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Abstract

Video scene detection aims to temporally link shots for
obtaining semantically compact scenes. It is essential for
this task to capture scene-distinguishable affinity among
shots by similarity assessment. However, most methods
relies on ordinary shot-to-shot similarities, which may
inveigle similar shots into being linked even though they
are from different scenes, and meanwhile hinder dissimilar
shots from being blended into a complete scene. In this
paper, we propose NeighborNet to inject shot contexts into
shot-to-shot similarities through carefully exploring the re-
lations between semantic/temporal neighbors of shots over
a local time period. In this way, shot-to-shot similarities
are remeasured as semantic/temporal neighbor-aware sim-
ilarities so that NeighborNet can learn context embedding
into shot features using graph convolutional network. As
a result, not only do the learned shot features suppress
the affinity among similar shots from different scenes, but
they also promote the affinity among dissimilar shots in
the same scene. Experimental results on public benchmark
datasets show that our proposed NeighborNet yields sub-
stantial improvements in video scene detection, especially
outperforms released state-of-the-arts by at least 6% in
Average Precision (AP). The code is available at ht tps :
//github.com/ExMorgan—Alter/NeighborNet.

1. Introduction

Video scene detection aims to determine whether the scene
happens to change from a shot to the next [24]. It facil-
itates long video to be truncated into and understood by
multiple short yet storytelling units, i.e., scenes, thereby
holding great significance across diverse applications, such
as text-to-video retrieval [1] and human-centric storyline
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Figure 1. Shot-to-Shot Similarity based methods may deceive
themselves into (i) relating different scenes that have similar shots
into a single and (ii) relating little with dissimilar shots even
though they are in the same scene. In contrast, the proposed
Neighbor-Aware Similarity introduces affinity relations between
semantic/temporal neighbor shots over a local time period to make
shot relations align better with scene relations.

construction [40].

Like humans, affinity relations among shots are pivotal
for computers in discerning whether adjacent shots belong
to the same scene or not. Most efforts [23, 29, 42] have been
made on ordinary shot-to-shot similarity to explore scene-
distinguishable affinity relations among shots. However, we
illustrate in Fig. 1 shot-to-shot similarities prefer bracketing
similar shots together even though they are from different
scenes. On the other hand, a complete scene is highly
likely to be fractured into incomplete segments by dis-
similar shots. Both circumstances can imply inferior scene
detection results.

In fact, shot-to-shot similarities neglect the contribu-
tion of context information to the affinity relations among
shots. For instance, information from other shots within
the same scene can aid in measuring the relations between
any two shots. Although it is impossible to know the
exact shot contexts at scene scale in the absence of scene
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Figure 2. The proposed NeighborNet for video scene detection. It involves propagating information on the elaborately established feature
and temporal graphs to obtain context features for each shot. N denotes semantically similar shots over a local time period, and @ signifies

element-wise addition.

information, we are able to cut the contexts in a local time
period. Due to the local time constraint, similar shots will
have quite different semantic neighbor shots when they
are from different scenes. Likewise, dissimilar shots will
have quite similar temporal neighbor shots when they are
from the same scene. Driven by this insight, we remeasure
the shot-to-shot similarity as neighbor-aware similarity. As
depicted in Fig. 1, neighbor-aware similarity leverages
relations between semantic neighbor shots to reduce the
relevance between similar shots from different scenes, as
well as relations between temporal neighbors to strengthen
the correlation among dissimilar shots within the same
scene.

To inject context information captured by neighbor-
aware similarity into shot representation for video scene
detection, we propose NeighborNet, which undergoes a
cascaded graph reasoning process in feature and temporal
dimensions. Fig. 2 shows its overview. As can be seen,
in feature dimension, NeighborNet implements neighbor-
aware similarity using semantic neighbors in two ways
combined neighbor-node similarity and neighbor-neighbor
similarity. We conduct similarity propagation on a feature
graph to generate semantic neighbor-aware features, which
will be more discriminative in identifying whether similar
shots are from different scenes. In temporal dimension,
neighbor relations occur in temporal contexts, by which
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temporal neighbor-aware similarity is induced. To improve
semantic neighbor-aware features further, we depend on
them to build a temporal graph and propagate temporal
neighbor-aware similarities to generate temporal neighbor-
aware features, which become more similar on dissimilar
shots from the same scene.

In a nutshell, our contributions include:
For video scene detection, we are the first to utilize inter-
neighbor relations to measure the shot-to-shot affinity
relations in both feature and temporal dimensions, which
make shot relations align better with scene relations.
Relying on the proposed shot-to-shot affinity relations,
we present NeighborNet to learn shot features discrimina-
tive to different scenes through cascaded graph reasoning
in feature and temporal dimensions.
We perform comprehensive evaluations on three video
scene detection datasets: MovieNet [21], BBC [2], and
OVSD [32]. Our proposed method surpasses previous
approaches by large margins in various learning settings.

2. Related Work

Video Scene Detection: Early approaches [8, 17, 31, 36]
predominantly rely on unsupervised learning to cluster
neighboring shots into scenes. For example, Chasanis et
al. [7] develop an improved spectral clustering method
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and employ the fast global k-means algorithm to group
shots. Similarly, Rasheed et al. [31] utilize color and motion
information between shots to generate a similarity graph
and partition the graph to identify video scenes. However,
these methods exhibit limited performance due to manu-
ally designed similarity mechanisms. Recently, supervised
methods [21, 34, 35, 41] have demonstrated higher accuracy
compared to their earlier unsupervised counterparts. For
instance, Rao et al. [30] utilize the similarities between
adjacent shots as boundary features to detect scenes. Tan et
al. [34] and Mun et al. [29] utilize shot-to-shot similarity
to incorporate other shot information into each shot for
capturing affinity relations among shots. Building upon this
progress, Yang et al. [45] introduce a local time window
mask to force the attention mechanism to pay attention
to the relations between short-range shots. Additionally,
Islam et al. [23] employ G4S [28] to capture the long-range
shot-to-shot relation. However, recent methods depend on
raw shot-to-shot similarity to assess relations among shots,
potentially leading to the linking of similar shots from
different scenes and impeding the integration of dissimilar
shots into a complete scene.

Temporal Context for Video Understanding: Tempo-
ral context plays a crucial role in various video understand-
ing tasks, including action recognition [37, 44] and action
detection [9, 13]. Numerous methods [15, 25, 43] have
dedicated significant efforts to modeling temporal context
for long videos. For instance, Zhang et al. [46] employ a
combination of multiscale features and local self-attention
to model the longer-range temporal context. Xu et al. [43]
utilize self-attention to compress long-term memory into
a fixed-length latent representation. Islam et al. [22] stack
multiple S4 [28] with pooling layers to capture the mul-
tiscale temporal contexts. However, these methods focus
on associating long-range relevant frames/segments, which
may not be optimal for video scene segmentation. This is
because video scene detection necessitates reinforcement
of correlations among shots within the same scene while
weakening the correlations among shots from different
scenes.

3. Method
3.1. Problem Formulation

Given a video, we manipulate it at shot level. As frames in
the same shot belong to a single camera take, we represent
each shot using one randomly selected frame inside like the
common practice [29, 45]. After that, we treat video scene
boundary detection as a binary classification task on shots.
The goal is to identify whether each shot is at the end of a
scene or not. For convenience, we refer to the ending shot
of a scene as a “boundary shot”, as illustrated in Fig. 3. In
the following, we learn neighbor-aware shot features to

L Scene A | Scene B
1 fe—————
Shotn < Shot n+1

Figure 3. Hierarchical structure of a video sequence. It strings
together different scene units, each of which consists of a sequence
of shots. The shot ending a scene and abutting next is referred to
as a boundary shot.

Boundary Shot

make them discriminative in categorizing boundary shots
into Class 1, and other shots into Class 0.

3.2. NeighborNet

As illustrated in Fig. 2, NeighborNet sequentially propa-
gates information on feature graph and temporal graph to
obtain context-embedded shot representation. The feature
graph connects similar shots over a local time period. In this
context, we introduce semantic neighbors for each shot to
attenuate the connections between similar shots from differ-
ent scenes. After propagating on the feature graph, we have
semantic neighbor-aware features that make similar shots
from different scenes more distinguishable. Subsequently,
we construct the temporal graph based on similar shots gen-
erated by the feature graph, where similar shots and shots
between each pair of them in time are connected. In the
temporal graph, we estimate edge weights by the similarity
of their temporal neighbor shots. After that, we propagate
the semantic neighbor-aware features on the temporal graph
to merge the information of dissimilar shots in the same
scene.

Relating Neighbors in Feature Dimension. In accor-
dance with previous methods [23, 29], our model takes
as input an N temporally adjacent shots. We extract
shot features using a ResNet-50 [19] pre-trained on Im-
ageNet [33], resulting in shot feature sequence X =
{x1,X2,...,xn}. Based these extracted features, we con-
struct a feature graph G¥ = <X, EF> to link shots with
similar semantics in a local time period, where shots with
features X act as nodes and edges EF = {EJ}} between
nodes are determined by the semantic similarity between
shots as follows:

7~ N s 1)

Y —o00, otherwise,
where A%?”S denotes the in-neighbor node similarity (IRS)
derived from the cosine similarity between x; and x;; /\/ll
signifies the top-k similar shots to the shot ¢ within a time
window centered on the shot ¢ with a length of [. If the time
window does not provide enough shots, we pad it with zero
vectors.

The edge weights EZFJ are computed based on A%’“S,
which sometimes could result in high similarity values for
connections between similar shots from different scenes. To
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Figure 4. Neighbor-node similarity (RNS) of node j with respect
to node ¢. ® denotes matrix multiplication.

Figure 5. Neighbor-neighbor similarity (RRS) of node j with
respect to node ¢. ® denotes matrix multiplication.

suppress the noisy connections, we propose neighbor-node
similarity (RNS) and neighbor-neighbor similarity (RRS).
Intuitively, semantic neighbors of a shot are similar to
each other. For two shots connected in the feature graph,
their neighbors also share similarity with each other. Moti-
vated by these facts, we measure the relations of shot j to
shot ¢ by introducing the remaining neighbors of shot 7. As
depicted by Fig. 4, we have RNS of shot 5 with respect to
the shot ¢:
A%—NS _ Z (JJ?NS . ((VV{{NSXQ)'I'VVQRNSXJ_)7 )
geN{\{5}
where W NS and WENS are learnable matrices, and wyi™®

denotes a learnable scale'. {wi™} ¢ 1\ (5} can be stacked

to form the vector representation w?N5,

For RRS, we illustrate it in Fig. 5 and formulate it as the
relations between neighbors of two connected shots:

A%RS _ WRRS . Hgl;}LX((VVll:{RSXg)'I'vaiRSXh)7 (3)

where g € N/\{j} and h € N/\{i}. Notably, when two
shots share the same semantic neighbors, it is likely that
the pair of nodes belong to the same video scene. We use
the “max” operation to select the shared neighbors between
shot ¢ and shot j.

Once obtaining RNS and RRS, we proceed to re-measure

1t is worth noting that here and hereinafter, notations W or w refers
to a learnable matrix or scale, and W do not change the dimensions of the
multiplied vector.

the edge weights Ej; as:
K —00, otherwise.

Before RNS and RRS are added, the IRS among similar
shots is high. After adding RNS and RRS, the sum of RNS
and RRS for similar shots within the same scene should
surpass that for similar shots from different scenes. This
weakens the connection between similar shots in different
scenes and strengthens the connection between similar
shots in the same scene.

Next, we perform message passing for the shot nodes
on the feature graph G using the shot features X. Con-
cretely, the shot nodes receive messages from its connected
semantically similar shots in the graph GF', increasing the
similarity between similar shots within the same scenes. We
apply a one-layer graph convolution network (GCN) [27] to
conduct graph message passing and inference for obtaining
semantic neighbor-aware shot features X*<:

XFC = (X + GCN(X, softmax(EF))), 6))

where o denotes the activation function. Note that we
employ softmax for normalization to make the edge weights
learnable [39].

Relating Neighbors in Temporal Dimension. In the
prior stage, information is propagated solely between simi-
lar shots within the same scene, with no effort to enhance re-
lations between dissimilar shots within the same scene. The
challenge in solving this problem lies in how to ensure that
the enhanced shots indeed belong to the same scene. We
find that if two shots are similar, then it is plausible that the
shot between them may belong to the same scene. To this
end, we build the temporal graph GT = (XF¢ E™T) based
on similar shots selected by the feature graph G*. The edge
weight ET = {E};} can be formulated as:

Y —o0, otherwise,
where BjS denotes in-context node similarity (ICS) cal-
culated by the cosine similarity between selected seman-
tic neighbor-aware features x/'C and X?G. The valid set
of shot j when given shot i complies with S(N}) =
{(min(i,u), max(i,u)) |u € N}}. In particular, we con-
struct the temporal graph using semantic neighbor-aware
shot features X¥C as they endow a higher similarity to
similar shots of the same scene compared to the original
shot features X. In this way, it ensures that the temporal
graph keeps resistant to the influence of connection with
shots from different scenes.

To enhance relations between dissimilar shots from the
same scene, we measure the relations between shots by
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Figure 6. Temporal context similarity (TCS) of node j with respect

to node 4. w" %% = (w1, and ® denotes matrix multiplication.

utilizing the temporal contexts. Intuitively, if the temporal
context surrounding two shots is similar, they are very likely
to be in the same scene. We thus reinforce the edge weight
between them. Specifically, we design temporal context
similarity (TCS) for two connected nodes in temporal graph
as shown in Fig. 6,

.
BECS =3 WIS (WTOSKEG) " WTSxG), (7
g,h

where g € T,(i), h € T.(j), and 7,(i) denotes a time
window with length r centered on shot ¢. If there is not
enough input shots in the time window, we pad it with
border shot replications.

Having the temporal context similarities, we re-measure
EZTJ as follow:

®)

—00, otherwise.

ET _{ Bi$S + B, je S,
iy

After that, we propagate semantic neighbor-aware shot
features XS on the temporal graph G. In the process,
each shot node receives information from its connected
dissimilar shot in the graph G'T. The shot nodes will update
its features as temporal neighbor-aware features X' by
another one-layer GCN that is different from (5):

XTC = o(XFC 4 GCN(XFC softmax(ET))).  (9)

3.3. Training and Loss Functions

There are two loss functions employed in our model train-
ing: the self-supervised loss and the supervised loss. Below,
we detail the two losses and the usage of them. It is worth
noting that we do not claim technical novelty over the loss
functions. Instead, we employ the losses to train our devised
NeighborNet model for video scene detection.
Self-supervised loss. For fair comparison with previous
methods [23, 29], our self-supervised loss is the same as
theirs. It is actually a pseudo-scene boundary prediction
loss, where pseudo-scene boundaries are generated by the
Modified Dynamic Warping algorithm [29]. The loss here is

defined as a binary cross-entropy loss on temporal neighbor-
aware features X T of shots:

Ly = —log(hy(x3 %)) —log(1 — hy(x2F))  (10)
where h,(*) represents a multilayer perceptron (MLP)
that outputs the probability of a shot being the pseudo-
boundary, xg*G denotes the feature of a randomly selected
non-pseudo-boundary shot, and XEG represents the feature
of the pseudo-boundary shot.

Supervised loss. It utilizes ground-truth video scene
boundaries to supervise the model training with the binary
cross-entropy loss below:

Ly = —y;log(hy(x; %))+ (1—y;) log(1—hy(x]9)) (11)

where hy(%) is a MLP that is trained from scratch and
outputs the probability of a shot being the boundary, x} ¢
represents a feature for shot 4, and y; € {0, 1} denotes the
ground-truth binary label of shot i.

Our proposed NeighborNet can combine the above two
losses to achieve different learning ways: self-supervised
learning, fully supervised learning, and self-supervised
transfer learning. For self-supervised learning, we use the
self-supervised loss for model training. In the case of fully
supervised learning, a supervised loss is utilized. For self-
supervised transfer learning, it has two phases, where we
apply the self-supervised loss for pre-training, followed by
the utilization of the supervised loss for model fine-tuning.

4. Experiments
4.1. Settings

Datasets: We assess the performance of our method on
three widely used video scene detection datasets, i.e.,
MovieNet [21], BBC [2], and OVSD [32]. MovieNet is a
comprehensive dataset comprising 1,100 movies, totaling
1.6 million shots. Among these movies, 318 are equipped
with ground-truth scene boundary annotations, while the
remaining 782 lack such annotations. The 318 annotated
movies make up the MovieScenes dataset [30] for video
scene detection. MovieScenes is further divided into sub-
sets of 190 movies for training, 64 for validation, and
64 for testing. For different learning ways, we always
evaluate our model on the test split of MovieScenes. In the
self-supervised scenario, we utilize all the 782 unlabeled
videos from MovieNet for pre-training. In the supervised
setting, we utilize 190 training videos from MovieScenes
for training. For self-supervised transfer learning, we uti-
lize all the 782 unlabeled videos from MovieNet for pre-
training, 190 training videos from MovieScenes for fine-
tuning. OVSD [32] comprises 21 short films, each with
an average duration of 30 minutes. It encompasses a total
of 10,000 shots and 300 scenes, extracted from movie
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scripts. As the dataset lacks predefined splits, we adopt
a common practice as in prior studies [23, 29, 42]. That
is, we train our model using the MovieNet dataset and
subsequently evaluate it on the OVSD dataset without fur-
ther fine-tuning. BBC [2] consists of 11 episodes from the
BBC educational TV series Planet Earth [4]. These videos
have an average duration of 50 minutes and encompass
a total of 670 scenes and 4.8K shots. Similarly to our
evaluation on the OVSD dataset, we train our model using
the MovieNet dataset and evaluate it on the BBC dataset
without additional fine-tuning, in line with prior research
practices [23, 29, 42].

Metrics: To measure the performances, we use the same
evaluation metrics used in prior methods [23, 29, 42], which
include the Average Precision (AP), the mean Intersection
over Union (mloU), and the Fl-score (F1). These metrics
serve to evaluate the effectiveness of video scene detection,
with higher values indicating superior performance.

Implementation Details: We take N = 21 neighboring
shots as input to our model. In NeighborNet, we set the
activation functions in Egs. (5) and (9) as ReLU [18]. In
Eq. (1), we specify the sliding window scale as [ = 10,
and feature neighbor scale as k = 5. In Eq. (7), we
set the temporal neighbor scale r to 5. We employ the
Adam [26] optimizer with a mini-batch size of 512. For
fully supervised learning and self-supervised learning, we
initialize the learning rate at 10~%. In the case of self-
supervised transfer learning, we set the initial learning rate
to 10=* for pre-training and reduce it to 10~5 for fine-
tuning. Across all training stages, we apply a linear warm-
up strategy during the initial epoch, followed by a learning
rate decay according to a cosine schedule [20]. We train our
NeighborNet on a NVIDIA RTX 3060 GPU.

4.2. Comparison with State-of-the-Art Methods

To demonstrate the advantage of our complete solution,
we compare with the state-of-the-art methods, including
TranS4mer [23] (CVPR’23), BaSSL [29] (ACCV’22),
Movies2Scenes [12] (CVPR’23), SCRL [42] (CVPR’22),
Temporal Perceiver [34] (TPAMI’23), and MHRT [41]
(ICCV’23). To further justify the proposed design for
NeighborNet, we implement its three alternative base-
lines according to state-of-the-art model architectures:
Transformer [38] (NIPS’17), GATv2 [6] (ICLR’22), and
HopGNN [10] (CVPR’23). For Transformer, we repeat it
for two layers to replace NeighborNet. For GATv2 and
HopGNN, we use each in place of the neighbor relation
learning modules built upon Eq. (2), Eq. (3), and Eq. (7).
Results on MovieNet [21]. Table 1 illustrates that our
method consistently reaches superior performance com-
pared to all the counterparts across all evaluation metrics
in various experimental scenarios. Notably, our method
surpasses the latest state-of-the-art TranS4mer [23] by a

Methods | AP mloU  Fl
Self-Supervised Learning

TimeSformer [5] ICML’21) 325 378 315
BaSSL [29] (ACCV’22) 31,5 396 326
TranS4mer [23] (CVPR’23) 345 39.6 334
Transformer [38] (NIPS’17) 23.0 429 225
Our Graphs + GAT-v2 [6] (ICLR’22) 43.1 484 375
Our Graphs + HopGNN [10] (CVPR’23) | 47.0 489 409
Ours 512 529 464
Self-Supervised Transfer Learning

ShotCoL [11] (CVPR’21) 534 - 49.7
Movies2Scenes [12] (CVPR’23) 54.2 - -

SCRL [42] (CVPR’22) 54.8 - 51.4
BaSSL [29] (ACCV’22) 574 506 47.0
TimeSformer [5] ICML’21) 59.6 50.8 48.0
SSM [16] (ICLR’22) 59.7 513 484
TranS4mer [23] (CVPR’23) 60.8 52.0 484
Transformer [38] (NIPS’17) 53.1 545 489
Our Graphs + GAT-v2 [6] (ICLR’22) 67.0 60.8 55.7
Our Graphs + HopGNN [10] (CVPR’23) | 67.9 584  54.0
Ours 719 645 62.7

Fully Supervised Learning

Siamese [3] (MM’15) 28.1  36.0 -

MS-LSTM [21] (ECCV’20) 46.5 46.2 -

LGSS [30] (CVPR’20) 47.1 48.8 -

Temporal Perceiver [34] (TPAMI’23) 533 532 -

MHRT [41] ICCV’23) 548 512 463
Transformer [38] (NIPS’17) 50.0 465 409
Our Graphs + GAT-v2 [6] (ICLR’22) 58.1 579 536
Our Graphs + HopGNN [10] (CVPR’23) | 60.1 56.4  53.5
Ours 640 612 578

Table 1. Comparisons on MovieNet [21]. The best are indicated
in Bold. “-” denotes that result does not get published.

margin of at least 11% in all metrics. These improvements
can be attributed to our effective approach in estimating
shot-to-shot relations utilizing their neighbor shots.

It is evident that our method outperforms all baseline
methods comprehensively. Specifically, our NeighborNet
architechture surpasses Transformer [38] across a wide
range of metrics, highlighting the effectiveness of our ap-
proach. Moreover, our method outperforms GATv2 [6] due
to leveraging neighboring shots to capture the relations be-
tween shots. More importantly, our method performs much
better than HopGNN [10] that also measures the relations
between neighboring shots, indicating the suitability of our
method for video scene segmentation.

Transfer Evaluation. We demonstrate the generaliza-
tion capability of our NeighborNet in comparison with
recent methods [11, 23, 29, 42] in Table 2. All models
used have undergone self-supervised pre-training and fine-
tuning on MovieNet [21]. We test these MovieNet-trained
model without any additional fine-tuning on BBC [2] and
OVSD [32]. The results demonstrate that our proposed
method achieves the best performance among all the com-
parisons on the OVSD and BBC datasets, which verifies the
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OVSD BBC

Method AP mloU FI | AP mloU FI
ShotCoL [11] 255 - T [280 - -
SCRL [42] 38.8 - - 30.2 - -
BaSSL [29] 29.0 - - 40.2 - -
Tran4mer [23] 36.0 - - 43.6 - -
Transformer [38] 258 430 254|322 339 188
Our Graphs + GATV2 [6] 387 49.6 28.7 | 378 440 315
Our Graphs + HopGNN [10] | 41.9 47.6 28.8 | 440 46.0 347
Ours 473 506 294 | 506 49.5 353

Table 2. Evaluation on OVSD [32] and BBC [2]. “-” denotes that
result does not get published.
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Figure 7. Impact of hyperparameters.

strong generalization capability of NeighborNet.

4.3. Ablation Studies

We depend on MovieNet [21] to present various ablation
analysis of our proposed method in video scene detec-
tion. The following experiments are conducted in fully
supervised fashion. We have also included more ablation
experiments in the supplementary.

Sliding Window Scale . Fig. 7a illustrates the impact of
the sliding window scale [ as defined in Eq. (1). It is evident
that all metrics reach their highest values when [ = 11. This
suggests that choosing [ = 11 strikes a ideal capacity for our
NeighborNet to capture sufficient contexts in both feature
and temporal dimensions.

Temporal Neighbor Scale . Fig. 7b presents the effects
of the temporal neighbor scale r as defined in Eq. (7). It
can be seen that the proposed method achieves the best
performance when » = 5. This scale selection reaches an

Method AP mloU Fl
ResNet 40.0 444  40.1
ResNet + NeighborNet | 64.0 612 578
ViT 341 450 36.6
ViT + NeighborNet 65.5 62.7 589

Table 3. Impact of different shot encoders.

Feature Graph Temporal Graph
IRS RNS RRS | ICS TCS
- - - - 40.0
- - - 52.5
- - - 56.9
- 60.0
- 50.4
58.8
- 539
v 64.0

AP

NN
NN
(\

v v v

ERNENEN
\

Table 4. Ablation study on NeighborNet in different inclusions
of in-neighbor node similarity (IRS), neighbor-node similarity
(NNS), neighbor-neighbor similarity (RRS), in-context node sim-
ilarity (ICS), and temporal context similarity (TCS). v signifies
“included”, while - “excluded”.

optimal efficacy to ensure adequate temporal contexts are
from the same scene.

Feature Neighbor Scale %. In Fig. 7c, we evaluate the
performance of our method under different top-k similar
shots defined in Eq. (7). The metric curves show a rapid
ascent from £k = 2 to k = 3, reaching their peak at
k = 5. Beyond this point, with further increases in k, the
curves slowly decline. The result implies that top-5 feature
neighbors include more semantically similar contexts while
better avoiding semantic interference from different scenes.

Number of Inputting Shots N. Fig. 7d depicts the ef-
fect of different numbers of input shots on performance. No-
tably, the fluctuation in each metric curve remains within
1% as the number of input shots changes. This observation
implies the robust adaptability of our proposed method to
videos of varying lengths.

Different Shot Encoders. Table 3 provides the perfor-
mance of our proposed NeighborNet when combined with
different shot encoders including ResNet-50 [19] and ViT-
S/16 [14]. As comparisons, we also implement the baseline
video scene detection results, where only shot encoders
ResNet and ViT of themselves are applied. It is obvious that
our NeighborNet improves the baseline encoders by at least
24% AP, which highlights the effectiveness of the proposed
method. Besides, our NeighborNet combined with either
shot encoder achieves state-of-the-art performance, which
implies that our method has a strong ability to learn shot
contexts for video scene detection.

Network Component. Table 4 presents the results of an
ablation study, which assesses the contributions of different
components of our proposed method to overall perfor-
mance. Notably, the first row of Table 4 reports the baseline
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Figure 8. Qualitative comparison of the proposed method with the previous method BaSSL [29]. GT denotes ground-truth scene boundaries
for reference. The borders of the same color indicate the shots from the same scene.
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Figure 9. Visualization of relations between query shots and others. Shots whose IDs share the same color font stem from the same video
scene. “w/o ours” indicates the result obtained without utilizing features learned by NeighborNet, while “w/ ours” represents the outcome

achieved with the use of NeighborNet-learned features.

results of feeding the ResNet-encoded shot features X into
the MLP for video scene detection prediction. Overall, we
observe a consistent enhancement in Average Precision
(AP) as more proposed modules are incorporated. Com-
pared to using IRS in the feature graph, we add RNS and
RRS to increase AP by 7.5 %, which may be attributed to
their effects of mitigating noisy connections due to similar
shots from different scenes. AP for the temporal graph with
ICS (shot-to-shot similarity) is 50.4%. After incorporating
the proposed TCS, AP increases to 58.8%, highlighting
its validity of capturing the temporal relations between
different shots.

4.4. Qualitative Results

All qualitative results are obtained from the model trained
with self-supervised transfer learning. Additional visualiza-
tions can be found in the supplementary.

Visualization of Detection Results. In Fig. 8, we
present a sample result of video scene detection on the
MovieNet dataset [21]. We provide ground-truth annota-
tions for reference and also include the previous state-of-
the-art method, BaSSL [29], for comparison. BaSSL uti-
lizes raw shot-to-shot similarities to capture shot contexts,
which appears to confuse different scenes. In contrast, our
method provides a correct detection, thanks to our proposed
RNS and RRS to suppress the connections between similar
shots from different scenes. The detection results that high-
light the role of TCS are included in the supplementary.

Visualization of Shot Relations. Fig. 9 provides a
deeper understanding of the relationships learned by the
proposed NeighborNet. We visualize the top-5 similar shots
to a query shot within a time window of 11 shots. The visu-
alizations demonstrate that, when compared to the scenario
w/o NeighborNet, w/ NeighborNet not only strengthens re-
lationships between similar shots within the same scene, but
also enhances connections between dissimilar shots. Addi-
tionally, NeighborNet effectively weakens the connections
between similar shots in different scenes. These improve-
ments can be attributed to the introduction of both semantic
and temporal neighbors.

5. Conclusion

We propose a novel shot context learning method, Neigh-
borNet, for video scene detection. It constructs a feature
graph that links semantically similar shots over a local
time period to enhance shot relations within the same
scene, where the edge weights are guided by comparing
semantic neighbor shots. Besides, to enhance the relations
between dissimilar shots in the same scene, we further in
the temporal dimension construct a temporal graph that
connects each pair of similar shots to those intervening. The
edge weights are induced by the similarities of the temporal
neighbor shots. Experimental results demonstrate that our
proposed NeighborNet can effectively capture shot contexts
and thus achieving superior performance compared to state-
of-the-art methods.
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