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Abstract

Pan-sharpening is a super-resolution problem that es-
sentially relies on spectra fusion of panchromatic (PAN)
images and low-resolution multi-spectral (LRMS) images.
The previous methods have validated the effectiveness of in-
formation fusion in the Fourier space of the whole image.
However, they haven’t fully explored the Fourier relation-
ships at different hierarchies between PAN and LRMS im-
ages. To this end, we propose a Hierarchical Frequency
Integration Network (HFIN) to facilitate hierarchical
Fourier information integration for pan-sharpening. Specif-
ically, our network consists of two designs: information
stratification and information integration. For information
stratification, we hierarchically decompose PAN and LRMS
information into spatial, global Fourier and local Fourier
information, and fuse them independently. For informa-
tion integration, the above hierarchical fused information
is processed to further enhance their relationships and un-
dergo comprehensive integration. Our method extend a new
space for exploring the relationships of PAN and LRMS
images, enhancing the integration of spatial-frequency in-
formation. Extensive experiments robustly validate the ef-
fectiveness of the proposed network, showcasing its supe-
rior performance compared to other state-of-the-art meth-
ods and generalization in real-world scenes and other fu-
sion tasks as a general image fusion framework. Code is
available at https://github.com/JosephTiTan/HFIN.

1. Introduction

In remote sensing imaging, due to the limitations of
satellites, it’s common to utilize sensors to acquire low-
resolution multi-spectral (LRMS) image with high spectral
resolution and panchromatic (PAN) image with high spatial
resolution but low spectral resolution. Pan-sharpening tech-
nique aims to fuse the LRMS image with the PAN image to
obtain high-resolution multi-spectral (HRMS) image with
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Figure 1. Illustration of different information integration process.
(a): Spatial information integration; (b): Global Fourier informa-
tion integration; (c): Our proposed local Fourier information inte-
gration. We explore the relationships of PAN and LRMS images
from a hierarchical perspective, combining relationships in (a), (b)
and (c) to achieve hierarchical information integration.

both high spectral and high spatial resolutions.

Over the past years, pan-sharpening technique has under-
gone rapid development and advancement. The traditional
approaches employ mathematical models to fuse spatial and
spectral information, typically assuming that the PAN im-
age is a linear combination of different spectral bands of
the HRMS image. However, excessive reliance on prior
knowledge has constrained the applicability of these meth-
ods. With the rise of deep learning technology, convolu-
tional neural networks have been employed in the field of
pan-sharpening [1, 10, 28]. Subsequently, model structures
have become increasingly complex, leading to impressive
results in the field of pan-sharpening [8].

Despite the promising results achieved by these meth-
ods, most of them focus on learning in the spatial do-
main, neglecting the information in the frequency domain.
Some studies have suggested that pan-sharpening is intri-
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cately linked to frequency domain information as a super-
resolution task [17, 44, 45]. As mentioned in [45], the
phase of the PAN image is more similar to the HRMS image
comparing with LRMS image, while the disparity in ampli-
tude between the PAN image and the HRMS image primar-
ily resides in the low-frequency range, whereas the ampli-
tude difference between the LRMS image and the HRMS
image encompasses both low and high frequencies. There-
fore, it is natural to utilize the Fourier Transform (FT) to
obtain complementary information in frequency domain be-
tween PAN and LRMS images, further enhancing the rep-
resentational capacity of the information and improving the
performance of the model.

However, the previous methods only explored global
Fourier fusion, neglecting the frequency relationships of
PAN and LRMS images in local regions. On the other hand,
spatial fusion cannot directly perform frequency fusion, as
shown in Fig. 1. Due to the Fourier transform’s capability
to capture global frequency, we believe that capturing local
Fourier information relationships of PAN and LRMS im-
ages is beneficial for modeling the local regions’ global fre-
quency integration of PAN and LRMS images, which can
provide a compromise in the previous methods. Fig. 2 il-
lustrates a simplified version of dividing the image into 16
regions, using local FT to analyze the disparities of local
Fourier information between HRMS and PAN images, as
well as HRMS and LRMS images in different local regions.
We can clearly observe in the last column that the frequency
differences in the red region are major, while in the yellow
region are minor, meaning that the local Fourier information
between PAN and LRMS images exhibits distinct comple-
mentarity, which further validates our argument and moti-
vate us to combine it with spatial fusion and global Fourier
fusion in previous methods to leverage hierarchical infor-
mation for pan-sharpening.

Based on the above analysis, we propose Hierarchical
Frequency Integration Network (HFIN) to leverage hierar-
chical information from both PAN and LRMS images, fa-
cilitating the integration of spatial-frequency information.
Specifically, our network is composed of several fundamen-
tal modules called Spatial and Global-Local Fourier infor-
mation Integration module (SGLI). The SGLI implements
two functionalities: information stratification and informa-
tion integration. For information stratification, we employ
three blocks to extract hierarchical information from PAN
and LRMS images: spatial block, global Fourier block and
local Fourier block. The spatial block utilizes a conven-
tional CNN to extract spatial information while the global
Fourier branch employs discrete FT on the whole image
to extract the global Fourier information. In local Fourier
block, we employed a region partitioning way with 50%
overlap to extract frequency information across different re-
gions to get local Fourier information. Three blocks then
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Figure 2. The observed disparities between the PAN image and
the HRMS image, as well as between the LRMS image and the
HRMS image, in terms of both magnitude and phase spectra in
frequency domain of different regions. In the different regions,
the local Fourier information between PAN and LRMS images ex-
hibits distinct complementarity.

independently fuse PAN and LRMS information. For in-
formation integration, a crafted integration module is uti-
lized to seamlessly integrate and complement the informa-
tion from the three blocks. We extensively conduct experi-
ments to analyze the effectiveness of the proposed network,
showecasing its better performance qualitatively and quanti-
tatively compared to other state-of-the-art methods, while
also demonstrating its ability to generalize well in real-
world scenes and other fusion tasks.
In summary, the contributions of our work are as follows:
* We propose a novel perspective for pan-sharpening,
leveraging local Fourier information integration to
explore the relationships between PAN and LRMS
images. This approach complements the existing spatial
and frequency fusion methods and enhances the overall
performance of pan-sharpening.

* We introduce an innovative pan-sharpening framework
that focuses on spatial fusion, global Fourier fusion,
and local Fourier fusion at different hierarchies for
information stratification, while further strengthening the
performance of model by learning their interrelationships
for information integration.

» Extensive experiments demonstrate that our proposed
method is superior to existing state-of-the-art pan-
sharpening algorithms qualitatively and quantitatively
across multiple satellite datasets. Furthermore, this
method can be extended to other fusion tasks and serve
as a general image fusion framework.
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2. Related work
2.1. Traditional pan-sharpening methods

Three commonly used traditional methods for pan-
sharpening are Component Substitution (CS), Multi-
resolution Analysis (MRA), and Variational Optimization
(VO). The CS approaches [2, 12, 13, 23, 30], which is also
called spectral methods, transform the original LRMS im-
age into a domain suited for analysis to substitute the spa-
tial components of PAN images. While CS methods may
result in insufficient blending of the spectral and spatial
information, leading to artifacts and inconsistencies in the
fused image, the MRA approaches [22, 27, 29, 32] pro-
duce less spectral distortion than CS methods, which uti-
lizes a multi-resolution decomposition of both the LRMS
and PAN images to extract high-frequency spatial details.
The VO approaches [4, 9, 31] assume that the PAN image
is created through a linear combination of multiple HRMS
image bands, which leverage various priors and constraints
and performed well on pan-sharpening. However, excessive
reliance on manual operations in these methods severely
hampers the model’s performance, resulting in degradation.

2.2. Deep learning based pan-sharpening methods

Due to the impressive representational capabilities of con-
volutional neural network (CNN), they have made substan-
tial progress in the field of computer vision [11, 14, 18-
21] and have found successful applications in remote sens-
ing [36, 37, 43, 46]. [28] is the first to apply CNN in
the domain of pan-sharpening, achieving superior results
compared to traditional methods. In response to the chal-
lenges in pan-sharpening, researchers have explored vari-
ous deep learning architectures [5, 16]. Moreover, along-
side these advancements, there has been an emergence of
model-driven CNN models that offer clear physical inter-
pretations [6, 7, 35].

Recently, researchers have turned to the Discrete Fourier
Transform (DFT) to tackle low-level problems [17, 40, 44],
leveraging its robust capability in extracting and transform-
ing global frequency information. [45] made pioneering at-
tempts to address pan-sharpening in both spatial and fre-
quency domains, introducing a global Fourier modeling ap-
proach to enhance its performance. However, the global FT
completely the local Fourier information of PAN and LRMS
images, which is not the optimal way for comprehensive in-
formation integration.

3. Proposed method

In this section, we will start by the properties of Fourier
transform, then provide an overview of the proposed pan-
sharpening network (See in Fig. 3), and finally explain the
details of the key modules in our method (See in Figs. 3 and
4).

3.1. Fourier transform of images

The Discrete Fourier Transform (DFT) has long been uti-
lized in the field of image processing because of its ability
to decompose signals into frequency components. Given an
image x € R¥*W  the DFT can be expressed in the follow-
ing form:
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The DFT process is performed separately on each im-

age channel. The amplitude and phase components can be
represented by the following equation:

A(x)(u,v) = V[R?(2)(u,v) + 2(2)(u,v)],  (2)
P(x)(u,v) = arctan[m], 3)

where R(-) and I(-) respectively represent the real and
imaginary parts of the frequency representation F ().

It has been demonstrated that PAN and LRMS images
exhibit complementary information in the frequency do-
main and global Fourier information integration can en-
hance the performance of pan-sharpening[45]. However,
simply applying DFT on whole images cannot fully reflect
the comprehensive relationships between PAN and LRMS
images. Fig. 2 illustrates that the frequency information at
different regions is also different, which is also crucial for
the fusion of PAN and LRMS images. Therefore, incorpo-
rating local Fourier information with previous methods and
hierarchically extracting information from PAN and LRMS
images enable a more comprehensive restoration.

3.2. Network framework

Based on the aforementioned analysis, we propose a
novel Hierarchical Frequency Integration Network for pan-
sharpening, as illustrated in Fig. 3. Given the PAN im-
age P € RHXWxL and upsampled LRMS image L €
RHXWXC obtained by bicubic upsampling , convolution
layers are employed to map PAN and HRMS to the same
feature size. The PAN image goes through independent
convolution network branches to extract effective informa-
tion for HRMS restoration. Then, the obtained PAN and
LRMS features are continuously processed by the key mod-
ule SGLI for information stratification and information in-
tegration with exchanged branches. Finally, the concate-
nated global Fourier branch and local Fourier branch are
combined with the residual to obtain the final output.

3.3. Information stratification

As shown in Fig. 3, information stratification includes spa-
tial block, local Fourier block and global Fourier block. The
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Figure 3. Overview of our method. (a): The framework of our proposed Hierarchical Frequency Integration Network. The network consists
of the main module: Spatial and Global-Local Fourier information Integration block (SGLI). In detail, for information stratification, the
SGLI first hierarchically decomponents different domains’ information from PAN and LRMS images by three blocks: spatial block, global
Fourier block and local Fourier block. Then a integration module (See in Fig. 4) is applied for information integration. After passing
through several SGLI modules, the final HRMS image is obtained. (b): The three information stratification blocks in SGLI. The spatial
block is entirely composed of CNNs, extracting spatial domain information; The global Fourier block extracts global Fourier information
through DFT and combines the magnitude spectrum and phase spectrum separately. The local Fourier block first divides the image into
regions and then performs DFT to extract local Fourier information. Then, the regions are concatenated, and the results in the overlapping
areas are averaged. Finally, the information from three blocks is fed into the integration module.

three blocks respectively extract spatial information, local
Fourier information and global Fourier information for hi-
erarchical information fusion.

Spatial block. As shown in Fig. 3, the spatial block con-
sists of convolution blocks composed of 3 x 3 convolution
layers, which are used to extract local features F in the spa-
tial domain. Convolution has a high spatial resolution, al-
lowing it to extract information that complements frequency
information, which can be observed in Fig. 5.

Global Fourier block. In the global Fourier block, as
shown in Fig. 3, we first apply the DFT to obtain the mag-
nitude spectrum and phase spectrum of both the PAN and
LRMS images. Assuming the features of PAN and LRMS
are I, and I,,, respectively, the F(-) refers to DFT and
F~1(.) refers to Inverse DFT (IDFT), this process can be
expressed as follows:

A([p)aP(Ip) - }—(Ip)a “4)

A(Im)vp(lm) = ]:(IM)~ (5)

Then, we concatenate the magnitude spectra of the two im-
ages together and the phase spectra together, then respec-
tively pass them through a three-layer 1 x 1 convolution
neural network with ReLU activation. The resulting global
frequency features are transformed back to the spatial do-
main using the IDFT, consistent with [45]. The entire pro-

cess can be represented as follows:

A(I,) = conviy, (Catc (A(I,), A(Im))), 6)

P(1,) = convixi (C’atc (P(Ip),P(Im))), 7
Fg = ‘F_l(A(Ig)’P(Ig))> ¥

where Clat.(-) refers to concatenation operation by chan-
nel dimension. Although completely loses spatial domain
information, DFT extracts global Fourier information Fy in
Fig. 5, which enables modeling of contextual information
with a big receptive field of the image.

Local Fourier block. For the local Fourier block shown
in Fig. 3, we partition regions with 50% overlap to ex-
tract information from different positions (See comparison
in Sec. 4.4). To reduce computational complexity, we only
dividing it into four regions with different weights. Assum-
ing the PAN and LRMS images are divided by the i-th re-
gion partition function o;(+), the process could be expressed
as follows:

IPJiva,Uz: = Gi(Ip)agi(Im)a &)

where o;(I) denotes the i-th selected rectangular region of
a image. The information within each region undergoes the
DFT operation, followed by the concatenation of magnitude
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Figure 4. Architecture of integration module. In integration mod-
ule, the SF fusion is employed to integrate spatial domain infor-
mation into frequency information. The cross-add convolution and
GL fusion enable the interaction between global Fourier informa-
tion and local Fourier information.

spectra and as well as phase spectra, similar to the Global
Fourier block, which could be expressed as follows:

A(Ip,oi)aP(Ip,Ui) = “F(IP,Ui)7 (10)

ALno,)s P(Imo,) = F(Im.o,)- (11)

After passing through convolution layers, we obtain local
Fourier features in different regions, which are then trans-
formed back to the spatial domain using the IDFT. We retain
the non-overlapping information while averaging the over-
lapped parts. Finally, we obtain features with the same size
as other blocks:

AlLi,) = convra (Cate (A(Ly.0,), Allm,g,) ) (12)

P(I,,) = convixi (Catc(’P(Ipm),P(Im’gi))), (13)

E7Ui = ]:71(,4(][70@_)779(117%))’ (14)
1 d=D
Fi = Caty,(Catu(Fro,. 3 ;O Fioina)), (15

where Caty, and Cat,, refer to concatenation operation by
height and width dimensions, respectively. M represents
M non-overlapping regions, while N represents N overlap-
ping regions. Within the overlapping regions, each pixel has
D overlapping values, then we take the average of them to
get the final feature, while the non-overlapping regions re-
tain original value. The hierarchical information extracted
in the three blocks complements each other, enabling com-
prehensive restoration, as shown in Fig. 5.

Figure 5. The Visualization of feature maps in the process of
SGLI. From the top to the bottom, it displays the different stages
of SGLI. The spatial feature F}, global Fourier feature F;, and lo-
cal Fourier feature F; complements each other. In SF fusion, the
spatial details in Fs complements F,; and F; to generate Fy, and
Fis. In GL fusion, Fy, and Fjs further complements each other to
generate Fyy and Fiy.

3.4. Information integration

Information integration refers to effectively combining hier-
archical information from the three blocks by a integration
module in Fig. 4. For the integration module, due to the
substantial disparity between spatial information and fre-
quency information, we first fuse the spatial information F
with frequency information F,; and Fj, denoted as Spatial-
Frequency (SF) Fusion. In SF Fusion, we concatenate the
two branches and pass them through two convolution layers
with ReLU activation. We then use the sigmoid function
to obtain the importance weight for each pixel in the spa-
tial feature. The fusion feature is obtained by multiplying
the weight with the frequency branch and adding them to-
gether. The process can be expressed as follows:

ng = SFfusion(Fsa Fg)v (16)
Es :SFfusion(FsyFl)~ (17)

After integrating with spatial information, both the
global Fourier branch and the local Fourier branch then go
through a 3 x 3 convolution layer and are added each other,
then undergo a Global-Local (GL) Fusion process to fuse
global and local Fourier information, where the resulting
features Iy and Fjy serve as the LRMS features for the
next module. Furthermore, we concatenate the results from
the global Fourier branch and the local Fourier branch as the
LRMS feature Fy for the spatial branch of the next mod-
ule:

Fgf :Gqusion(ng+Conv3x3<ﬂs))+Fg; (18)

Flf = Gqusion(Fls + Con'U3><3(ng)) + Iy, (19)
Foy = Cate(Fyp, Fiy). (20)

Lastly, we employed the L; loss in our study. The de-
signed module enhances the network’s ability to extracting
hierarchical Fourier information and facilitating the integra-
tion of comprehensive fusion information, which promotes
the fusion of PAN and LRMS images.
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Table 1. Quantitative comparison on three datasets. The best and the second best values are highlighted in bold and underline. 1 indicates

that the larger the value, the better the performance, and | indicates that the smaller the value, the better the performance.

Method Params WordView I1 GaoFen2 WordView III

M) PSNRT \ SSIM?t \ SAM| \ ERGAS| | PSNR?T \ SSIM?t \ SAM| \ ERGAS| | PSNR?T \ SSIM?T \ SAM| \ ERGAS]
SFIM - 34.1297 | 0.8975 | 0.0439 | 2.3449 | 36.9060 | 0.8882 | 0.0318 1.7398 | 21.8212 | 0.5457 | 0.1208 | 8.9730
Brovey - 35.8646 | 0.9216 | 0.0403 1.8238 | 37.7974 | 0.9026 | 0.0218 1.3720 | 22.5060 | 0.5466 | 0.1159 | 8.2331
GS - 35.6376 | 0.9176 | 0.0423 1.8774 | 37.2260 | 0.9034 | 0.0309 1.6736 | 22.5608 | 0.5470 | 0.1217 | 8.2433
THS - 35.2962 | 0.9027 | 0.0461 2.0278 | 38.1754 | 0.9100 | 0.0243 1.5336 | 22.5579 | 0.5354 | 0.1266 | 8.3616
GFPCA - 34.5581 | 0.9038 | 0.0488 | 2.1411 37.9443 | 0.9204 | 0.0314 1.5604 | 22.3344 | 0.4826 | 0.1294 | 8.3964
PNN 0.0689 | 40.7550 | 0.9624 | 0.0259 1.0646 | 43.1208 | 0.9704 | 0.0172 | 0.8528 | 29.9418 | 0.9121 | 0.0824 | 3.3206
PANNET 0.0688 | 40.8176 | 0.9626 | 0.0257 1.0557 | 43.0659 | 0.9685 | 0.0178 | 0.8577 | 29.6840 | 0.9072 | 0.0851 3.4263
MSDCNN 0.2390 | 41.3355 | 0.9664 | 0.0242 | 0.9940 | 45.6847 | 0.9827 | 0.0135 | 0.6389 | 30.3038 | 0.9184 | 0.0782 | 3.1884
SRPPNN 1.7114 | 41.4538 | 0.9679 | 0.0233 | 0.9899 | 47.1998 | 0.9877 | 0.0106 | 0.5586 | 30.4346 | 0.9202 | 0.0770 | 3.1553
GPPNN 0.1198 | 41.1622 | 0.9684 | 0.0244 1.0315 | 44.2145 | 0.9815 | 0.0137 | 0.7361 30.1785 | 0.9175 | 0.0776 | 3.2593
SFIINET 0.0871 | 41.6144 | 0.9689 | 0.0229 | 0.9460 | 47.8541 | 0.9877 | 0.0104 | 0.5191 30.4184 | 0.9182 | 0.0775 | 3.1285
PanFlowNet | 0.0873 | 41.8584 | 0.9712 | 0.0224 | 0.9335 | 47.2533 | 0.9884 | 0.0103 | 0.5512 | 30.4873 | 0.9221 | 0.0751 3.1142
Ours \ 0.0772 | 42.2319 \ 0.9714 \ 0.0215 \ 0.8807 \ 48.8783 \ 0.9898 | 0.0093 \ 0.4591 \ 30.6147 \ 0.9203 \ 0.0742 \ 3.0786

LRMS PAN GFPCA SFIM Brovey

SFIM Brovey PNN

MSDCNN

PanFlowNet

GPPNN

Figure 6. The result of our method compared with other methods on WorldView-II dataset.

We perform more visualizations to help readers better
understand the effectiveness of hierarchical information. As
depicted in Fig. 5, after undergoing SF fusion the frequency
information of F, and F; is complemented by spatial infor-
mation F; with spatial details. In the process of GL fusion,
Iy, has more contextual information with global receptive
field and Fj, has more details in local regions, meaning that
they can complement each other to generate F;¢ and Fiy.
We can also observe that as the SGLI stages increase, the
restoration performance improves progressively. These vi-
sualizations further demonstrate the effectiveness of the in-
tegration of hierarchical Fourier information.

4. Experiment
4.1. Dataset and benchmarks

We conduct experiments on three datasets in our research:
WorldView-II (WV?2), Gaofen2 (GF2) and WorldView-III
(WV3). Due to the unavailability of HRMS images, we
follow the same approach as previous methods and use
the Wald protocol[34] to generate training and testing data.
Given the LRMS image Mj, € RE*H#>*W and the PAN im-
age P, € REXTHXTW "poth are downsampled by a ratio r
to obtain M; € REXT** and P, € ROXH*XW regpec-
tively. During training, M; and P, are used as inputs, while
M, serves as the ground truth. For each dataset, The size of
the PAN image is cropped to 128 x 128, while the LRMS
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Figure 7. The result of our method compared with other methods on GanFen2 dataset.

image is cropped to 32 x 32. To validate the effectiveness of
our method, we compare it with several state-of-the-art pan-
sharpening methods, including PNN[28], PANNET[39],
MSDCNNI41], SRPPNN[5], GPPNN[35], SFIINET[45],
and PanFlowNet[38], as well as several traditional meth-
ods, including SFIM[26], Brovey[13], GS[24], IHS[15],
and GFPCA[25].

4.2. Implementation details

In our experiments, all networks are implemented using the
PyTorch framework and trained on an NVIDIA GeForce
GTX 3090 GPU. During the training phase, these networks
are optimized using Adam optimizer with a learning rate
1 x 1073, After reaching 200 epochs, the learning rate is
halved. We employ commonly used evaluation metrics, in-
cluding PSNR, SSIM, SAM[42], and ERGAS[3], as well
as unsupervised metrics such as Dy, Dy, and QNR[33] for
real-world full-resolution scenes.

4.3. Comparison with state-of-the-art methods

Evaluation on reduced-resolution scene. The evalua-
tion results of our proposed method are presented in Ta-
ble 1. The results demonstrate that our method outperforms
state-of-the-art approaches in almost all metrics. Specif-
ically, compared to the second-best method, our method
achieves improvements of 0.4dB, 1.0dB, and 0.1dB in terms
of PSNR on the WV2, GF2, and WV3 datasets, respec-
tively. Similar improvements can be observed in other met-
rics as well. Our method almost outperforms other deep
learning algorithms, validating the effectiveness of hierar-
chical information for the fusion process.

Furthermore, in terms of qualitative comparison, we

Table 2. Evaluation of the proposed method on real-world full-
resolution scenes from the GaoFen2 dataset. The best and the sec-
ond best values are highlighted in bold and underline.

Method | MSDCNN | SRPPNN | GPPNN | SFIINET | PanFlowNet | Ours

D, | 0.0734 0.0767 0.0782 0.0724 0.0665 0.0710
Dy | 0.1151 0.1162 0.1253 0.1230 0.1113 0.1098
QNRT 0.8215 0.8173 0.8073 0.8146 0.8257 0.8261

compare the results obtained by our method with other ap-
proaches on the WV2 and GF2 datasets, as shown in Figs.
6 and 7. To assess the differences between the results and
the ground truth (GT), we generate residual maps to visu-
alize the magnitude of the differences. Brighter regions in
the maps indicate larger differences. It can be observed that
our method exhibits the smallest differences in both spa-
tial and spectral aspects compared to the GT, with fewer
bright spots. This further demonstrates the superiority of
our method over other approaches.

Evaluation on full-resolution scene and other fusion
tasks. To further validate the generalization capability of
our method, we conduct testing on the real-world full-
resolution GF2 dataset. We first train the model on the GF2
dataset and then evaluate its performance on the real-world
full-resolution GF2 dataset. Since no reference image is
available, we utilize only no-reference evaluation metrics.
As shown in Table 2, our method almost achieve the best
performance across almost all metrics.

Additionally, we evaluate our method in other image fu-
sion tasks including visible and infrared image fusion on
RoadScene dataset and depth image SR on NYU v2 dataset
using the corresponding evaluation metrics. As shown in
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Table 3. Quantitative comparison on other fusion tasks. (a): Visi-
ble and infrared image fusion on RoadScene dataset with metrics
MI, VIF and FMI; (b): Depth image SR on NYU v2 dataset at dif-
ferent ratios (x4, x8 and x 16) with metric RMSE that lower val-
ues indicate higher performance. The best values are highlighted
in bold.

RoadScene NYU v2
Method  —e VIR M Method & | x8 | x16
DDcGAN | 2.6177 | 0.5945 | 0.859 Bicubic | 4.71 | 829 | 13.17
DenseFuse | 3.1275 | 0.8025 | 0.868 GF 5.84 | 7.86 12.41
AUIF 3.1109 | 0.8466 | 0.856 TGV 3.64 | 10.97 | 39.74
DIDFuse | 3.1840 | 0.8274 | 0.853 DGF 321 | 592 | 1045
ReCoNet | 3.1594 | 0.7955 | 0.858 DIJF 280 | 533 | 946
SDNet 3.4225 | 0.8207 | 0.863 DMSG | 3.02 | 538 | 9.17
TarDAL | 3.4639 | 0.7871 | 0.852 DJFR 238 | 494 | 9.18
U2Fusion | 2.8109 | 0.7401 | 0.861 DSRNet | 3.00 | 5.16 | 841
UMFusion | 3.2018 | 0.7912 | 0.866 PacNet | 1.89 | 3.33 | 6.78
Ours | 4.8114 | 0.8670 | 0.878 Ours | 153 | 3.19 | 6.44

(@ (b)

Table 3, our method outperforms other methods (See more
details and tests in Supplementary material).

These experiments further demonstrate the strong gen-
eralization capability of our method, which has the ability
to transfer to other fusion tasks and can serve as a general
image fusion framework.

4.4. Ablation experiments

We conduct ablation experiments on the WV2 dataset to fur-
ther demonstrate the validity of our approach, as shown in
Table 4. The local Fourier block and integration module are
the core aspects of our method. We independently conduct
ablation experiments. Additionally, we also test the degree
of overlap for the regions to prove that dividing images into
50% overlap four regions is a more reasonable choice.

Local Fourier block. To validate the effectiveness of
the local Fourier block, we eliminate the operation of par-
titioning regions while keeping the parameter count un-
changed. The results in Table 4 clearly demonstrate that
removing the local Fourier information leads to a perfor-
mance decline, thus confirming the indispensability of it.
Moreover, since the parameter count remains unchanged,
this also proves that the performance improvement is at-
tributed to local Fourier information relationships of PAN
and LRMS images rather than the increase in parameter
count.

Integration module. The integration module consists of
the SF fusion module and GL fusion module in Fig. 4. We
independently remove each module to validate the rational-
ity of these two fusion processes. As evident from Table 4,
removing the SF fusion module can result in a performance
decline due to the loss of spatial guidance from frequency
information. Similarly, eliminating the GL fusion module
led to a performance drop as the interaction between local

Table 4. Ablation studies comparison on the WorldView-II
datasets. The best values are highlighted in bold.

Config | Local Fourier ~SF fusion GL fusion | PSNRT SSIMt SAM| ERGAS]
) X %4 %4 42,0354 09705 0.0219  0.9021
(I 40.8078 09627 0.0257  1.0486

(11 42,0655 09707 0.0219  0.8986
Ours 422319 09714 0.0215  0.8807

ANENAN
NN\ X%
ANR AN
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- //
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Figure 8. The region configuration results: (a) Effect of region
overlap rate; (b) Effect of number of regions.

and global Fourier information is lost. This demonstrates
the effectiveness of our designed integration module in pro-
moting hierarchical information integration among the three
branches, thereby enhancing the model’s performance.

Region configuration. Regarding the degree of region
overlap, we conduct tests with overlap sizes of 0%, 25%,
50%, and 75%, with four partitioning regions. As shown in
Fig. 8a, the model achieved the highest PSNR at 50% over-
lap. We also test the impact of increasing the number of
regions, as shown in Fig. 8b. It can be observed that as the
number of regions increases, there is a slight improvement
in performance. However, it is obvious that this slight im-
provement comes with a significant increase in the number
of parameters, so it is more efficient to divide images into
four regions with 50% overlap.

5. Conclusion

In this paper, we revisit spatial-frequency information inte-
gration from a hierarchical perspective for pan-sharpening,
for which we propose a Hierarchical Frequency Integration
Network to facilitate hierarchical Fourier information inte-
gration of PAN and LRMS images, which consists of the
main module SGLI for information stratification and infor-
mation integration. Extensive experiments demonstrate that
our method outperforms SOTA methods and exhibits excel-
lent generalization capabilities.
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