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Figure 1. BodyMAP leverages a depth and pressure image of a person in bed covered by a blanket, to jointly predict the body mesh and a
3D pressure map of pressure distributed along the human body.

Abstract
Accurately predicting the 3D human posture and the

pressure exerted on the body for people resting in bed, visu-
alized as a body mesh (3D pose & shape) with a 3D pressure
map, holds significant promise for healthcare applications,
particularly, in the prevention of pressure ulcers. Current
methods focus on singular facets of the problem—predicting
only 2D/3D poses, generating 2D pressure images, predict-
ing pressure only for certain body regions instead of the full
body, or forming indirect approximations to the 3D pressure
map. In contrast, we introduce BodyMAP, which jointly pre-
dicts the human body mesh and 3D applied pressure map
across the entire human body. Our network leverages mul-
tiple visual modalities, incorporating both a depth image
of a person in bed and its corresponding 2D pressure image
acquired from a pressure-sensing mattress. The 3D pressure
map is represented as a pressure value at each mesh vertex
and thus allows for precise localization of high-pressure re-
gions on the body. Additionally, we present BodyMAP-WS,
a new formulation of pressure prediction in which we im-
plicitly learn pressure in 3D by aligning sensed 2D pressure
images with a differentiable 2D projection of the predicted
3D pressure maps. In evaluations with real-world human
data, our method outperforms the current state-of-the-art
technique by 25% on both body mesh and 3D applied pres-

* Equal contribution.

sure map prediction tasks for people in bed.

1. Introduction
With 2.5 million cases annually in the U.S. alone, pres-
sure ulcers remain a pressing concern in healthcare systems
worldwide [3]. Although body repositioning serves as a
common preventive measure [30], concerns persist about
whether such pose shifts effectively redistribute applied
pressure on the body [37]. Wearable devices [31, 38] while
aiding in localizing peak pressure on the body, can disrupt
normal physical activities and contribute to pressure injuries
themselves [4, 18, 20]. In response, clinics and long-term
care facilities are increasingly looking at pressure sensor
systems to aid in pressure ulcer prevention [17, 30, 42].
These systems utilize a pressure sensing array, which is
placed beneath the person, and measures the pressure ap-
plied by the human body onto the sensor array, producing
a 2D pressure image. While informative about pressure ap-
plied on the body [2, 13, 37], these pressure images have
inherent ambiguities due to their 2D depiction of pressure.
As illustrated in Fig. 2, distinct body postures can result
in remarkably similar pressure images, failing to correctly
convey which body parts are under high pressure. These
systems thus currently require a human caregiver to deduce
the correct 3D distribution of pressure on the human body,
based on the 2D pressure image and 3D body posture. This

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

2480



step not only adds cognitive workload to caregivers but also
introduces delays or potential errors in implementing pre-
ventive measures. Moreover, individuals in bed are often
covered with blankets, making it challenging for nurses or
caregivers to accurately identify high-pressure regions on a
care recipient’s body.

Addressing these challenges, we propose BodyMAP
(Fig. 1), a deep-learning model, that jointly estimates a hu-
man body mesh (3D pose & shape) and a 3D pressure dis-
tribution on the body mesh for people in bed, covered with
blankets. Visualizing the pressure map on the 3D human
body mesh, as illustrated in Fig. 2, precisely pinpoints body
regions under peak pressure. Automatic body mesh and 3D
pressure map predictions could reduce the need for care-
givers to manually infer them, and offer visual insights into
pressure redistribution as caregivers reposition a person’s
body. This real-time feedback on peak body pressure can
transform the current ‘blind’ body repositioning into an in-
formed process, enhancing care quality and potentially re-
ducing the occurrence of preventable pressure injuries. Ad-
ditionally, other domains requiring body mesh and pressure
knowledge such as assistive robotics [7, 44], sports reha-
bilitation [16], and eldercare applications [33] could benefit
from accurate pressure prediction on the human body.

BodyMAP uses a combination of a depth image and the
corresponding 2D pressure image, for an individual in bed,
as inputs to predict the body mesh and the applied 3D pres-
sure map. A depth camera, placed vertically above the bed,
provides a top-down view of the mattress, while a fabric
pressure sensing array placed beneath the person, provides
the ‘bottom-up view’ of the body. We represent the human
body using the SMPL parametric model [29] and predict
the SMPL parameters related to body shape and joint an-
gles. Our method first predicts the SMPL mesh and then
leverages the predicted mesh vertices and latent features to
estimate a pressure value at each vertex, producing a 3D
pressure map. To train our model, we obtain ground truth
applied pressure map data by projecting 2D pressure im-
ages onto corresponding ground truth body meshes [9]. Our
project page containing code, trained models and the 3D
pressure ground truth data for SLP [25, 27] and BodyPres-
sureSD [9] datasets used in our work are available for re-
search purposes at https://bodymap3d.github.io/.

Prior methods either predict pressure maps for a subset
of body regions [44] or indirectly approximate 3D pres-
sure [9]. In contrast, BodyMAP uses a unified model to
jointly predict the human mesh and 3D applied pressure
map across the entire body. This joint training approach of-
fers several advantages, including human-interpretable vi-
sualizations of pressure on the human body mesh for care-
givers, reduced model inference time, and more accurate
predictions of body pose and 3D pressure.

Additionally, we introduce BodyMAP-WS (3D applied

Figure 2. Distinct postures can have similar 2D pressure images.
The insets of the 3D pressure map show pressure being applied to
different areas demonstrating its use in localizing pressure that is
applied on the human body.

pressure prediction without supervision), a variant of our
model, designed to implicitly learn the 3D pressure map
without direct supervision. BodyMAP-WS constructs a dif-
ferentiable 2D projection of a predicted 3D pressure map
and aligns the 2D projection with the input pressure image.
This alignment encourages the model to learn the correct
3D pressure map without relying on ground truth pressure
maps on the human body that are difficult to measure in the
real world. By removing the need for labels, this technique
holds the potential to reduce data collection efforts and al-
low for training models on unlabeled data.

Our method sets a new state-of-the-art in predicting body
mesh (3D pose & shape) and 3D applied pressure on the hu-
man body, surpassing previous works by 25% on both tasks,
as evidenced by our model’s performance across various 3D
pose, 3D shape, and 3D pressure metrics. In summary, our
contributions include the following:
• A deep learning method, BodyMAP, that takes as input

a depth image and the corresponding 2D pressure image
for a person in bed and infers jointly the body mesh and
the 3D pressure map of pressure applied on the body.

• An implicit 3D pressure map prediction method,
BodyMAP-WS, to support scaling up body pressure pre-
diction models on real-world unlabeled datasets.
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2. Related Work
2.1. Pose estimation using deep learning

Pose estimation is a well-established task in Computer Vi-
sion [1, 28, 40, 41]. Parametric human models [29, 34] like
SMPL simplify the representation of the human body, form-
ing a dense 3D body mesh from only a small set of param-
eters for body shape and joint angles.

While supervised methods [23, 24] use 3D ground truth
data, recent efforts have explored geometric cues and multi-
view consistency to predict body mesh from RGB im-
ages [5, 22, 43]. Gong et al. [12] use multiple 2D modal-
ities to predict the SMPL body and employ self-correction
between the input and 2D projections to train their model.
Inspired by this line of research in pose estimation, we de-
veloped our method, BodyMAP-WS to learn 3D pressure
maps without direct supervision.

2.2. In-bed human pose estimation

In-bed human poses present distinct challenges compared to
active poses observed in sports activities. Heavy occlusion
caused by blankets and self-occlusion present complexities.
Additionally, there is limited body visibility in modalities
such as pressure images which fail to capture limbs that
are not in contact with the mattress. Datasets like the SLP
dataset [25, 27] featuring real-world human participants and
the synthetic BodyPressureSD dataset [9], which we lever-
age in this study, have propelled research in this domain.

Yin et al. [45] introduce Pyramid Fusion, incorporating
modalities like RGB, pressure, depth, and IR images. How-
ever, their design necessitates multiple model passes to de-
rive the final predicted body mesh. Considering potential
clinical deployments and privacy concerns, we move away
from using RGB images in our work. Clever et al. propose
methods [8, 9] involving multiple models to estimate the
body mesh. These approaches only rely on a single modal-
ity (pressure image and depth respectively). Our method,
BodyMAP, simplifies this process by employing a single
pass through a single model to jointly predict both the body
mesh and applied 3D pressure map, while utilizing multi-
ple visual modalities as input. Our findings demonstrate
that our streamlined approach significantly improves per-
formance over prior methodologies.

2.3. 3D applied pressure map prediction

Prior techniques [9, 26] have explored the task of predicting
2D pressure images from alternative modalities like depth
and RGB images respectively, offering a cost-effective
means of obtaining information about applied pressure.
However, as illustrated in Fig. 2, 2D pressure images fail
to correctly identify the body regions under high pressure.

In the related domain of pain monitoring, 3D pain draw-
ings have emerged to be more effective visualization tools

than their 2D counterparts [11, 39] in analyzing body pain.
In this work, we expand on this concept by directly predict-
ing the 3D applied pressure map onto a human body mesh,
overcoming the limitations of 2D pressure images.

Only a few prior methods explore predicting pressure on
the human body. Wang et al. [44] predict pressure applied
during cloth interaction, only on specific body regions such
as arms. Clever et al. [9] proposed the concept of full-body
3D pressure maps. The authors developed a multi-model
pipeline trained in multiple stages, to predict both the body
mesh and 2D pressure image from a depth image. Finally,
they approximate the 3D pressure map by vertically pro-
jecting the 2D pressure image over the estimated 3D human
body. We note that errors from each model often compound,
affecting the accuracy of 3D pressure map predictions.

In contrast, we devise a unified model architecture,
BodyMAP, to estimate the body mesh and pressure map
jointly. Our model leverages PointNet [35] to predict 3D
pressure map at the vertex level across the entire body mesh.

3. Method

We train a deep-learning model, BodyMAP, to jointly pre-
dict the body mesh M̂ (3D pose & shape), along with the
3D applied pressure map P̂ . Specifically, our model takes
the individual’s gender g, the depth image d, and the 2D
pressure image p as inputs.

The depth image is captured by a depth camera situated
above the bed, while the 2D pressure image is generated by
a pressure sensing system positioned beneath the individ-
ual. This arrangement captures complementary features re-
garding the body, illustrated in the appendix Fig. 5, thereby
enhancing the context available to the model for accurate
predictions of both body mesh and pressure map.

The human body is represented using the SMPL [29]
mesh while the 3D pressure map is represented at the ver-
tex level with a pressure value for each vertex of the human
mesh, allowing for peak pressure localization on the body.

We train our models on both the BodyPressureSD
dataset [9] of simulated humans in bed and the real-world
SLP dataset [25, 27]. For both datasets, we have depth and
pressure images, aligned with the 3D ground truth mesh for
diverse poses (supine, left & right lateral) and multiple blan-
ket thickness configurations.

3.1. BodyMAP

In this section, we detail the architecture of BodyMAP, as
illustrated in Fig. 3. The depth and pressure images are re-
sized, concatenated and processed together as image chan-
nels by the model.

Body mesh prediction: The input is first encoded using
ResNet18 [15]. The latent features are then passed through
a multi-layer perceptron to predict the SMPL parameters
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Figure 3. BodyMAP jointly predicts body mesh and 3D applied pressure map for an individual in bed. (a) Model architecture that encodes
depth image d and 2D pressure image p to predict SMPL [29] parameters Ψ̂, used to reconstruct the SMPL mesh M̂ . The Feature Indexing
Module (FIM) accumulates features for the mesh vertices from the input images and ResNet features. PointNet predicts the per-vertex
pressure p̂ & per-vertex binary contact ĉ along the human body using the mesh features as input. Finally, the 3D pressure map P̂ is
calculated as the product of the per-vertex pressure value and binary contact value. (b) FIM overlays the predicted mesh over the ResNet
feature maps (l̂) and input images by mapping mesh vertex locations to pixel positions and then assigns features to each vertex (V). These
are fused along with the mesh vertex locations and used for 3D pressure map prediction. (c) FIM’s ‘overlay and assign’ step visualization.

Ψ̂. These parameters include body shape, joint angles, root-
joint translation, and root-joint rotation. The SMPL param-
eters Ψ̂ and gender information g, serve as inputs to the
SMPL embedding block [19]. This block does not contain
any learned parameters and outputs a differentiable human
body mesh M̂ with vertices V̂ , and 3D joint positions Ŝ.

Feature Indexing Module: We introduce the Feature
Indexing Module (FIM), depicted in Fig. 3(b), to accumu-
late features for each mesh vertex. As mentioned in [9],
the mesh predictions are spatially registered with the cor-
responding input images. This registration provides pixel
locations where each mesh vertex would project onto the
input images [9]. FIM assigns features to each mesh vertex
from both the input images and the latent ResNet features
(before global average pooling) using the mentioned pixel
locations (Fig. 3(c)). These features are fused with the ver-
tex locations and are utilized for pressure map prediction.

Pressure map prediction: To predict a per-vertex pres-
sure map (P̂ ), we employ PointNet [35] utilizing the la-
tent features formed from FIM for each vertex as input.
This establishes a strong correlation between the mesh pre-
diction and pressure prediction, ensuring their consistency
with each other. In a manner akin to point-based segmen-
tation architectures [35, 36], ResNet features (after global
average pooling) are fused with PointNet encoder features.
This provides the model with an enhanced contextual under-
standing. The PointNet decoder then predicts a per-vertex

binary contact value and pressure value. The per-vertex
contact value serves as an indicator of whether each mesh
vertex is in contact with the mattress. We use the predicted
contact values to further tune the predicted pressure values.
Specifically, the 3D pressure map is finally estimated as a
product of the binary contact value with the corresponding
pressure value for each vertex.

3.1.1 Training strategy

We train the network to jointly predict body mesh and 3D
applied pressure map with the following loss:

L = LSMPL + λ1Lv2v + λ2LP3D + λ3Lcontact (1)

where LSMPL minimizes the absolute error on SMPL pa-
rameters Ψ̂ and squared error on the 3D joint positions
Ŝ. Lv2v (vertex-to-vertex loss) provides extra supervision
to better match ground truth body mesh by minimizing
squared error on the vertex positions V̂ . LP3D (3D pressure
loss) minimizes the squared error on the 3D pressure map
values. Lcontact is applied as a cross-entropy loss between
predicted and ground truth 3D contact, where the ground
truth 3D contact is obtained from all non-zero elements of
the ground truth 3D pressure maps. The loss weighting co-
efficients are set empirically. Further details about the loss
function are mentioned in appendix Sec. 8.3.
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3.2. BodyMAP-WS

BodyMAP-WS is a variant of the BodyMAP model, learn-
ing without supervision for the 3D pressure map prediction.
This model utilizes a pre-trained mesh regressor to obtain
mesh predictions and ResNet image features as its primary
inputs. The network architecture follows a similar design
as BodyMAP’s pressure prediction part (Fig. 3) in its use
of FIM and PointNet [35], and is further illustrated in the
appendix Fig. 7. To train BodyMAP-WS without supervi-
sion, we drop the prediction of binary contact value from
BodyMAP and directly predict the pressure value at each
vertex. During training, the network constructs a 2D projec-
tion of the predicted 3D pressure map and aligns it with the
input pressure image, allowing for the implicit learning of
the 3D applied pressure map onto the body mesh. To form
the differentiable projection, we utilize the co-registration
of the mesh with pressure taxels [9], which establishes a
direct link between the pressure on vertices vj and the pres-
sure on the taxel located beneath the vertex. To project
the predicted 3D pressure map onto a 2D image, we iterate
over all the pressure taxels and compute the average pres-
sure value of the vertices positioned directly above a taxel
(vertices with x, y coordinates corresponding to the taxel).

3.2.1 Training strategy

To form the pre-trained mesh regressor, we first train the
mesh regressor section of BodyMAP using supervision with
LSMPL and Lv2v. Subsequently, BodyMAP-WS is trained
to leverage the frozen pre-trained mesh model’s predicted
ResNet features and mesh vertex locations as inputs, for
predicting the 3D applied pressure map. This prediction is
guided by the following loss function:

L = LP2D + λ1LPreg (2)

Here, LP2D (2D pressure loss) minimizes the squared er-
ror between the 2D projection of the predicted 3D pressure
map and the input pressure image. The bed mattress is situ-
ated on the Z = 0 plane, and vertices predicted to be posi-
tioned above this plane (Z > 0) should ideally not have any
applied pressure on them as they do not make contact with
the mattress. To enforce this constraint, we utilize LPreg, a
regularization term that penalizes positive pressure on these
vertices by minimizing the norm of predicted pressure val-
ues for these vertices. Further details about the loss function
are mentioned in appendix Sec. 9.1.

4. Evaluation
The training datasets [9, 25, 27] used in this work provide
aligned input depth and pressure images. Clever et al. [9]
provide 3D ground truth meshes for their released synthetic
data and SMPL-3D fits for the real SLP dataset [25, 27].

To establish the ground truth 3D pressure map, we uti-
lize the vertical projection method outlined in [9]. This
method involves projecting the 2D pressure image onto the
3D-oriented ground truth mesh, forming a ground truth 3D
pressure map. Although this method has limitations for
self-contact (overlapping body parts), this procedure pro-
vides effective approximations for ground truth 3D pressure
maps, facilitating comparison with prior methods [9, 45].

We train our network, BodyMAP, on the entire simulated
BodyPressureSD dataset [9] and the initial 80 subjects (1-
80, with the exclusion of subject 7 due to calibration er-
rors) from the real-world SLP dataset [25, 27]. We pre-train
the mesh regressor for BodyMAP-WS on the same training
split. However, we train the BodyMAP-WS model on only
the real-world SLP training data (1-80 subjects) [25, 27] us-
ing only the depth and pressure images and no ground truth
3D pressure map data. We evaluate our methods on the fi-
nal 22 subjects (81-102) from the real SLP dataset [25, 27],
which aligns with the analysis of our baselines [9, 45].

4.1. Network Evaluation

We evaluate our approaches using multiple 3D pose, 3D
shape and 3D pressure map metrics.

For 3D pose prediction, we evaluate our methods with
3D mean-per-joint position error (MPJPE) and 3D per-
vertex error (PVE). These are computed as mean Euclidean
error between predicted and ground truth 3D joint positions
and 3D vertex positions respectively.

For 3D shape prediction, we assess our methods by com-
puting anatomical measurements for height and circumfer-
ences of the chest, waist, and hips of the mesh as proposed
by Choutas et al. [6]. The measurements are computed on
the SMPL [29] rest pose mesh, which is generated using
predicted shape parameters and rest pose angle parameters.
The 3D shape metrics are calculated as the absolute error
between predicted and ground truth anatomical values.

We employ the below metrics to evaluate the 3D pressure
map predictions:
• Vertex-to-Vertex Pressure (v2vP) Error: This metric, as

proposed by Clever et al. [9], assesses the alignment be-
tween the predicted 3D pressure map and the ground truth
data at the vertex level.

• v2vP 1EA (v2vP one edge away) & v2vP 2EA: The dense
structure of the SMPL mesh [29] results in the 3D pres-
sure map predicted at the vertex level to have a very fine
granularity. To account for the region size over which
pressure is applied, we form and evaluate coarse represen-
tations of the 3D pressure map. The coarse representation
is obtained by setting the pressure value at each vertex
as the average pressure value of its neighboring vertices.
This averaging process can be interpreted as a smoothing
operator on the vertex-level 3D pressure maps. For v2vP
1EA, we consider the vertices that are one edge away to
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calculate the averages. For v2vP 2EA, we include the ver-
tices that are both one and two edges away. The smooth-
ing operator region is illustrated in the appendix Fig. 8.
After forming these coarser pressure maps for both the
ground truth and predicted 3D pressure maps, we apply
the v2vP metric to calculate the mean squared error be-
tween predicted and ground truth 3D pressure maps, re-
sulting in v2vP 1EA and v2vP 2EA.

In addition, we assess pressure prediction error on a per-
body part basis. To do so, we identify 14 distinct body parts,
including left & right heels, toes, elbows, shoulders, hips
and spine, head, sacrum and ischium. We compute the v2vP
metric on only the vertices belonging to a body part.

We compare our methods, BodyMAP and BodyMAP-
WS, against the multimodal Pyramid Fusion model from
Yin et al. [45] and BPB, BPW models from Clever et al. [9].
We compute the above evaluation metrics for the BPW
model, for which the model weights are made available by
the authors. We report the metrics for the other methods
when available in their respective papers.

Furthermore, we conduct a custom training of models
on only lateral poses (left & right lateral), and evaluate on
supine poses. We compare two BodyMAP-WS models,
one trained on only lateral poses and the other trained on
both lateral and supine poses, with BodyMAP and BPW [9]
trained on only lateral poses. For BodyMAP-WS mod-
els, we freeze the mesh model once it is pre-trained on
lateral poses. This evaluation allows us to test on an out-
of-training-distribution setting and gauge the improvements
from training BodyMAP-WS implicitly on the entire data.

Additionally, we compare our methods to a custom base-
line, BodyMAP-Conv, that is similarly capable of jointly
predicting human body mesh and a 3D applied pressure
map. BodyMAP-Conv, illustrated in the appendix Fig. 6,
replaces the FIM and PointNet components of BodyMAP
with fully connected layers to predict 3D pressure map P̂ .

Hyperparameters: We train our networks, BodyMAP
and BodyMAP-Conv, with the loss function defined in
Eq. (1) and λ1 = 0.25, λ2 = 0.1, and λ3 = 0.1. We train
BodyMAP-WS with loss as defined in Eq. (2) and λ1 =
500. We train all networks with a batch size of 64, learn-
ing rate of 0.0001, weight decay of 0.0005, and the Adam
optimizer [21] for gradient optimization and use random ro-
tation and random erasing image augmentations. We train
BodyMAP and BodyMAP-Conv for 100 epochs, while we
train BodyMAP-WS for 15 epochs.

5. Results and Discussion

Tab. 1 presents the results of BodyMAP compared to all
baseline methods across various metrics for 3D pose, 3D
shape, and 3D pressure distribution, evaluated on 22 test
subjects from the real SLP dataset [25, 27]. The averages

are computed over all blanket configurations present in the
SLP dataset [25, 27].

BodyMAP-PointNet, our model utilizing PointNet [35]
for 3D pressure map prediction, achieves notable improve-
ments over the prior state-of-the-art BPW [9]. Specifi-
cally, when trained solely on the depth modality akin to
the training approach of BPW [9], BodyMAP-PointNet
achieves a 12.5% and 13% enhancement for body mesh
and 3D pressure map prediction tasks, respectively. When
trained on multiple modalities, the BodyMAP-PointNet
model attains a substantial 25% improvement for both tasks
over BPW [9]. Visual comparisons between BodyMAP-
PointNet and BPW [9] are illustrated in Fig. 4, and in the
appendix in Fig. 10, and Fig. 11.

Remarkably, our BodyMAP-WS model demonstrates an
8.8% performance improvement over BPW [9] for 3D pres-
sure map prediction, despite lacking access to ground truth
3D pressure maps during training. Furthermore, our base-
line model, BodyMAP-Conv, surpasses BPW [9] in direct
comparison, trained solely on the depth modality. We hy-
pothesize that errors introduced at each stage in BPW [9]
accumulate, leading to adverse impacts on their final 3D
pressure map predictions.

Detailed evaluations over specific blanket configurations
are presented in the appendix Tab. 4.

Elevated precision in 3D pressure map prediction
across critical body regions: Specific anatomical regions,
such as the back of the head, heels, sacrum, spine, ischium,
and hips, are known to be particularly susceptible to pres-
sure ulcers [30]. Evaluating model performance across mul-
tiple body regions, revealed substantial improvements over
BPW [9]. The results are summarized in Tab. 2.

BodyMAP-WS utilizes a regularization loss that discour-
ages the model from predicting pressure on body vertices
not in contact with the mattress (Eq. (2)). As a possible
consequence, the model exhibits slightly lower performance
than BPW [9] in areas with smaller contact surfaces, no-
tably the heels and toes. However, in regions like the hips
and spine, BodyMAP-WS surpasses BPW [9].

BodyMAP-PointNet achieves the lowest pressure error
across all body parts. These advancements bear significant
implications for aiding caregivers in localizing peak pres-
sure on critical body regions, potentially enhancing the ef-
fectiveness of pressure injury prevention protocols.

Implicit learning of 3D applied pressure map elimi-
nates the need for ground truth annotations: BodyMAP-
WS, is trained through alignment of the 2D projection of
the predicted 3D pressure map with the input pressure im-
age. As outlined in Tab. 3, when trained on lateral poses,
and evaluated on supine poses, BodyMAP-WS outperforms
the prior state-of-the-art BPW method [9]. Moreover, as
presented in Tab. 3, extending the training of BodyMAP-
WS to the entire dataset (comprising both supine and lat-
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Figure 4. Results of inferring body mesh and 3D applied pressure map for examples from the SLP [25, 27] test set.
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3D Pose Error (mm) ↓ 3D Shape Error (cm) ↓ 3D Pressure Error (kPa2) ↓
Network Modalities MPJPE PVE Height Chest Waist Hips v2vP v2vP 1EA v2vP 2EA

Pyramid Fusion [45] RGB-D-PI-IR 79.64 - - - - - - - -
BPBnet [9] D 74.54 - - - - - 2.87 - -
BPWnet [9] D 69.36 84.72 3.85 3.78 4.70 3.21 2.84 1.79 1.22

BodyMAP - Conv PI 76.38 ± 2.060 93.24 ± 2.015 4.36 ± 0.125 2.86 ± 0.147 3.75 ± 0.078 3.19 ± 0.254 2.58 ± 0.009 1.61 ± 0.006 1.09 ± 0.005
BodyMAP - PointNet PI 76.54 ± 3.170 93.6 ± 4.029 4.83 ± 0.164 3.06 ± 0.323 4.1 ± 0.433 3.56 ± 0.409 2.29 ± 0.014 1.39 ± 0.011 0.92 ± 0.007

BodyMAP - Conv D 61.29 ± 1.978 72.97 ± 1.797 3.98 ± 0.144 3.37 ± 0.159 4.39 ± 0.212 3.62 ± 0.382 2.66 ± 0.018 1.68 ± 0.017 1.15 ± 0.014
BodyMAP - PointNet D 60.66 ± 1.615 72.47 ± 1.687 3.99 ± 0.569 3.2 ± 0.241 4.3 ± 0.407 3.51 ± 0.229 2.47 ± 0.034 1.54 ± 0.03 1.04 ± 0.026

BodyMAP - Conv D - PI 51.79 ± 0.379 62.9 ± 0.32 3.61 ± 0.251 3.09 ± 0.256 4.1 ± 0.407 3.46 ± 0.484 2.56 ± 0.007 1.59 ± 0.007 1.07 ± 0.008
BodyMAP - PointNet D - PI 51.01 ± 1.071 61.66 ± 0.919 3.49 ± 0.459 2.93 ± 0.215 3.7 ± 0.071 2.8 ± 0.360 2.14 ± 0.030 1.27 ± 0.025 0.83 ± 0.020

Table 1. Results for 3D pose, 3D shape, and 3D pressure error metrics evaluated for the 22 test subjects in SLP dataset [25, 27], averaging
over all blanket conditions (uncovered, cover1, and cover2). The modalities described are depth (D), pressure image (PI), infrared (IR) and
RGB. The metrics for BodyMAP models are shown with the mean and standard deviation computed over 3 random runs.

3D Pressure Error v2vP (kPa2) ↓
Network Modalities Left Heel Right Heel Left Toes Right Toes Left Elbow Right Elbow Left Shoulder Right Shoulder Spine Head Left Hip Right Hip Sacrum Ischium

BPW [9] D 4.13 3.75 0.41 0.36 1.55 1.41 1.83 1.65 1.76 13.06 15.83 18.29 10.60 6.11
BodyMAP-Conv D 5.23±0.007 4.46±0.014 0.32±0.001 0.31±0.001 1.05±0.005 0.77±0.019 1.49±0.007 1.32±0.021 1.63±0.020 11.35±0.108 14.28±0.136 16.65±0.145 9.12±0.152 5.52±0.064
BodyMAP-WS D - PI 4.26±0.164 3.74±0.009 0.42±0.022 0.36±0.02 1.46±0.015 1.1±0.063 1.71±0.075 1.6±0.037 1.67±0.017 11.4±0.361 13.13±0.251 17.72±0.919 7.6±0.252 5.15±0.057

BodyMAP-Conv D - PI 5.22±0.015 4.44±0.009 0.32±0.001 0.32±0.001 1.05±0.021 0.77±0.007 1.41±0.047 1.25±0.043 1.54±0.026 11.22±0.199 13.25±0.07 15.76±0.026 8.6±0.16 5.24±0.116
BodyMAP-PointNet D - PI 3.81±0.088 3.46±0.016 0.33±0.005 0.31±0.002 0.82±0.009 0.61±0.019 1.25±0.053 1.16±0.019 1.52±0.007 10.22±0.269 10.55±0.233 13.44±0.205 7.17±0.187 4.49±0.180

Table 2. Results of 3D pressure map error evaluated over multiple body regions for the 22 test subjects in SLP dataset [25, 27], averaging
over all blanket conditions (uncovered, cover1, and cover2). Our method achieves more than 30% improvement for body regions vulnerable
to pressure injuries such as left hip & sacrum regions. The metrics are shown with the mean and std. dev. computed over 3 random runs.

eral poses), while continuing to use the mesh model pre-
trained on only lateral poses, leads to further performance
gains, even surpassing our proposed BodyMAP-PointNet
model. This methodology to train models without relying
on ground truth labels has the potential to streamline cost-
intensive annotation efforts, potentially unlocking training
these models on unlabeled data from deployed sensors.

Multimodal input elevates performance: The re-
sults, as presented in Tab. 1 for BodyMAP-PointNet and
BodyMAP-Conv with various modality configurations, un-
derscore the significance of combining pressure and depth
modalities for optimal results. Notably, there is a signifi-
cant reduction in body mesh prediction performance when
exclusively using the pressure modality. This decline is at-
tributed to the absence of visual cues from pressure images
when limbs are not in contact with the mattress. Conversely,
we observe the pressure modality to be more effective for
3D pressure map prediction when compared to the depth
modality. This substantiates a preference to leverage both
the depth (top-down view) and 2D pressure mattress images
(bottom-up view), providing greater context for the model
to jointly predict body mesh and 3D applied pressure maps.

Moreover, as illustrated in the appendix Tab. 4, integrat-
ing multiple modalities leads to consistent mesh prediction
performance across all blanket configurations. This stands
in contrast to BPW [9], which experiences a significant drop
when individuals in bed are covered with blankets due to its
training on only a depth modality.

Feature Indexing Module improves 3D pressure per-
formance: The proposed Feature Indexing Module (FIM)
creates a comprehensive feature set for each vertex by fus-
ing vertex locations, ResNet features (formed before the

Network Train Data 3D Pose Error 3D Pressure Error
MPJPE (mm) ↓ v2vP (kPa2) ↓

BPW [9] Lateral poses 122.8 3.164
BodyMAP-PointNet Lateral poses 100.96 2.614

BodyMAP-WS Lateral (mesh) + Lateral (pressure) 98.82 2.865
BodyMAP-WS Lateral (mesh) + All (pressure) 98.82 2.513

Table 3. Results from training on lateral poses and evaluating on
supine poses in the test subjects in the SLP dataset [25, 27], aver-
aging over all blanket conditions (uncovered, cover1 and cover2).
Here, BodyMAP-WS models use a mesh model pre-trained solely
on lateral poses. All models are trained on only depth modality.

global average pool), and input image features. This pro-
vides the model with rich contextual information, enhanc-
ing the 3D applied pressure map prediction. Notably, fus-
ing global ResNet features (formed after the global aver-
age pool) with PointNet encoder features also yields an im-
provement in predicting 3D pressure maps. We present the
ablations of FIM in the appendix Tab. 5.

6. Conclusion

Our proposed method, BodyMAP, jointly predicts the body
mesh and 3D applied pressure map for people in bed. These
predictions offer interpretable visualizations of pressure on
the body, which could aid caregivers in accurately identify-
ing high-pressure regions and potentially enhance the pre-
vention of pressure injuries. Furthermore, we introduced
BodyMAP-WS to implicitly learn a 3D pressure map on the
body without relying on labeled ground truth data, opening
new avenues for learning on large real-world datasets where
obtaining 3D labels is both costly and challenging. We have
demonstrated the performance of our methods in a series of
ablations and comparisons to prior state-of-the-art models.
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