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Abstract

Deep neural networks (DNNs) often display overconfi-
dence when encountering out-of-distribution (OOD) sam-
ples, posing significant challenges in real-world appli-
cations. Capitalizing on the observation that responses
on convolutional kernels are generally more pronounced
for in-distribution (ID) samples than for OOD ones, this
paper proposes the COnvolutional REsponse-based Score
(CORES) to exploit these discrepancies for OOD detection.
Initially, CORES delves into the extremities of convolutional
responses by considering both their magnitude and the fre-
quency of significant values. Moreover, through backtrack-
ing from the most prominent predictions, CORES effectively
pinpoints sample-relevant kernels across different layers.
These kernels, which exhibit a strong correlation to input
samples, are integral to CORES’s OOD detection capa-
bility. Comprehensive experiments across various ID and
OOD settings demonstrate CORES’s effectiveness in OOD
detection and its superiority to the state-of-the-art methods.

1. Introduction

Deep neural networks (DNNs) [17, 36, 37] have achieved
significant success in various tasks. Nevertheless, DNNs
often suffer performance drop when exposed to novel, un-
foreseen categories of data, termed as out-of-distribution
(OOD) samples, owing to their initial design for static,
closed-world scenarios [1]. Indeed, many recent studies
have demonstrated that DNN classifiers suffer from the
issue of making overconfident predictions on OOD sam-
ples [6, 26, 35]. Hence, OOD detection is crucial for ensur-
ing the safety and reliability of DNN deployments [10, 39].

∗Joint first authors. †Corresponding author.

Figure 1. Response visualization of convolutional kernels in the
penultimate layer of ResNet-18. Responses to in-distribution (ID)
CIFAR-10 data are contrasted with OOD data from: (a) LSUN;
and (b) SVHN. The x-axis enumerates the convolutional channel
indices, and the y-axis shows the maximum positive and minimum
negative values of the responses. It is evident that ID displays
higher positive and lower negative responses than OOD.

A prevalent direction for OOD detection involves en-
hancing classifiers through exposure to auxiliary OOD sam-
ples [11, 18]. However, these approaches may lead to in-
creased training costs and potentially compromise model
performance. As a result, post-hoc methods that examine
the inference process offer advantages in real-world appli-
cations. Existing post-hoc methods typically fall into two
main categories: 1) those utilizing in-distribution (ID) sam-
ples, such as training data, and 2) those that do not rely on
ID samples. Specifically, the first category aims to mea-
sure the difference between a test image and training sam-
ples [19, 27, 30, 34, 41]. In many real-world scenarios, ac-
cess to training data is limited, and even when available,
it may not comprehensively represent the entire ID domain,
potentially causing inaccuracies in calculated discrepancies.
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The second ID-free category concentrates on the model’s
intrinsic characteristics rather than depending on training
data, demonstrating potential for effective OOD detection.

In the realm of ID-free methodologies for OOD de-
tection, researchers have investigated a plethora of sig-
nals as potential indicators. These include the maximum
probabilities derived from softmax layers [10], its subse-
quent enhancements [21, 22], post-processed outputted fea-
tures [32, 33], the norm of the gradient [14] and the norm of
features [46]. However, these signals, which were primar-
ily designed for ID categorization, may not be ideally suited
for a totally different task, i.e., distinguishing between ID
and OOD samples. Therefore, we aim to identify signals
inherent within the DNNs’ functioning that can assist in de-
termining whether samples are ID or OOD, without leaning
on category-specific data. Given that convolutional kernels
in DNNs, generally exhibit more pronounced responses to
ID samples, see Fig. 1, these responses are anticipated to be
reliable signals for distinguishing OOD from ID.

In this paper, we present COnvolutional REsponse-
based Score (CORES), a unique ID-free method that ex-
ploits responses of convolutional kernels for OOD detec-
tion. CORES harnesses the most pronounced responses of
convolutional kernels in a layer, specifically the peak and
trough values, to mitigate the impact of noise. We derive the
OOD detection score from these extreme values, consider-
ing both their magnitude and frequency. Given that kernels
yielding the strongest (either highest or lowest) confidence
results are inherently relevant to the input samples, we trace
back from these outputs to pinpoint a trajectory of sample-
relevant kernels across layers. By collecting responses from
these specific kernels, we establish the final CORES met-
ric. We demonstrate the effectiveness of CORES across
multiple DNN architectures, under diverse settings of ID
and OOD datasets, encompassing both conventional OOD
and near-OOD scenarios. Extensive experiments substan-
tiate the robustness of CORES in OOD detection, and its
superiority to the state-of-the-art methods.

Overall, our contribution is summarized as follows:
• We are the first to explore convolutional responses as ID-

free signals for OOD detection.
• We develop a novel OOD score based on extreme re-

sponse values on a trajectory of sample-relevant kernels.
• We show by experiments that CORES outperforms the

state-of-the-art OOD detection methods.

2. Related Work
OOD Detection. The OOD overconfidence issue, where
OOD samples are assigned excessively high confidence
scores, poses a significant challenge for numerous DNNs [8,
9, 38, 44]. To mitigate it, a spectrum of strategies has been
employed during DNN training, e.g., incorporating random
noise and image shuffling [18], auxiliary datasets [9], and

advanced generative models like Chamfer GAN [35] to sim-
ulate OOD samples resembling ID data closely. Alterna-
tively, methods such as VOS [5] and NPOS [40] generate
virtual features rather than actual OOD instances. These
approaches, however, confront obstacles such as the need
for extensive OOD data and the potential for intensive fine-
tuning to detrimentally affect performance.

Consequently, the focus has shifted to post-hoc OOD
scoring techniques that differentiate model responses to
OOD and ID data through analysis of feature discrepancies
[24], Mahalanobis distance computation [19], and detec-
tion of anomalies in patterns and predictions [30]. Despite
Sun et al.’s development of a purportedly assumption-free
method, the necessity for some ID samples persists, present-
ing challenges when only pre-trained models are available
without corresponding training data or when such data inad-
equately represents the ID space [34]. Our research, there-
fore, prioritizes advancing post-hoc OOD detection meth-
ods that operate independently of ID data access.
Post-hoc ID-free OOD Detection. Hendrycks et al. [10]
pioneered the use of maximum softmax probability, ob-
serving that classifiers typically exhibit lower confidence
for OOD samples than for ID ones. Expanding on this,
ODIN [21] integrates input preprocessing and temperature
scaling to sharpen the distinction between ID and OOD
samples. Energy Score [22] employs an energy-based
model to reduce prediction bias. Further advancements in-
clude ReAct [33], LHAct [47], and DICE [32], which re-
fine outputted features through activation rectification or se-
lective sparsification for improved discrimination. Recog-
nizing the notable gradient intensity in ID data, Gradient-
Norm [14] utilizes the vector norm of gradients for OOD
detection. Similarly, FeatureNorm [46] leverages the norm
of feature maps from a strategically chosen block for iden-
tifying OOD samples.

However, these signals, primarily tailored for ID catego-
rization, may falter when redirected to other tasks, such as
differentiating between ID and OOD samples. Differently,
our chosen signal, specifically the convolutional response,
is not crafted for categorization purposes. It focuses exclu-
sively on expressing the inherent characteristics of the sam-
ples, resulting in enhanced performance in OOD detection.
Convolutional Response. Convolutional responses, the
output feature maps from each convolutional kernel on in-
put data such as images, illuminate key attributes includ-
ing edges, textures, and colors. Analyzing these responses
deepens understanding of the features learned by deep con-
volutional networks [23, 49] and supports model refinement
through the identification and pruning of ineffective ker-
nels, thus conserving computational resources [20]. Our
research presents a novel OOD detection approach based
on the observation that convolutional kernels exhibit more
pronounced responses to ID data compared to OOD data.
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3. Problem Formulation

Preliminaries. This work considers the setting in multi-
category classification problems. Given an input image x,
the DNN classifier f , which consists of L convolutional lay-
ers, processes it as follows:

f : x −→ R(1) −→ R(2) −→ . . . −→ R(L) −→ O

Here, R(i) represents the convolutional responses at the i-th
layer, and O denotes the final output.

By identifying which category in O has the highest pre-
diction confidence,

cmax = argmax
i

Oi

f predicts x to be in the cmax-th category. However, in
some open-world scenarios, when the input x is out-of-
distribution (OOD), f still classifies it into the predefined
categories. As a result, it is essential to conduct OOD de-
tection in practical applications.

A prevalent strategy for OOD detection entails the con-
struction of a score, i.e., ScoreOOD, subsequently utilizing
thresholding to discriminate between in-distribution (ID)
and OOD samples [10],

gγ(x) =

{
ID ScoreOOD ≥ γ
OOD ScoreOOD < γ

(1)

where γ is a threshold.
Discussion. Existing methodologies for ScoreOOD largely
hinge on the derived probability or logit outputs, such as
maximum softmax probabilities (MSP) [10], or the Energy
Score [22], as well as on particular feature characteristics,
as seen in FeatureNorm [46]. However, these indicators,
crafted for categorizing ID classes, may falter when applied
to a fundamentally different task, namely, distinguishing be-
tween ID and OOD samples. Consequently, our goal is to
derive signals from the DNNs’ inference phase, that are not
principally used for categorization but rather dedicated to
capturing the inherent properties of the samples, irrespec-
tive of their classification as ID or OOD.
Response-based OOD Detection. We observe that the
convolutional kernels in a trained deep neural network are
inherently attuned to extracting the fundamental attributes
of samples. These kernels exhibit a strong response to pat-
terns they recognize — those consistent with ID inputs. In
contrast, their response diminishes with patterns they do not
recognize, characteristic of OOD inputs. Thus, we suggest
that the significant difference in the responses, represented
as {R(i)}i=1:L, is a strong indicator for determining if in-
puts are ID or OOD,

{R(i)}i=1:L −→ ScoreOOD (2)

4. Convolutional Response-based Score
In this section, we first detail the convolutional response-
based score (CORES), derived from the responses of a sin-
gle, specified layer. We then elaborate on the method for
pinpointing a trajectory of sample-relevant kernels in dif-
ferent layers. Finally, we combine these elements to unveil
the final version of CORES.

4.1. Single-layer CORES

Given c channels of convolutional kernels in the l-th layer
of a trained deep neural network, we calculate ScoreOOD

utilizing the responses from these kernels, i.e., R(l) =

{R(l)
1 , R

(l)
2 , . . . , R

(l)
c }. For clarity, we will omit the super-

script (l) unless specific distinction is required.
Since DNNs are trained on ID data, their responses R(l)

align better with ID than OOD inputs. This difference in
response strength helps identify ID and OOD inputs. Rec-
ognizing the intrinsic noise in the responses, we emphasize
that extreme values in a kernel often convey more pertinent
information. Thus, we exclusively concentrate on the high-
est positive value and the lowest negative value for each
kernel. Specifically, we design ScoreOOD to capture both
the magnitude of these extreme values and their frequency
within the entire response spectrum.
Response Magnitude. Convolutional kernels are gener-
ally more responsive to ID inputs than to OOD ones, pro-
ducing stronger responses. To capture this, we introduce
a metric focusing on the maximum positive and minimum
negative values of the response:

RM+(R) =
1

|R|

|R|∑
i=1

max(max(Ri)− τ+, 0)

RM−(R) =
1

|R|

|R|∑
i=1

max(τ− −min(Ri), 0)

(3)

Here, τ+ and τ− are thresholds that help decide if the re-
sponse strength is significant.
Frequency of Significant Responses. Convolutional ker-
nels typically produce more distinct responses to ID inputs
than to OOD ones. To capture this, we introduce a metric
that calculates the frequency of these significant responses:

RF+(R) =
1

|R|
1(max(Ri) > τ+)

RF−(R) =
1

|R|
1(min(Ri) < τ−)

(4)

Definition of Single-layer CORES. We integrate the
above metrics to define a straightforward OOD score:

S(R) = RM+(R)λ1×RM−(R)λ1×RF+(R)λ2×RF−(R)λ2

(5)
where λ1 and λ2 are weighting hyperparameters.
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Figure 2. Illustration of CORES for OOD detection. (a) Inference pathway in neural networks, with an input progressing through convo-
lutional layers to the final classification. (b) Backward retracing from extreme predictions to identify sample-relevant kernels. (c) Strategy
for deriving the OOD score based on response magnitude and frequency, highlighting differences between ID and OOD characteristics.

4.2. Selection of Sample-relevant Kernels

In DNNs, there are many convolutional kernels across dif-
ferent layers. However, only a few of these kernels play a
key role in making a prediction for a given input. Specif-
ically, kernels leading to extreme predictions such as cmax
and cmin tend to have a stronger connection or mismatch
with the input. Signals on these sample-relevant kernels
tend to be more reliable for OOD detection. Hence, we
focus on these kernels by retracing from the extreme pre-
dictions through the network’s layers.
Selection for the Last Convolution Layer. We define the
weight matrix of the fully-connected (FC) layer that con-
nects the last convolutional layer’s responses to the output
O as F ∈ Ro×c, where o is the category number and c is
the kernel number. To identify kernels in the last convo-
lution layer—preceding the FC layer—that are relevant to
the sample, we focus on the weights in F corresponding to
the highest and lowest confidence categories, cmax and cmin.
The selection process is as follows:

I
(L)

= TopK({Fcmax,j}j=1:c)

I(L) = TopK({Fcmin,j}j=1:c)
(6)

Indices I and I , derived from F , indicate the kernel indices
from the last convolutional layer that are associated with
cmax and cmin, respectively. The operation TopK selects a
subset of entries with the largest values.

We assume that the responses from the last convolutional
layer have a 1×1 dimension before connecting to the fully-
connected layer. If the response is of a larger dimension, say

t× t where t > 1, flattening is required. Before conducting
the TopK operation, we average each t×t block of weights.

In summary, the responses from the kernels deemed rel-
evant to the sample in the last convolutional layer are iden-
tified as follows:

R(L)
= {R(L)

i |i ∈ I
(L)}

R(L) = {R(L)
i |i ∈ I(L)}

(7)

Selection for Intermediate Convolutional Layers. To
trace the indices of sample-relevant kernels from the l + 1-
th to the l-th layer, we employ the weight matrix K ∈
Rc(l+1)×c(l)×w×h, which represents the inter-layer connec-
tions. Here, c(l) and c(l+1) denote the number of kernels in
the l-th and l + 1-th layers, respectively, while w × h in-
dicates the kernel size. We select kernels in the l-th layer
based on their influence on the subsequent layer’s kernels.
The selection process is as follows:

I
(l)

= TopK


 ∑

i∈I
(l+1)

max(Ki,j,:,:)


j=1:c(l)


I(l) = BotK


 ∑

i∈I(l+1)

min(Ki,j,:,:)


j=1:c(l)


(8)

The function BotK is defined as the operation selecting a
subset of entries with the lowest values. Fig. 3 illustrates
this selection process. Utilizing these indices, we can deter-
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Figure 3. Demonstration of identifying sample-relevant kernels in
the l-th layer, leveraging those kernels in the l + 1-th layer.

mine the responses of the sample-relevant kernels at the l-th
layer, as detailed in Eq. (7).

4.3. Final CORES
Leveraging responses from sample-relevant kernels, we re-
fine Eq. (5) to establish a revised OOD score for the perti-
nent layer:

S(R∪R) = RM+(R)λ1 ·RM−(R)λ1 ·RF+(R)λ2 ·RF−(R)λ2

(9)
Practically, we aggregate responses from the sample-
relevant kernels at multiple layers. The formula is applied
to each respective layer to calculate individual scores, which
are then averaged to yield the final OOD score.

5. Experimental Results
5.1. Experimental Setup

Implementation. The parameters λ1 and λ2 are set to 10
and 1. In the process of selecting sample-relevant kernels,
the TopK and BotK operations are configured to select en-
tries corresponding to the top and bottom 20% of kernels,
respectively. For CORES construction, 4 convolutional lay-
ers are utilized for models on CIFAR-10, while 5 layers are
used for models on CIFAR-100 and ImageNet. We tune
the thresholds τ+ and τ− by calibrating them to minimize
the false positive rate of Gaussian noise and uniform noise.
All experiments are implemented in PyTorch [28] and con-
ducted on a workstation equipped with dual 2.40 GHz CPU,
128 GB of RAM, and four NVIDIA RTX 3090Ti GPUs.
ID/OOD Settings. We investigate four ID/OOD scenar-
ios: (1) Small-scale Common OOD Setting: CIFAR-10 and
CIFAR-100 [16] serve as ID datasets. SVHN [25], Tex-
tures [2], LSUN-R [45], iSUN [43], and TinyImageNet-
R are employed as OOD datasets, with “-R” denoting the
resized variants. All images are uniformly resized to a
32 × 32 resolution. (2) Large-scale Common OOD Set-
ting: We designate ImageNet-1k [4] as the ID dataset and

select OpenImage-O [41], SUN [42], Places [50], and Tex-
tures [2] as OOD datasets. (3) Small-scale Near-OOD Set-
ting: CIFAR-10 is utilized as the ID dataset, with CIFAR-
100 acting as the OOD dataset, reflecting the semantic
closeness of the categories. (4) Large-scale Near-OOD Set-
ting: ImageNet-1k [4] is the ID dataset, while ImageNet-
O [12] is adopted as the OOD dataset. In particular, the
term “near-OOD” is applied to samples that bear semantic
resemblance to ID samples [29].
Setup. For CIFAR benchmarks [16], we employ ResNet-
18 [7], DenseNet-101 [13], and WideResNet-28-10 (WRN-
28) [48]. For ImageNet-1k benchmark [4], we utilize VGG-
16 [31] and SqueezeNet [15]. The overall settings are con-
sistent with [32, 33, 46].
Baselines. We select seven post-hoc OOD detection
methods as baselines, including maximum softmax prob-
ability (MSP) [10], ODIN [21], Energy [22], ReAct [33],
DICE [32], TFEM [51] and FeatureNorm [46].
Evaluation Metrics. We evaluate OOD detection using
the area under the receiver operating characteristic curve
(AUROC) [3] and the false positive rate at a true positive
rate of 95% (FPR95) [21], both expressed as percentages.

5.2. Experimental Results

Performance on OOD Detection. Tab. 1 presents the
OOD detection results for ResNet-18, DenseNet-101, and
WRN-28 on small-scale datasets. It is evident that our
CORES outperforms all competing approaches across dif-
ferent cases. Notably, on the CIFAR-10 dataset, CORES
achieves a reduction in average FPR95 of 19.97%, 10.01%,
and 5.37% over the next best method, while for CIFAR-100,
the reductions are 27.99%, 18.67%, and 13.91%, respec-
tively. These findings underscore CORES’s effectiveness
and its pronounced advantage in OOD detection.

Furthermore, Tab. 2 reports the OOD detection perfor-
mance of VGG-16 and SqueezeNet on large-scale datasets,
which pose a greater challenge. Despite this, our CORES
still attains the lowest FPR95 and highest AUROC in most
cases, underscoring its strong generalization capabilities on
large-scale datasets.
Performance on Near-OOD Detection. We evaluate our
method’s robustness in near-OOD scenarios. Tab. 3 presents
the performance with CIFAR-10 as ID and CIFAR-100 as
OOD, using ResNet-18 and WRN-28 as the DNN classi-
fiers. In this challenging setting, our method consistently
outperforms others, despite a general decline in metrics.

For large-scale datasets, Tab. 4 confirms a similar trend,
with our method exhibiting considerable improvements
over existing techniques. The MSP baseline shows over
a 95% FPR95 for VGG-16 and SqueezeNet, indicating a
near-complete breakdown in detection. In contrast, our
method achieves at least a 2% better FPR95 and a 4% higher
AUROC than any alternative. These findings underscore
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Table 1. Comparison on the OOD detection performance of different methods under the small-scale setting.

ID Model Method
OOD

Average
SVHN Textures LSUN-R iSUN TinyImageNet-R

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

C
IF

A
R

-1
0

R
es

N
et

-1
8

MSP 52.12 92.20 59.47 89.56 48.35 93.07 50.30 92.58 59.70 90.48 53.99 91.58
ODIN 33.83 93.03 45.49 90.01 20.05 96.56 23.09 96.01 19.82 96.63 28.46 94.45
Energy 30.47 94.05 45.83 90.37 23.62 95.93 27.14 95.34 38.80 93.50 33.17 93.84
ReAct 40.54 90.54 48.61 88.44 27.01 94.74 30.57 93.95 32.87 94.56 35.92 92.45
DICE 25.95 94.66 47.22 89.82 27.70 95.01 31.07 94.42 40.86 93.17 34.56 93.42
TFEM 38.42 93.53 43.81 92.32 19.85 96.59 23.43 96.00 33.78 94.05 31.86 94.50

FeatureNorm 7.13 98.65 31.18 92.31 27.08 95.25 26.02 95.38 33.91 94.31 25.06 95.18
Ours 3.92 99.24 10.92 97.85 2.42 99.31 2.13 99.37 6.08 98.76 5.09 98.91

D
en

se
N

et
-1

01

MSP 47.24 93.48 64.15 88.15 42.10 94.51 42.31 94.52 50.34 93.14 49.23 92.76
ODIN 25.29 94.57 57.50 82.38 3.09 99.02 3.98 98.90 5.97 98.73 19.17 94.72
Energy 40.61 93.99 56.12 86.43 9.28 98.12 10.07 98.07 18.25 96.99 26.87 94.72
ReAct 41.64 93.87 43.58 92.47 11.46 97.87 12.72 97.72 18.25 96.99 25.53 95.78
DICE 25.99 95.90 41.90 88.18 3.91 99.20 4.36 99.14 9.08 98.33 17.05 96.15
TFEM 30.78 95.27 50.89 90.09 8.15 98.24 8.81 98.21 15.89 97.21 22.90 95.80

FeatureNorm 16.53 95.81 30.43 90.76 8.66 98.20 10.36 97.94 14.23 97.09 16.04 95.96
Ours 6.07 98.75 13.10 96.92 2.30 99.39 2.79 99.30 5.90 98.77 6.03 98.63

W
R

N
-2

8

MSP 42.10 91.85 53.30 87.45 37.81 93.71 40.11 93.05 42.51 92.12 43.17 91.64
ODIN 37.08 88.36 47.58 82.85 20.51 95.04 22.95 94.22 28.60 90.24 31.34 90.14
Energy 33.11 90.54 46.06 85.09 22.68 94.90 25.12 94.17 32.29 92.88 31.85 91.52
ReAct 15.92 97.06 44.38 91.97 27.98 94.75 31.52 94.17 35.64 93.76 31.09 94.34
DICE 37.84 86.99 50.77 79.70 26.30 92.89 28.30 92.14 31.70 91.67 34.98 88.68
TFEM 50.60 89.50 45.30 91.18 11.98 97.70 26.14 94.70 32.29 92.88 33.26 93.19

FeatureNorm 3.83 99.18 14.23 97.06 8.13 98.32 5.98 98.71 10.91 97.86 8.62 98.23
Ours 2.80 99.50 6.03 98.79 1.66 99.52 1.27 99.59 4.50 99.06 3.25 99.29

C
IF

A
R

-1
00

R
es

N
et

-1
8

MSP 81.32 77.74 85.11 73.36 82.46 75.73 82.26 76.16 80.07 77.89 82.24 76.18
ODIN 40.94 93.29 83.63 72.37 79.61 82.13 76.66 83.51 75.35 84.40 71.24 83.14
Energy 81.74 84.56 85.87 74.94 73.57 82.99 73.36 83.80 71.68 84.76 77.24 82.21
ReAct 70.81 88.24 59.15 87.96 54.47 89.56 51.89 90.12 54.10 89.44 58.08 89.06
DICE 50.84 91.15 72.68 76.71 75.29 81.20 74.06 82.14 73.30 83.11 69.23 82.86
TFEM 61.48 90.63 52.36 89.72 52.68 90.04 48.48 90.94 51.97 89.73 53.39 90.21

FeatureNorm 22.82 95.33 48.51 83.92 96.73 62.34 94.32 65.30 90.78 67.01 70.63 74.78
Ours 6.78 98.47 24.38 94.61 34.27 93.57 30.01 94.36 31.58 93.60 25.40 94.92

D
en

se
N

et
-1

01

MSP 81.70 75.40 84.79 71.48 85.24 69.18 85.99 70.17 82.67 73.97 84.08 72.04
ODIN 41.35 92.65 82.34 71.48 65.22 84.22 67.05 83.84 54.50 87.55 62.09 83.95
Energy 87.46 81.85 84.15 71.03 70.65 80.14 74.54 78.95 68.45 80.84 77.05 78.56
ReAct 83.81 81.41 77.78 78.95 60.08 87.88 65.27 86.55 64.84 84.88 70.36 83.93
DICE 54.65 88.84 65.04 76.42 49.40 91.04 48.72 90.08 43.58 90.96 52.28 87.47
TFEM 66.99 88.24 59.49 85.95 48.02 91.40 51.10 91.10 48.52 91.33 54.82 89.61

FeatureNorm 48.39 90.98 48.60 84.89 79.34 83.27 69.93 85.99 63.05 87.38 61.86 86.50
Ours 25.57 94.50 30.07 92.48 40.06 91.94 38.39 92.09 30.07 92.48 33.61 92.68

W
R

N
-2

8

MSP 75.31 81.68 81.13 78.25 79.85 76.69 80.02 75.54 80.47 73.65 79.36 77.16
ODIN 27.39 94.39 74.29 76.66 65.74 81.62 66.36 81.26 67.08 79.47 60.17 82.68
Energy 70.93 82.94 80.11 79.04 74.42 79.35 75.56 78.02 76.82 75.72 75.57 79.01
ReAct 66.05 86.61 68.51 83.00 73.27 74.45 72.92 73.77 75.94 70.91 71.34 77.75
DICE 68.37 83.14 79.27 78.90 74.17 79.45 75.14 78.13 77.75 75.49 74.94 79.02
TFEM 71.01 87.50 80.46 78.42 57.01 88.04 72.78 81.48 76.03 78.14 71.46 82.72

FeatureNorm 19.90 96.40 57.96 79.15 81.92 80.02 81.87 79.11 80.54 78.09 64.44 82.55
Ours 9.47 98.17 31.86 92.88 65.46 86.63 61.25 87.22 63.27 86.32 46.26 90.24

our approach’s effectiveness and confirm its superiority in
near-OOD detection.

5.3. Ablation Studies and More Analysis

Effect of Four Metrics in CORES. To assess the in-
fluence of the four metrics in CORES, we use CIFAR-10
as the ID dataset and contrasting it with a suite of OOD

datasets including SVHN, Textures, LSUN-R, iSUN, and
TinyImageNet-R, with WRN-28 serving as the classifier.
We consider five configurations of CORES: without the fre-
quency of significant responses (w/o RF), without the mag-
nitude of responses (w/o RM), ignoring negative convo-
lutional responses, disregarding positive convolutional re-
sponses, and the complete CORES framework.
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Table 2. Comparison on the OOD detection performance of different methods under the large-scale setting.

ID Model Method
OOD

Average
OpenImage-O SUN Places Textures

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

Im
ag

eN
et

-1
k

V
G

G
-1

6

MSP 74.29 81.24 75.66 78.31 77.89 77.60 64.84 81.66 73.17 79.70
ODIN 68.96 82.88 61.31 86.51 67.33 83.87 44.57 89.82 60.54 85.77
Energy 70.06 84.74 59.34 86.82 66.27 83.95 43.90 89.94 59.89 86.36
ReAct 97.83 47.58 99.87 35.01 99.25 37.54 96.45 49.12 98.35 42.31
DICE 71.81 74.02 58.42 86.71 68.97 83.04 38.95 90.66 59.54 83.61
TFEM 65.64 76.29 44.03 91.50 48.67 88.84 37.94 88.99 49.07 86.41

FeatureNorm 57.11 82.91 28.09 94.37 41.78 90.21 23.53 95.05 37.63 90.64
Ours 51.58 87.24 23.36 95.02 38.49 90.61 14.11 97.26 31.89 92.53

Sq
ue

ez
eN

et

MSP 86.12 71.15 83.03 72.25 87.27 67.00 94.61 41.84 87.76 63.06
ODIN 80.27 73.21 78.32 78.37 83.23 73.31 92.25 43.43 83.52 67.08
Energy 74.15 74.28 56.41 87.88 67.74 82.73 67.16 64.51 66.37 77.35
ReAct 75.75 68.66 87.57 66.37 88.80 66.20 51.05 76.57 75.79 69.45
DICE 71.81 74.02 50.55 87.46 60.14 83.19 39.89 87.53 55.60 83.05
TFEM 67.46 79.18 44.61 91.40 56.64 86.38 19.63 96.18 47.08 88.29

FeatureNorm 68.72 77.99 43.91 90.20 56.95 84.83 24.15 94.47 48.43 86.87
Ours 67.35 80.99 40.23 91.70 54.63 85.78 20.55 95.99 45.69 88.62

Table 3. Performance comparison of near-OOD detection using
CIFAR-10 as ID and CIFAR-100 as OOD.

Method
Model

ResNet-18 WRN-28

FPR95↓ AUROC↑ FPR95↓ AUROC↑

MSP 64.99 88.35 52.06 88.31
ODIN 52.83 88.57 60.08 73.79
Energy 50.32 89.77 44.92 88.36
ReAct 50.60 90.03 48.03 88.66
DICE 66.95 84.40 44.90 86.48
TFEM 50.04 89.73 44.92 88.35

FeatureNorm 76.17 79.96 58.33 86.64
Ours 47.39 90.25 43.98 91.64

Table 4. Performance comparison of near-OOD detection using
ImageNet-1k as ID and ImageNet-O as OOD.

Method
Model

VGG-16 SqueezeNet

FPR95↓ AUROC↑ FPR95↓ AUROC↑

MSP 96.90 52.29 97.35 52.22
ODIN 87.50 67.94 94.30 60.21
Energy 95.25 64.08 89.65 62.07
ReAct 98.80 39.53 82.60 61.12
DICE 95.25 64.08 85.60 65.46
TFEM 90.85 56.77 80.55 71.81

FeatureNorm 80.20 74.81 81.40 72.65
Ours 72.20 79.10 77.70 78.10

Tab. 5 reveals that each metric is essential to CORES’s
performance, with their removal impairing the model’s
OOD detection capabilities. The elimination of response
magnitude metrics, RM+ and RM−, notably affects per-
formance more than that of frequency metrics, RF+ and
RF−, highlighting the value of response magnitudes. The
absence of metrics associated with positive responses is
particularly detrimental, leading to an approximate 3% in-

Table 5. Ablation study on the four CORES metrics, using the
WRN-28 model trained on CIFAR-10 as the DNN classifier. The
values are averaged over multiple OOD datasets.

RM+ RM− RF+ RF− FPR95↓ AUROC↑
✓ ✓ 3.81 99.18

✓ ✓ 6.33 98.72
✓ ✓ 5.04 99.02

✓ ✓ 5.46 98.79
✓ ✓ ✓ ✓ 3.25 99.29

crease in the FPR95 metric. This analysis underscores the
integral role each metric plays within CORES, where they
contribute collectively to its success.
Effect of Sample-relevant Kernel Selection. We evalu-
ate the influence of kernel selection on OOD detection ef-
ficacy by analyzing the CORES OOD score distributions.
Using CIFAR-10 and CIFAR-100 as ID datasets, we im-
plement models WRN-28, DenseNet-101, and ResNet-18,
with LSUN-R as the OOD dataset. For ImageNet-1k, VGG-
16 is utilized with Textures as the OOD dataset. Fig. 4
demonstrates that applying kernel selection within CORES
significantly diminishes the overlap between ID and OOD
score distributions, leading to a notable decrease in FPR95.
This reduction is especially marked for CIFAR-100, where
FPR95 decreases by approximately 55%, highlighting the
benefits of kernel selection in improving model discernment
between ID and OOD samples.
Analysis of CORES Metric Values. To illustrate the effi-
cacy of the four CORES metrics, we present a visualization
of RM+, RM−, RF+, and RF− across ID and OOD im-
ages. Utilizing WRN-28, we select an ID image from each
of the CIFAR-10 categories and two OOD images from
each of SVHN, LSUN-R, iSUN, TinyImageNet-R, and Tex-
tures. As depicted in Fig. 5, ID images consistently show
higher values for RM+, RM−, RF+, and RF− compared
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Figure 4. Comparison on the OOD score distributions and FPR95 values of CORES with and without applying sample-relevant kernel
selection using different DNN models: (a) WRN-28, (b) DenseNet-101, (c) ResNet-18, and (d) VGG-16.

Figure 5. Comparative analysis of four CORES metrics across ID
(CIFAR-10) and OOD (SVHN, LSUN-R, iSUN, TinyImageNet-
R, Textures) images using WRN-28 as the DNN classifier.

to OOD images, confirming that the CORES metrics profi-
ciently differentiate between ID and OOD samples.
Effect of Convolutional Layer Count. To assess how
the convolutional layer count influences the performance
of CORES in OOD detection, we experiment with the
DenseNet-101 network, comparing CIFAR-10 and CIFAR-
100 as ID datasets with various OOD datasets. Fig. 6 shows
that CORES achieves the lowest performance with a single
convolutional layer. Performance improves as more layers
are included, with the FPR95 value decreasing and stabiliz-
ing at four layers for CIFAR-10 and five layers for CIFAR-

Figure 6. Comparison of CORES’s OOD detection performance
using different numbers of convolutional layers in DenseNet-101.
FPR95 values are averaged over multiple OOD datasets.

100. These findings confirm that CORES is more effective
when leveraged across multiple convolutional layers.

6. Conclusion
In this paper, we have proposed a novel COnvolutional
REsponse-based Score (CORES) for OOD detection. The
rationale is that convolutional kernels generally produce
more pronounced responses for ID samples compared to
OOD ones, as the kernels are trained for fitting ID samples.
Extensive experiments validate the effectiveness of CORES
in OOD detection, and its superiority to the state-of-the-art
methods. Future plans include applying convolutional re-
sponses to more security issues, such as adversarial attacks.
Acknowledgements. This work was supported by NSFC
(62102105, U20B2046, 62073263, 61902082), Guang-
dong Basic and Applied Basic Research Foundation
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