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Abstract

Video Paragraph Grounding (VPG) is an emerging task
in video-language understanding, which aims at localizing
multiple sentences with semantic relations and temporal or-
der from an untrimmed video. However, existing VPG ap-
proaches are heavily reliant on a considerable number of
temporal labels that are laborious and time-consuming to
acquire. In this work, we introduce and explore Weakly-
Supervised Video Paragraph Grounding (WSVPG) to elim-
inate the need of temporal annotations. Different from pre-
vious weakly-supervised grounding frameworks based on
multiple instance learning or reconstruction learning for
two-stage candidate ranking, we propose a novel siamese
learning framework that jointly learns the cross-modal fea-
ture alignment and temporal coordinate regression without
timestamp labels to achieve concise one-stage localization
for WSVPG. Specifically, we devise a Siamese Grounding
TRansformer (SiamGTR) consisting of two weight-sharing
branches for learning complementary supervision. An Aug-
mentation Branch is utilized for directly regressing the tem-
poral boundaries of a complete paragraph within a pseudo
video, and an Inference Branch is designed to capture the
order-guided feature correspondence for localizing multi-
ple sentences in a normal video. We demonstrate by exten-
sive experiments that our paradigm has superior practica-
bility and flexibility to achieve efficient weakly-supervised
or semi-supervised learning, outperforming state-of-the-art
methods trained with the same or stronger supervision.

1. Introduction
Natural Language Video Grounding (NLVG) is an essential
area in vision-language understanding, which has received
increasing attention due to its wide range of real-world ap-
plications such as video retrieval [3, 17, 21, 23, 80, 94],
video summarization [50, 55, 59, 60, 83, 99], action seg-
mentation [19, 27, 35, 37, 45, 72], video question answer-
ing [30, 36, 38, 41, 82, 89], etc. Most previous works focus
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Figure 1. (a) Chronological cross-modal alignment in a video and
its paired sentences. (b) Pseudo boundary supervision for regress-
ing paragraph timestamps in a composed pseudo video.

on tackling Video Sentence Grounding (VSG) proposed in
[1, 22], which targets at localizing the temporal boundaries
of an individual sentence from an untrimmed video. How-
ever, localizing single sentences can be ambiguous because
the contextual information conveyed by multiple sentences
is necessary to uniquely determine the temporal locations
of input queries. To alleviate such issue, Bao et al. [4] pro-
posed to contextualize video grounding into localizing mul-
tiple events indicated by sentences of a paragraph from the
video, which is called Video Paragraph Grounding (VPG).

Although remarkable progress has been attained in tack-
ling VSG and VPG problems under a fully-supervised set-
ting, the extremely prohibitive overheads of manually anno-
tating temporal boundaries for language queries limit these
methods to utilize large-scale video-text data. In addition,
the subjectivity of annotators inevitably brings label noises
that may adversely affect model training. Recently, weakly-
supervised methods free of temporal annotations have be-
come increasingly popular in the area of video grounding,
aiming to address the above limitations. These approaches
can be mainly categorized into multiple instance learning
methods and reconstruction learning methods and are typ-
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ically based on a propose-and-rank pipeline. Nevertheless,
both of these paradigms assume the contributions of propos-
als to the contrastive or reconstruction loss accurately repre-
sent the proposal quality, which is not necessarily the case
during model learning. Moreover, the quadratic complex-
ity of proposal schemes prevents them from scaling up in
parameters or training data, and the adopted supervision of
video-level contrast or query-based reconstruction in prior
works is not temporal-sensitive thus suffering from a huge
gap with fully-supervised temporal guidance. Besides, all
of the weakly-supervised methods in video grounding are
tailored for tackling VSG while the weakly-supervised set-
ting of VPG (i.e., WSVPG) has been understudied so far.

To circumvent the aforementioned drawbacks and ex-
plore an efficient weakly-supervised framework for VPG,
we seek to mine the unique characteristics and underlying
supervision from the intrinsic structure of video-paragraph
pairs for model training. On the one hand, as observed in
Figure 1 (a), the temporal location of an event is highly
correlated with the position of the sentence describing that
event in the paragraph. For example, the sentence appearing
in the middle of the paragraph tends to have stronger rele-
vance with visual content located around the temporal mid-
point of the video. On the other hand, dense visual events
mentioned in the paragraph approximately represent the
global video content that unambiguously distinguishes itself
from another video, which can be observed in Figure 1 (b).
Therefore, inserting the query-related video into another ir-
relevant video automatically generates pseudo boundary la-
bels close to the ground-truth when regarding the complete
paragraph as language query for video grounding.

Motivated by the above observation, we propose a novel
Siamese Grounding TRansformer (SiamGTR) for WSVPG.
It jointly learns the cross-modal alignment and boundary re-
gression via two siamese branches without generating pro-
posals. Specifically, we propose to construct an Augmenta-
tion Branch (AB) which takes as input a pseudo video and
adopts a complete paragraph as the language query to learn
high-quality boundary supervision for localization. Also, an
Inference Branch (IB) is designed to receive a normal video
as input and is enforced to capture the order-guided cross-
modal correspondence for attending over the specific video
content relevant to each sentence. The two weight-sharing
branches are effective to transfer complementary supervi-
sion for joint boundary prediction and feature association,
which yields a weakly-supervised model with superior gen-
eralization through a concise one-stage pipeline. Extensive
experiments verify the effectiveness of our model and show
our method with the same or weaker supervision surpasses
prior state-of-the-arts. In summary, our contributions are:
• We introduce the task of Weakly-Supervised Video Para-

graph Grounding (WSVPG), which aims to train a model
for localizing multiple events indicated by queries with-

out the supervision of timestamp labels.
• We propose a novel Siamese Grounding TRansformer

(SiamGTR) for concise and efficient one-stage weakly-
supervised learning of video paragraph grounding. It is
composed of two weight-sharing branches including an
Augmentation Branch (AB) for learning boundary regres-
sion of pseudo boundaries and an Inference Branch (IB)
for learning order-guided cross-modal feature alignment.

• Extensive experiments verify the efficacy of our method,
and demonstrate that our framework under the same or
weaker supervision outperforms state-of-the-arts.

2. Related Work
2.1. Video Sentence Grounding
Fully-Supervised Video Sentence Grounding. Plenty of
approaches [1, 7, 12, 22, 29, 40, 43, 44, 47, 53, 64, 73, 74,
78, 79, 84–86, 90, 91, 93, 95–97, 100–103] have been pro-
posed to address Fully-Supervised Video Sentence Ground-
ing (FSVSG). In general, these works can be roughly cat-
egorized into proposal-based and proposal-free methods.
Specifically, proposal-based methods [1, 22, 40, 43, 44,
73, 74, 78, 85, 86, 90, 93, 95, 101, 102] involve a pro-
posal generation stage using sliding windows [22], anchor
proposals [12, 43, 44, 47, 74, 90, 93, 95] or 2D temporal
maps [64, 73, 78, 85, 101, 102], after which the gener-
ated proposals are ranked according to the query matching
scores with potential post-processing like Non-Maximum
Suppression (NMS). In contrast, proposal-free methods [7,
53, 79, 91, 96, 97, 100, 103] remove the dense proposal
generation and score ranking process by directly regressing
timestamps [7, 53, 84, 91, 103], predicting boundary distri-
butions [96, 97, 100] or using reinforcement learning [79],
which improves the computation efficiency and scenario
adaptability. Following the line of proposal-free works, we
propose a novel weakly-supervised regression-based frame-
work that shows superior performance and practicability.
Weakly-Supervised Video Sentence Grounding. Weakly-
Supervised Video Sentence Grounding (WSVSG) [8, 11,
26, 28, 42, 49, 52, 65, 68, 75–77, 88, 104–107] has become
a popular research area because of the severe dependence
of FSVSG approaches on laborious and expensive manual
temporal annotations. Most of existing WSVSG methods
are based on a two-stage pipeline using multiple instance
learning [26, 49, 75, 88], reconstruction learning [42], or
the combination of both [106, 107]. In particular, Chen
et al. [11] have proposed a video composition strategy to
generate pseudo temporal labels for WSVSG, which is the
most related work to ours. However, several inherent draw-
backs are involved in this approach. Firstly, individual sen-
tences only describe local video content, thus viewing the
starting/ending locations of foreground video as temporal
boundaries of an individual sentence produces a weak and
noisy temporal alignment, which is unsuitable for accurate
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boundary supervision. Moreover, it simply adapts an exist-
ing fully-supervised proposal-based framework for weakly-
supervised training, which leads to inferior generalization
caused by the large train-test discrepancy. Distinct from all
of the above works, we design a novel siamese framework
to capture the essential characteristics of video paragraph
grounding for weakly-supervised learning.

2.2. Video Paragraph Grounding
Video Paragraph Grounding (VPG) is introduced by Bao et
al. [4], which aims to jointly localize multiple sentences of
a paragraph from an untrimmed video. Shi et al. [62] pre-
sented an end-to-end network by re-purposing transformers
into language-conditioned regressors. Jiang et al. [31] pro-
posed to employ contrastive encoders for contrastive learn-
ing between video-paragraph pairs. Tan et al. [67] proposed
a hierarchical semantic correspondence network for mod-
eling hierarchical video-language alignment and ground-
ing multiple levels of language queries in the video. Par-
ticularly, Jiang et al. [31] first explored Semi-Supervised
Video Paragraph Grounding (SSVPG) to relieve the anno-
tation burden of temporal labels. However, SSVPG is still
not quite practical considering the expensive cost of tempo-
ral annotations in untrimmed videos. Besides, these semi-
supervised methods still require a considerable proportion
of temporal labels up to at least 10% [31] for training. To
thoroughly get rid of the temporal annotations, we pioneer
to explore the weakly-supervised setting in VPG.

2.3. Siamese Networks
Siamese networks [6] are weight-sharing neural networks.
There have been a wide range of scenarios where siamese
networks are applied for achieving different purposes, such
as face verification [66], image recognition [33], object
tracking [5], etc. In particular, siamese networks are com-
monly used in contrastive self-supervised learning meth-
ods [2, 10, 13–15, 24, 25, 69, 81, 108], in which augmented
views of the same or different instance are forwarded into
multiple weight-sharing network copies for learning a gen-
eralizable visual representation via instance-level discrimi-
nation. In this work, we explore a new way to combine the
transferability of siamese architectures and the flexibility of
transformer architectures for concise and efficient weakly-
supervised learning of video paragraph grounding.

3. Methodology

3.1. Overview

Task Formulation. Given an untrimmed video V and a
paragraph query P consisting of N temporally ordered sen-
tences {Si}Ni=1, the goal of Video Paragraph Grounding
(VPG) is to simultaneously localize the temporal intervals
T = {(τ st

i , τ
ed
i )}Ni=1 of all the events described by sentences
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Figure 2. Our siamese framework for joint alignment and regression.

in the paragraph, where τ st
i and τ ed

i are the starting and end-
ing timestamps for the i-th sentence Si, respectively.
Siamese Learning. An overview of our siamese framework
is shown in Figure 2. Overall, we jointly train an augmenta-
tion branch and an inference branch with shared parameters
and structures for learning the complementary abilities of
cross-modal feature alignment and temporal boundary re-
gression. These two branches follow the same workflow to
first encode the text queries and input video into unimodal
features, after which the query features are iteratively used
in the transformer decoder to extract relevant information
from the video features for timestamp decoding. For testing,
we only keep the pipeline of inference branch for boundary
prediction. More architectural details are illustrated in Fig-
ure 3 and are elaborated in the following sections.

3.2. Feature Extraction

Video Feature Extraction. For each input video, we di-
vide it into consecutive clips consisting of a fixed number
of frames for feature extraction. Specifically, a frozen pre-
trained 3D Convolutional Neural Network (3D-CNN) [70]
and a linear projection layer are successively employed to
obtain a 1D feature vector for each short clip, resulting in
a video feature sequence Fv ∈ RL×D, where L and D are
the sequence length and hidden dimension, respectively.
Text Feature Extraction. For each input paragraph con-
sisting of N sentences, we first utilize a frozen pre-trained
word embedding model to tokenize and embed the text into
a sequence of word vectors. Then, a bidirectional Gated
Recurrent Unit (GRU) [16] is employed on each sentence,
and the last hidden states in both directions are concatenated
and then projected by a linear layer to construct the sentence
features Fs ∈ RN×D, where D is the hidden dimension.

3.3. Augmentation Branch

The augmentation branch aims to learn accurate bound-
ary regression from pseudo videos with paragraph queries,
which naturally transfers to the inference branch via the
shared feature space established by the siamese structure.
Pseudo Data Generation. To drive end-to-end weakly-
supervised regression learning, the input stream of the aug-
mentation branch should provide reliable and direct bound-
ary supervision. Drawing inspiration from the boundary-
sensitive video pretext tasks [11, 54, 87], we propose to uti-
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Figure 3. Illustration of the proposed Siamese Grounding TRansformer (SiamGTR) architecture. The augmentation branch (abbreviated
as A.B.) takes the pseudo video features derived from randomly inserting the query-related video features into irrelevant video features. It
learns to temporally regress the interval of interest from the pseudo video with the paragraph as query. The Inference Branch (abbreviated
as I.B.) receives normal video features for learning the cross-modal feature alignment among multiple sentences in the video.

lize the synthesized videos paired with paragraph queries to
serve as a well-suited source of surrogate boundary supervi-
sion. Specifically, for each input video V and its paragraph
descriptionP , we randomly sample a background video Vbg
to obtain irrelevant video content to P . Because P could
be treated as a unique referring expression specific to V , the
search space of background videos can be the entire training
set for increasing the data diversity. Denote video features
of V and Vbg as Fv and Fbg respectively, we construct the
pseudo video features Faug as:

Faug = NRS
(

Concat
(
F1:I

bg ,RRS(Fv),FI+1:
bg

))
(1)

where I is a randomly generated inserting index within the
feature sequence Fbg and Concat (·) denotes the temporal
concatenation. RRS (·) and NRS (·) respectively represent
a Random Re-Sampling operation to stochastically re-scale
the length of Fv and a Normalized Re-Sampling operation
that converts the length of Faug into a fixed number of T .
Thereafter, we compute the synthesized temporal bound-
aries (τ st

aug, τ
ed
aug) in the pseudo video Vaug as follows:

τ st
aug =

I +∆Ist

rL+ Lbg
, τ ed

aug =
I + rL−∆Ied

rL+ Lbg
(2)

where L and Lbg respectively indicate the length of Fv and
Fbg with r being the random re-scaling factor of RRS (·).
To alleviate potential synthesis artifacts and boundary un-
certainty, we further introduce a Random Boundary Shifting
(RBS) strategy that incorporates small random offsets ∆Ist

and ∆Ied into computing the pseudo labels, which is simple
yet effective to boost the quality of boundary supervision.
Video Encoder. Based on the obtained pseudo video fea-
tures Faug, we then encode the temporal contextual infor-
mation across multiple clips by feeding Faug to a video en-
coder, which follows a similar architecture of DETR en-
coders [9, 46, 71], i.e., each encoder layer consists of a

multi-head self-attention module equipped with additive si-
nusoidal positional encodings and a feed-forward network.
For simplicity, we omit the layer index and denote the input
of each video encoder layer asXaug, then a set of Modulated
Positional Encodings (MPE) are given as:

Xpe = MLP (Xaug)⊙ PE (Xaug) (3)

where Xpe ∈ RT×D and ⊙ denotes element-wise multipli-
cation. PE (·) is the sinusoidal function [71] with respect
to temporal locations of Xaug, MLP (·) denotes a two-layer
feed-forward network computed on Xaug. In each encoder
layer, Xpe is only added to the input of projection layers of
queries and keys in the self-attention mechanism. The en-
coded video features of the last video encoder layer, also
called the encoder memory features Maug, are further fed
to the query-guided decoder for localization prediction.
Query Encoder. Since there are strong contextual correla-
tions among multiple sentences in the paragraph query, here
we utilize a vanilla transformer encoder [71] to help reason
the semantic and chronological relationships of events. To
extract a global representation of the complete paragraph,
we initialize an extra learnable query tokenFp and integrate
it with the sentence features Fs by concatenation. Thus, the
input of the query encoder is constructed as follows:

Xq =
[
Fp,F1

s ,F2
s , . . . ,F i

s , . . .FN
s

]
(4)

where Xq ∈ R(N+1)×D and F i
s is the i-th sentence feature

inFs. We first normalizeXq, add fixed sinusoidal positional
encodings to it, and then iteratively employ self-attention
modules and feed-forward networks to contextualize the
global and local tokens that respectively represent the query
semantics of the entire paragraph and the sentences. The
output features of the last query encoder layer are denoted
as Zq and are further forwarded to the query decoder.
Conceptual Semantic Connector. Although the siamese
network structure can implicitly transfer boundary knowl-
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edge from the augmentation branch to the inference branch,
there is still a certain semantic gap between the query repre-
sentations of short sentences and long paragraphs. To nar-
row this gap, we develop a Conceptual Semantic Connector
(CSC) module for explicit semantic guidance. Specifically,
we first collect high-frequency linguistic concepts, includ-
ing verbs and nouns from the training corpus, and then con-
struct a set of dictionary features by selecting and projecting
the Glove vectors [56]. The loss Lcsc is computed as:

Lcsc = BCE
(
yp

cept, ŷ
p
cept

)
+ BCE

(
ys

cept, ŷ
s
cept

)
(5)

where BCE (·) is the binary cross-entropy loss. yp
cept and

ys
cept are multi-hot labels indicating semantic concepts con-

tained by the paragraph and sentence queries, respectively.
ŷs

cept and ŷp
cept are the concept predictions obtained by dot-

product between the conceptual dictionary features and the
textual query features Zq with a sigmoid activation.
Query Decoder. Inspired by the spiritual ideas of dynamic-
anchor DETR decoders [39, 46, 51, 98], we design a novel
query decoder that enables dynamic position-aware decod-
ing of language queries. Specifically, each query decoder
layer consists of a self-attention module, a cross-attention
module, and a feed-forward network, with dynamically ad-
justable anchor boxes to indicate the query-specific loca-
tion information. Initially, the input anchor boxes are set to
all zeros, and an MLP is used to estimate a set of seed an-
chor boxes based on the cross-modal interactions between
Maug and Zq, i.e., the output features of the first decoder
layer Q(1)

aug ∈ R(N+1)×D are mapped into the seed anchor
boxes A(1)

aug ∈ R(N+1)×2 by the MLP. For the (i+ 1)-th de-
coder layer, we first convert the box coordinates of the input
anchors A(i)

aug into high-dimensional sinusoidal embeddings
F (i)

a ∈ R(N+1)×D by a sinusoidal function [46, 71] and
further obtain H(i)

a by projecting F (i)
a with an MLP. After-

wards, we conduct the self-attention operation and update
the query features in the decoder as follows:

Q(i+1)
aug ← Self-Attn


Q = φc

q

(
Q(i)

aug

)
+ φp

q

(
H(i)

a

)
K = φc

k

(
Q(i)

aug

)
+ φp

k

(
H(i)

a

)
V = φc

v

(
Q(i)

aug

) (6)

where Q(i+1)
aug is the updated query features after the self-

attention operation in the (i + 1)-th decoder layer. The
above series of φ functions are used to indicate different
linear projection layers for the content part or position part
of the queries, keys, or values in the self-attention mecha-
nism. Then, we conduct a cross-attention operation to ex-
tract useful cross-modal interactive information as follows:

Q(i+1)
aug ← Cross-Attn


Q =

[
φc

q

(
Q(i+1)

aug

)
;φp

q

(
F (i)

a

)]
K =

[
φc

k (Maug) ;φ
p
k

(
FM

pe

)]
V = φc

v (Maug) + φp
v

(
FM

pe

) (7)

where FM
pe = PE (Maug) and the query features Q(i+1)

aug is
then further updated by a feed-forward network as the fea-
ture output of the (i+ 1)-th decoder layer. Then the anchor
boxes are dynamically updated asA(i+1)

aug ← A(i)
aug+∆A(i)

aug,
where we utilize an MLP layer to predict the relative off-
sets, i.e., ∆A(i)

aug ∈ R(N+1)×2, based on the updated query
features Q(i+1)

aug . A(i+1)
aug continues to be forwarded to the

next decoder layer for computing F (i+1)
a andH(i+1)

a .
Boundary Prediction. Based on the output features and
attention weights of the last query decoder layer, we simply
use an MLP predictor to predict the paragraph timestamps,
i.e., T̂ p

aug = (τ̂ st
aug, τ̂

ed
aug). Similarly, the sentence timestamps

T̂ s
inf =

{
(τ̂ st

j , τ̂
ed
j )

}N

j=1
can also be obtained by feeding last-

layer output from the inference branch to the same MLP.
Self-Consistent Boundary Regression. We improve the
attention-agnostic regression loss Lreg to make it aware of
the model’s self-consistent scores, where the main idea is
to selectively optimize the regression loss of self-consistent
samples for better weakly-supervised regression learning.
Self-consistent samples have high attention weights over the
pseudo ground-truth intervals, which are more suitable for
learning less noisy supervision for accurate boundary pre-
diction. Specifically, the self-consistent boundary regres-
sion loss Lscreg is defined as:

Lscreg =

{
LL1 + LGIoU, if satt > β

0, otherwise
(8)

where LL1 and LGIoU respectively represent L1 and Gener-
alized Intersection over Union (GIoU) [58] loss computed
between (τ̂ st

aug, τ̂
ed
aug) and (τ st

aug, τ
ed
aug). β is set to 0.5 and satt

is the attention sum over the pseudo ground-truth interval.

3.4. Inference Branch

In our siamese framework, the inference branch shares the
same parameter weights and network structure with the aug-
mentation branch, i.e., a video encoder, a query encoder,
and a query decoder. The only difference lies in the input
streams and objectives, i.e., the inference branch receives
a normal video during training to learn in-domain cross-
modal correspondence that cannot be acquired through the
pseudo video stream, which significantly improves the gen-
eralization ability of the model. Specifically, it receives the
encoded normal video features Minf and the encoded text
query features Zq as the decoder input and generates the
hidden query features Qinf for boundary prediction.
Order-guided Attention Loss. The chronological prior
given by the sentence order provides explicit guidance for
learning cross-modal alignment between the video and lan-
guage features during decoding. To learn the order-guided
cross-modal correspondence, we constrain cross-modal at-
tention weights in the decoder as follows:
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Loga = max

(
0,∆mT +

T∑
t=1

tαj
s (t)−

T∑
t=1

tαj+1
s (t)

)
(9)

where αj
s (t) and αj+1

s (t) are attention weights over video
features for the j-th and (j + 1)-th sentence from the last
decoder layer, respectively. ∆m is the minimal distance be-
tween attention centroids. This loss is mainly contributed
by the inference branch with ∆m = 1

2N and partly con-
tributed by the augmentation branch with ∆m = 1

4N .
Auxiliary Losses. To exploit more guidance for weakly-
supervised representation learning, we employ three aux-
iliary losses including a cross-branch loss Lcb, an anchor
ranking loss Lar and a pseudo attention loss Lpa. Specif-
ically, Lcb utilizes the semantic consistency constraint of
output features across siamese branches, which is calculated
analogous to MoCo [25]. Lar is used for inducing the de-
coder to learn a set of order-preserving anchor boxes, which
is computed on the anchor boxes like in the equation (9).
Lpa makes use of attention supervision between the pseudo
video and language features from the augmentation branch,
which follows the calculation proposed in [62, 91].

3.5. Training and Inference

Weakly-Supervised Learning. The weakly-supervised
loss of our proposed framework can be formulated as a
weighted sum of the two losses from the siamese branches
as LWS = λscregLscreg + λogaLoga, where λscreg and λoga are
scalar weights to balance the contributions of the two dif-
ferent losses. The overall loss for the weakly-supervised
model is defined as L = LWS + λcscLcsc + Laux.
Semi-Supervised Learning. Although our framework is
initially designed for weakly-supervised learning, it can
be easily adapted for end-to-end semi-supervised learning.
Specifically, in addition to LWS which is calculated on all
training samples, we only need to employ an extra fully-
supervised loss LFS on those fully-annotated samples with-
out changing any part of the network structure. The semi-
supervised loss LSS is defined as LSS = LWS + LFS, where
LFS consists of a regression loss and an attention loss and is
calculated on the labeled samples in the inference branch.
Model Inference. As mentioned, the augmentation branch
and conceptual semantic connector are discarded, while
other inference branch modules are preserved for testing.

4. Experiment
4.1. Datasets and Metrics

ActivityNet-Captions. ActivityNet-Captions [34] dataset
is a large-scale dataset with diverse open-domain content
sourced from ActivityNet dataset [34]. There are 14,926
videos and 19,811 localized video-paragraph pairs in to-
tal. Each video lasts for 117.60 seconds and each para-
graph consists of 3.63 sentences on average. The en-
tire dataset is divided into train/val 1/val 2 sets containing

10,009/4,917/4,885 video-paragraph pairs, respectively. We
follow prior works [4, 31] to use val 2 set for testing.
Charades-CD-OOD. Charades-STA dataset [22] is built
from the Charades dataset [63] with indoor activities. Fol-
lowing the previous work [31], we adopt a reorganized ver-
sion of Charades-STA named Charades-CD-OOD proposed
in [92]. It is divided into train/val/test ood sets consist-
ing of 4,564/333/1,440 video-paragraph pairs, respectively.
Specifically, the average video duration is 30.78 seconds
and the average paragraph length is 2.41 sentences.
TACoS. TACoS dataset [57] is constructed from the MPII
corpus [61] tailored for cooking activities and kitchen sce-
narios. There are 127 videos in total with each video paired
with multiple paragraphs at different granularities. Con-
cretely, there are 1,107, 418, and 380 video-paragraph pairs
for training, validation, and testing, respectively. The aver-
age video length and number of sentences in the paragraph
are 4.79 minutes and 8.75 in this dataset, respectively.
Evaluation Metrics. Following previous works [4, 31], we
adopt mean Intersection over Union (i.e., mIoU) and recall
under IoU threshold of m (i.e., R@m) as our evaluation
metrics. The metrics are averaged over all sentences and
m is set to be {0.3, 0.5, 0.7} for ActivityNet-Captions and
Charades-CD-OOD, and {0.1, 0.3, 0.5} for TACoS.

4.2. Implementation Details

For fair comparison with existing works [4, 62], we adopt
the same C3D network [70] and Glove model [56] as feature
extractors. The number of sampled video clips T is set to
be 256, 128, and 512 for ActivityNet-Captions, Charades-
CD-OOD, and TACoS datasets, respectively. We train the
model using Adam [32] optimizer with a fixed learning rate
of 0.0001 and a batch size of 32, 32, and 16 for ActivityNet-
Captions, Charades-CD-OOD and TACoS, respectively. We
select top-100 high-frequency concepts for each dataset,
and the loss weights {λscreg, λoga, λcsc} are set to {2, 1, 10}.
The number of encoder and decoder layers is set to be 3,
and the hidden size D is 256 in all settings.

4.3. Comparison with State-of-the-arts

We compare the proposed SiamGTR with existing state-
of-the-art methods for VPG to demonstrate the superiority
of our framework. Specifically, 3D-TPN [4, 101], Dep-
Net [4], PRVG [62], SVPTR [31] and HSCNet [67] are
fully-supervised approaches requiring temporal annotations
for the entire dataset. Besides, the semi-supervised setting
has been studied in [31] with several methods developed.
For fair comparison with our method, we regard the recon-
struction learning method WSSL [18] as one baseline and
further develop a more competitive model called Weakly-
Supervised Temporal Paragraph Network (WSTPN) by in-
corporating Beam Search [20] into WSTAN [75]. Specif-
ically, WSTPN utilizes a complete paragraph for multiple
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Table 1. Comparison on ActivityNet-Captions dataset.

Method Setting R@0.3 R@0.5 R@0.7 mIoU

3D-TPN [101] FS 67.56 51.49 30.92 -
DepNet [4] FS 72.81 55.91 33.46 -
PRVG [62] FS 78.27 61.15 37.83 55.62
SVPTR [31] FS 78.07 61.70 38.36 55.91
HSCNet [67] FS 81.89 66.57 44.03 59.71

DepNet [4] SS 61.46 45.14 26.78 44.11
VPTR [31] SS 72.80 53.14 29.07 50.08
SVPTR [31] SS 73.39 56.72 32.78 51.98
SiamGTR (Ours) SS 78.75 59.11 34.12 54.57

WSSL [18] WS 41.98 23.34 - 28.33
WSTPN [75] WS 57.74 33.02 13.62 38.54
SiamGTR (Ours) WS 75.43 57.23 30.56 52.32

Table 2. Comparison on Charades-CD-OOD dataset.

Method Setting R@0.3 R@0.5 R@0.7 mIoU

DepNet [4] FS 45.61 27.59 10.69 29.30
STLG [48] FS 48.30 30.39 9.79 -
SVPTR [31] FS 55.14 32.44 15.53 36.01

DepNet [4] SS 43.03 25.07 10.14 28.09
STLG [48] SS 46.15 29.43 9.38 -
VPTR [31] SS 45.13 24.98 10.22 28.92
SVPTR [31] SS 50.31 28.50 12.27 32.13
SiamGTR (Ours) SS 59.07 35.47 14.95 38.87

WSSL [18] WS 35.86 23.67 8.27 -
WSTPN [75] WS 48.61 29.27 10.79 33.49
SiamGTR (Ours) WS 57.33 33.87 12.31 37.21

instance learning and searches the best sequence of times-
tamps with the highest overall confidence while maintaining
a consistent temporal order with the input sentences.

Comprehensive results over three different datasets are
shown in Table 1, Table 2, and Table 3, where FS/SS/WS
are used to indicate fully/semi/weakly-supervised settings
of video paragraph grounding, respectively. First of all,
our SiamGTR remarkably surpasses all the other methods
under the same supervision in all metrics over the three
datasets. Concretely, our framework outperforms WSTPN
by 13.78%, 3.72%, and 11.16% in mIoU on ActivityNet-
Captions, Charades-CD-OOD and TACoS datasets, respec-
tively. Compared to semi-supervised methods using a con-
siderable number of temporal labels, our weakly-supervised
method is also able to achieve comparable or even better
results, which demonstrates the effectiveness of our frame-
work in efficient weakly-supervised learning. Furthermore,
our framework is flexible and can be easily adapted to semi-
supervised learning for further gains. As shown, our semi-
supervised model outstrips all semi-supervised state-of-the-
arts by a large margin, and it performs better or on par with
the fully-supervised SVPTR on all three datasets.

4.4. Ablation Study

We conduct ablation studies to investigate the contributions
of different components on ActivityNet-Captions dataset.
Effectiveness of data augmentation. To evaluate the in-

Table 3. Comparison on TACoS dataset.

Method Setting R@0.1 R@0.3 R@0.5 mIoU

3D-TPN [101] FS 55.05 40.31 26.54 -
DepNet [4] FS 56.10 41.34 27.16 -
PRVG [62] FS 61.64 45.40 26.37 29.18
SVPTR [31] FS 67.91 47.89 28.22 31.42
HSCNet [67] FS 76.28 59.74 42.00 40.61

DepNet [4] SS 40.27 26.95 16.54 18.68
VPTR [31] SS 61.31 40.59 21.39 26.59
SVPTR [31] SS 63.06 40.19 20.05 26.10
SiamGTR (Ours) SS 67.30 49.35 31.69 32.81

WSTPN [75] WS 28.59 10.04 4.76 9.32
SiamGTR (Ours) WS 61.51 26.22 10.53 20.48

Table 4. Ablation studies on component designs of our framework.
Experimental results are marked from ID (a) ∼ (l). RBS and RRS
respectively denote the random boundary shifting and random re-
sampling operations for pseudo data generation. MPE, CSC and
DAB stand for the modulated positional encodings, conceptual se-
mantic connector, and dynamic anchor boxes, respectively.

ID RBS RRS MPE CSC DAB R@0.5 mIoU

(a) ✓ ✓ ✓ 47.10 46.04
(b) ✓ ✓ ✓ ✓ 48.19 46.96
(c) ✓ ✓ ✓ ✓ 54.24 50.94
(d) ✓ ✓ ✓ ✓ ✓ 57.23 52.32
(e) ✓ ✓ 45.25 44.46
(f) ✓ ✓ ✓ 46.47 45.47
(g) ✓ ✓ ✓ 46.96 45.23
(h) ✓ ✓ ✓ 51.34 48.52
(i) ✓ ✓ ✓ ✓ 52.12 48.75
(j) ✓ ✓ ✓ ✓ 53.57 50.06
(k) ✓ ✓ ✓ ✓ 54.09 50.84
(l) ✓ ✓ ✓ ✓ ✓ 57.23 52.32

fluences of the random boundary shifting and random re-
sampling operations for data augmentation, we remove one
or both of them from the training pipeline and the results are
shown in Table 4 (a) ∼ (d). The model performance clearly
degrades after the removal, which demonstrates the neces-
sity of increasing sample diversity and alleviating overfit-
ting for weakly-supervised cross-modal regression learning.
Ablation on module designs. As shown in Table 4 (e) ∼
(l), we conduct detailed ablation studies on module designs
to validate the rationality of the proposed model. As ob-
served, the designs of modulated positional encodings and
dynamic anchor boxes in the encoder and decoder are con-
sistently beneficial to improving the model capacity for bet-
ter performance. The conceptual semantic connector that
bridges two types of queries is also effective, and it fur-
ther boosts the performance by 2.26% in mIoU (50.06% vs.
52.32%) even though the network has been equipped with
strong encoders and decoders. We notice the dynamic an-
chors for decoding are the most crucial component given
the sharpest performance drop of 3.57% with its removal,
which indicates the importance to explicitly represent the
intermediate location information for video grounding.
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Table 5. Ablation studies on different weakly-supervised losses.

ID Lscreg Loga R@0.3 R@0.5 R@0.7 mIoU

(a) 45.85 29.82 10.93 30.97
(b) ✓ 46.90 29.38 12.06 31.82
(c) ✓ 73.58 54.58 28.82 50.62
(d) ✓ ✓ 75.43 57.23 30.56 52.32

Table 6. Impact of different auxiliary losses.

Method R@0.3 R@0.5 R@0.7 mIoU

w/o Lcb 71.49 49.78 24.64 48.07
w/o Lar 72.96 50.72 26.42 49.14
w/o Lpa 74.34 56.01 30.29 51.76
Full Model 75.43 57.23 30.56 52.32

Table 7. Evaluation on different types of paragraph representation.

Method R@0.3 R@0.5 R@0.7 mIoU

Max-Pooling 72.61 52.61 27.03 49.55
Mean-Pooling 74.31 53.13 28.64 50.57
Word Concat 73.79 52.27 27.30 49.96
Learnable 75.43 57.23 30.56 52.32

Analysis on weakly-supervised losses. Ablation studies
on contributions of two weakly-supervised losses Lscreg and
Loga are shown in Table 5. In experiment (a) and (c), we
remove Lscreg but use a plain regression loss Lreg for abla-
tion analysis. Firstly, simply employing regressive supervi-
sion attains inferior performance because the feature-level
cross-modal correspondence can hardly be learned with
coordinate-level supervision. Furthermore, we find Loga is
critical for learning precise temporal localization since it
explicitly guides the model to align video features and lan-
guage features that are highly likely to be correlated. Be-
sides, we observe that using Lscreg for selecting high-quality
regression samples always brings gains to the performance.
Impact of auxiliary losses. We investigate the influences
of auxiliary losses on the model performance, which in-
volve Lcb for exploiting the cross-branch knowledge, Lar
as guidance to learn a set of order-preserving anchor boxes
and Lpa to make use of the feature alignment supervision
from the augmentation branch. As presented in Table 6, all
three auxiliary losses bring positive impacts, with Lcb being
the most effective to improve the mIoU metric by 4.25%.
The reason might lie in the rich complementary knowledge
and consistency supervision across the siamese branches.
Impact of the paragraph representation. The compari-
son of different types of paragraph representation is shown
in Table 7. Four different schemes are included, i.e., mean-
pooling or max-pooling the sentence features, embedding
the sequence of all word tokens in the paragraph, and us-
ing a learnable query token to extract global information.
It is clear that adaptively learning a paragraph representa-
tion with our method achieves the best performance and the
max-pooling scheme performs the worst because it loses too
much detailed information. The mean-pooling scheme per-
forms slightly better than the word-concat scheme, which
may attribute to the advantage of late fusion at feature level.

① A woman is sitting down on a floral glass table drilling a design into the pumpkin. ② As she is 
drilling, two boys are standing next to her watching her and then they suddenly leave. ③ The 
person behind the camera then picks up the top of the pumpkin to show its empty contents before 
the lady closes it and continues drilling.
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① A woman is seen standing in a circle and looking over her shoulder. ② She throws an object off 
into the distance and is shown again. ③ She throws her arms up and walks away afterwards.
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Figure 4. Visualization of prediction results from different models.

4.5. Visualization

In Figure 4, we intuitively visualize the predicted times-
tamps from WSTPN and our proposed model trained under
the weakly-supervised or semi-supervised setting. Overall,
the predicted timestamps given by WSTPN coarsely capture
the sentence order relations but with inaccurate boundaries.
In contrast, our weakly-supervised model achieves much
better results. It is notable that our semi-supervised model
generates more fine-grained boundaries, which shows the
advantage of our siamese framework in jointly leveraging
fewer and weaker labels for efficient learning.

5. Conclusion
In this work, we explore the weakly-supervised setting in
video paragraph grounding (i.e., WSVPG) to eliminate the
dependence of the temporal annotations. To achieve this
goal, we propose a novel siamese learning framework to
jointly learn the cross-modal feature alignment and tempo-
ral coordinate regression without ground-truth supervision.
Specifically, we design a novel Siamese Grounding TRans-
former (SiamGTR) consisting of an augmentation branch
and an inference branch. The augmentation branch utilizes
the boundary supervision provided by temporally regress-
ing a complete paragraph in a pseudo video, and the infer-
ence branch learns the order-guided cross-modal correspon-
dence of multiple sentences in a normal video. Extensive
experiments verify the effectiveness of our framework.
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