand longer sequences of visual tokens without ad-
ditional large-scale pretraining. Finally, we further ablate
over the training hyperparameters including the number of
segments as well as frames per segment used as input into
the vLLM. Please refer to the supplemental for these results.

4.3. Qualitative results

We analyze how our introduced spatiotemporal queries
in the CS and CV tokenizer functions change what the
vLLM focuses on in the input videos (Figure 4). Compared
to the baseline Video-Llama model, we observe that our in-
troduced queries generally help to improve the capability of
the model to focus on relevant visual concepts. The visu-
alization in Figure 4a is particularly interesting because the
introduced queries help our Koala model to predict that the
person is making a salad based on its attention on the empty
stove in the last frame (far right). Additionally, we also ob-
serve in Figure 4b that our model generally focuses on the
pieces of cloth as opposed to the background as in the case
of the base Video-Llama model.
Limitations. While our Koala approach is able to extend
the video tokenizer function of a pretrained vLLM to un-
derstand minutes-long videos, it may still be limited at un-
derstanding much longer videos such as movies. Since it
relies on a pretrained model, we inherit as a fundamental
limitation a maximum number of input tokens, thereby lim-
iting the number of input segments. However, extending
positional embeddings to longer sequences remains an open
work, especially in the setting of vLLMs.

5. Conclusion

In conclusion, we propose an approach, Koala, that in-
troduces the Conditioned Segment and Conditioned Video
tokenizer functions. Our CS and CV functions leverage
learnable spatiotemporal queries to adapt the frozen video
tokenizer function in pretrained vLLMs to generalize to
minutes-long videos. More importantly, we empirically
demonstrate the benefits of our Koala approach where it im-
proves the base vLLMs on both short and long-term tempo-
ral understanding tasks.
Acknowledgements: This material is based upon work
supported, in part, by DARPA under agreement number
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