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Text-to-scene
“The room has a dining table and 
two dining chairs. The second dining 
chair is to the right of the first dining 
chair. There is a pendant lamp above 
the dining table. ”

Re-arrangeComplete

Figure 1. We present DiffuScene, a diffusion model for diverse and realistic indoor scene synthesis. It facilitates various downstream
applications: scene completion from partial scenes (left); scene arrangements of given objects (middle); and scene generation from a text
prompt describing partial scene configurations. (right).

Abstract

We present DiffuScene for indoor 3D scene synthesis
based on a novel scene configuration denoising diffusion
model. It generates 3D instance properties stored in an
unordered object set and retrieves the most similar geome-
try for each object configuration, which is characterized as
a concatenation of different attributes, including location,
size, orientation, semantics, and geometry features. We in-
troduce a diffusion network to synthesize a collection of 3D
indoor objects by denoising a set of unordered object at-
tributes. Unordered parametrization simplifies and eases
the joint distribution approximation. The shape feature dif-
fusion facilitates natural object placements, including sym-
metries. Our method enables many downstream applica-
tions, including scene completion, scene arrangement, and
text-conditioned scene synthesis. Experiments on the 3D-
FRONT dataset show that our method can synthesize more

physically plausible and diverse indoor scenes than state-
of-the-art methods. Extensive ablation studies verify the ef-
fectiveness of our design choice in scene diffusion models.

1. Introduction

Synthesizing 3D indoor scenes that are realistic, semanti-
cally meaningful, and diverse is a long-standing problem
in computer graphics. It can significantly reduce costs in
game development, CGI for films, and virtual reality. Fur-
thermore, scene synthesis has practical applications in vir-
tual interior design, enabling virtual rearrangement based
on existing furniture or textual descriptions. It also serves
as a fundamental component in data-driven approaches for
3D scene understanding and reconstruction, necessitating
large-scale 3D datasets with ground-truth labels.

Traditional scene modeling and synthesis formulate this
as an optimization problem. With pre-defined scene prior
constraints defined by room design rules such as layout
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guidelines [38, 78], object category frequency distributions
[4, 5, 14], affordance maps from human-object interac-
tions [16, 19, 29], or scene arrangement examples [15, 19],
they initially sample an initial scene and subsequently refine
scene configurations through iterative optimization. How-
ever, defining precise rules is time-consuming and demands
significant artistic expertise. The scene optimization stage
is often laborious and computationally inefficient. Addi-
tionally, predefined design rules may limit the expression of
complex and diverse scene compositions.

To automate the scene synthesis, some approaches [33,
42, 44, 46, 51, 67–69, 75, 76, 85] resort to deep genera-
tive models to learn scene priors from large-scale datasets.
GAN-based methods [76] implicitly fit the scene distri-
bution via adversarial training, yielding favorable results.
However, they often lack diversity due to limited mode cov-
erage and are prone to mode collapse. VAE-based meth-
ods [46, 75] explicitly approximate the scene distribution,
offering better generative diversity but with lower-fidelity
results. Recent auto-regressive models [42, 44, 69] progres-
sively predict object properties sequentially. However, the
sequential process may not accurately capture inter-object
relationships and can accumulate prediction errors.

To capture more complicated scene configuration pat-
terns for diverse scene synthesis, we strive to design a dif-
fusion model for 3D scene synthesis. Diffusion models
offer a compelling balance between diversity and realism
and are relatively easier to train compared to other gener-
ative models [6, 13, 20, 21, 31, 49, 50, 64, 65]. In this
work, we represent a scene as a set of unordered objects,
with each element comprising a concatenation of various at-
tributes, including location, size, orientation, semantics, and
geometry features. Compared to other scene representations
like multi-view images [10, 22, 32], voxel grids [8, 71],
and neural fields [7, 39, 40, 43, 61], our representation is
more compact and lightweight, making it suitable for learn-
ing through diffusion models. Rather than representing a
scene as an ordered object sequence and diffusing them se-
quentially [44, 69], unordered set diffusion simplifies and
eases the approximation of the joint distribution of object
instances. To this end, we design a denoising diffusion
model [24, 25, 59] to estimate object attributes to determine
the placements and types of 3D instances and then perform
shape retrieval to obtain final surface geometries. The scene
diffusion priors are learned through iterative transitions be-
tween noisy and clean object sets, allowing for generating
a diverse range of physically plausible scenes. During de-
noising, we simultaneously refine the properties of all ob-
jects within a scene, explicitly leveraging spatial relation-
ships through an attention mechanism [66]. Different from
previous works [44, 69, 75] that only predict object bound-
ing boxes, we diffuse semantics, oriented bounding boxes,
and geometry features together to promote a holistic under-

standing of composition structure and surface geometries.
The synthesized shape codes for geometry retrieval can pro-
duce more natural object arrangements, such as symmetric
relations commonly seen in the real world. We show com-
pelling results in the unconditional and conditional settings
against state-of-the-art scene generation models and pro-
vide extensive ablation studies to verify the design choices
of our method.

Our contributions can be summarized as follows.
• We introduce 3D scene denoising diffusion models for di-

verse indoor scene synthesis, which learn holistic scene
configurations of object semantics, placements, and ge-
ometries.

• We introduce shape latent feature diffusion for geome-
try retrieval, which exploits accurate inter-object relation-
ships for symmetry formation.

• Based on this proposed model we facilitate completion
from partial scenes, object re-arrangement in an existing
scene, as well as text-conditioned scene synthesis.

2. Related work
Traditional Scene Modeling and Synthesis Traditional
methods usually formulate this problem into a data-driven
optimization task. To synthesize plausible 3D scenes, prior
knowledge of reasonable configurations is required to drive
scene optimization. Scene priors were often defined by fol-
lowing guidelines of interior design [38, 78], object fre-
quency distributions (e.g., co-occurrence map of object
categories) [4, 5, 14], affordance maps from human mo-
tions [16, 19, 29, 36, 47], or scene arrangement exam-
ples [15, 19]. Constrained by scene priors, a new scene
can be sampled from the formulation using different op-
timization methods, e.g., iterative methods [16, 19], non-
linear optimization [4, 15, 47, 74, 78, 80], or manual in-
teraction [5, 38, 54]. Unlike them, we learn complicated
scene composition patterns from datasets, avoiding human-
defined constraints and iterative optimization processes.

Learning-based Generative Scene Synthesis 3D deep
learning reforms this task by learning scene priors in a fully
automatic, end-to-end, and differentiable manner. The ca-
pacity to process large-scale datasets dramatically increases
the inference ability in synthesizing diverse object arrange-
ments. Existing generative models for 3D scene synthe-
sis are usually based on feed-forward networks [72, 85],
VAEs [46, 75] , GANs [76], or Autoregressive models [42,
44, 69]. GAN methods generate high-quality results rapidly
but often lack mode coverage and diversity. VAEs offer bet-
ter mode coverage but face challenges in generating faithful
samples [73]. Recurrent networks [33, 42, 44, 51, 67–69]
including autoregressive models predict each new object
conditioned on the previously generated objects. In con-
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Figure 2. Overview. Given a 3D scene S of N objects, we represent it as an unordered set x0 = {oi}Ni=1, by parametrizing each object
oi as a vector storing all object attributes i.e., location li, size si, orientation θi, class label ci, and latent shape code fi. Based on a set
of all possible x0, we propose DiffuScene, a denoising diffusion probabilistic model for 3D scene generation. In the forward process, we
gradually add noise to x0 until we obtain a standard Gaussian noise xT . In the reverse process i.e. generative process, a denoising network
iteratively cleans the noisy scene using ancestral sampling. Finally, we use the denoised class labels and shape latent codes to perform
shape retrieval, and place object geometries through denoised locations, sizes, and orientations.

trast, we approach scene generation as an unordered object-
set diffusion process where we explicitly model the joint
distribution of object compositions. Multiple object proper-
ties are denoised synchronously, enhancing inter-object re-
lationships and object composition plausibility.

3D Diffusion Models Recently, diffusion models [25,
55–58] have shown impressive visual quality in generative
tasks, especially in various applications of 2D image syn-
thesis [1, 9, 12, 25–27, 30, 34, 37, 41, 52, 53] and 3D shape
generation [3, 28, 35, 45, 60, 62, 63, 81, 83, 84, 86]. How-
ever, diffusion models in the 3D scene receive much less at-
tention. A concurrent work of LEGO-Net [70] aims to pre-
dict 2D object locations and orientations, taking the input
of a floor plane, object semantics, and geometries. Mean-
while, CommonScene [82] generates 3D indoor scenes con-
ditioned on scene graphs. In contrast, DiffuScene is a
scene-generative model that predicts 3D instance proper-
ties from random noise, including 3D locations and orien-
tations, semantics, and geometries. Our method is more
generic and versatile, which can benefit scene completion
and conditioned scene synthesis from multi-modal signals
like texts. In terms of implementation, our approach is
based on a denoising diffusion model [25], while LEGO-
Net uses a Langevin Dynamics scheme based on a score-
based method [57]. We use a UNet-1D with attention as a
denoiser rather than a transformer in LEGO-Net. These im-
plementation differences contribute to our model’s ability to
acquire more natural scene arrangements, as evidenced by
the discovery of more symmetric pairs in our method.

3. DiffuScene
We introduce DiffuScene, a scene denoising diffusion
model aiming at learning the distribution of 3D indoor
scenes which includes semantic classes, surface geometries,
and placements of multiple objects. Specifically, we assume
indoor scenes to be located in a world coordinate system
with the origin at the floor center, and each scene S is a
composition of at most N objects {o}Ni=1. We represent
each scene as an unordered set with N objects, each object
in a scene set is defined by its class category c ∈ RC , ob-
ject size s ∈ R3, location ℓ ∈ R3, rotation angle around
the vertical axis θ ∈ R, and shape code f ∈ RF extracted
from object surfaces in the canonical system through a pre-
trained shape auto-encoder [77]. Since the number of ob-
jects varies across different scenes, we define an additional
‘empty’ object and pad it into scenes to have a fixed num-
ber of objects across scenes. As proposed in [79], we rep-
resent the object rotation angle by parametrizing a 2-D vec-
tor of cosine and sine values. In summary, each object oi

is characterized by the concatenation of all attributes, i.e.
oi = [ℓi, si, cos θi, sin θi, ci, fi] ∈ RD, where D is the
dimension of concatenated attributes. Based on this rep-
resentation, we design our denoising diffusion model in
Sec. 3.1, which supports many different downstream appli-
cations like scene completion, scene re-arrangement, and
text-conditioned scene synthesis in Sec. 3.2.

3.1. Object Set Diffusion

An overview of our approach is shown in Fig. 2. We design
a denoising diffusion model that employs Gaussian noise
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corruptions and removals on object attributes to transition
between noisy and clean scene distributions.

Diffusion process. The (forward) diffusion process is a
pre-defined discrete-time Markov chain in the data space
X spanning all possible scene configurations represented as
2D tensors of fixed size x ∈ RN×D, which are the con-
catenations of N object properties {oi}Ni=1 within a scene
S. Given a clean scene configuration x0 from the under-
lying distribution q(x0), we gradually add Gaussian noise
to x0, obtaining a series of intermediate scene variables
x1, ...,xT with the same dimensionality as x0, according
to a pre-defined, linearly increased noise variance schedule
β1, ..., βT (where β1 < ... < βT ). The joint distribution
q(x1:T |x0) of the diffusion process can be expressed as:

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1), (1)

where the diffusion step at time t is defined as:

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI). (2)

A helpful property of diffusion processes is that we can di-
rectly sample xt from x0 via the conditional distribution:

q(xt|x0) := N (xt;
√
ᾱtx0, (1− ᾱt)I), (3)

where xt =
√
ᾱtx0 +

√
1− ᾱtϵ where αt := 1 − βt ,

ᾱt :=
∏t

r=1 αs, and ϵ is the noise used to corrupt xt.

Generative process. The generative (i.e. denoising) pro-
cess is parameterized as a Markov chain of learnable re-
verse Gaussian transitions. Given a noisy scene from a stan-
dard multivariate Gaussian distribution xT ∼ N (0, I) as
the initial state, it corrects xt to obtain a cleaner version
xt−1 at each time step by using a learned Gaussian tran-
sition pϕ(xt−1|xt) which is parameterized by a learnable
network ϕ. By repeating this reverse process until the max-
imum number of steps T , we can reach the final state x0,
the clean scene configuration we aim to obtain. Specifically,
the joint distribution of the generative process pϕ(x0:T ) is
formulated as:

pϕ(x0:T ) := p(XT )

T∏
t=1

pϕ(xt−1|xt). (4)

pϕ(xt−1|xt) := N (xt−1;µϕ(xt, t),Σϕ(xt, t)), (5)

where µϕ(xt) and Σϕ(xt) are the predicted mean and co-
variance of the Gaussian xt−1 by feeding xt into the de-
noising network ϕ. For simplicity, we pre-define the con-
stants of Σϕ(xt) := σt :=

1−ᾱt−1

1−ᾱt
βt, although Song et al.

have shown that learnable covariances can increase gener-
ation quality in DDIM [58]. Ho et al. empirically found
in DDPM [25] that rather than directly predicting µϕ(xt, t),
we can synthesize more high-frequent details by estimat-
ing the noise ϵϕ(xt, t) applied to perturb xt. Then µϕ(xt)

Figure 3. The denoising network architecture takes the attributes
of multiple objects (bounding box, object class, geometry code) as
input and denoises them using 1D convolutions with skip connec-
tions and attention blocks.

can be re-parametrized by subtracting the predicted noise
according to Bayes’s theorem:

µϕ(xt, t) :=
1

√
αt

(xt −
βt√
1− ᾱt

ϵϕ(xt, t)). (6)

Denoising network. As shown in Fig. 3, the denoiser in
our method is based on 1D convolution with skip connec-
tions, where convolution blocks are interleaved with atten-
tion blocks [66] to aggregate the features of different ob-
jects, exploiting the inter-object relationships and capturing
the global scene context.

Training objective. The goal of training the reverse dif-
fusion process is to find optimal denoising network param-
eters ϕ that can generate natural and plausible scenes. Our
training objective is composed of two parts: i) A loss Lsce to
constrain that the generated object set can approximate the
underlying data distribution, and ii) a regularization term
Liou to penalize the object intersections. The Lsce is derived
by maximizing the negative log-likelihood of the last de-
noised scene E[− log pϕ(x0)], which is yet not intractable
to optimize directly. Thus, we can instead choose to maxi-
mize its variational upper bound:

Lsce := Eq[− log
pϕ(x0:T )

q(x1:T |x0)
] ≥ E[− log pϕ(x0)]. (7)

By surrogating variables, we can further simplify Lsce as the
sum of KL divergence between posterior pϕ(xt−1|xt,x0)
and conditional distribution q(xt|xt−1) at each t :

Lsce := Eq[− log p(xT )−
T∑

t=1

log
pϕ(xt−1|xt,x0)

q(xt|xt−1)
], (8)

where − log p(xT ) is a fixed constant since xT ∼ N (0, I).
Here, we refer to DDPM [25] for the details of the deriva-
tion process. Moreover, we can re-write Lsce into a simple
and intuitive version that constrains the correct prediction
of the corrupted noise on xt:

Lsce := Ex0,ϵ,t[∥ϵ− ϵϕ(xt, t)∥2]
:= Eϕ[∥ϵ− ϵϕ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)∥2].

(9)
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Based on Eq. 6, we can obtain the approximation of clean
scene x̃t

0. Thus, we can compute Liou as the IoU summation
of arbitrary two bounding boxes:

Liou :=

T∑
t=1

0.1 ∗ ᾱt ∗
∑

oi,oj∈x̃t
0

IoU(oi,oj). (10)

3.2. Applications

Based on our diffusion model above, we can support various
downstream tasks (see Fig. 1) with few modifications.

Scene completion. Assuming a partial scene with M(≤
N) objects, i.e. y ∈ RM×D, we utilize the learned scene
priors from diffusion models to complement novel x̂0) into
y0 to obtain a complete object set x0 = (y, x̂0). We keep
the already known elements and only hallucinate the miss-
ing ones through learnable reverse Gaussian transitions qϕ
conditioning on y. The complemented scene x̂t at time step
t is generated by:

pϕ(x̂t−1|x̂t) := N (µϕ(xt, t,y), σ
2
t I). (11)

Scene re-arrangement. Given a set of objects with ran-
dom spatial positions, we can leverage the priors of our
diffusion model to rearrange reasonable object placements
by estimating their locations and orientations. We de-
note the noisy scene initialization as x̂0 = [û0,v], where
û0 = {[li, cos θi, sin θi]}Ni=1 is the concatenation of N ob-
jects’ locations and orientations, and v = {[si, ci, f ]}Ni=1 is
the concatenation of N objects’ sizes, category classes, and
shape codes. The intermediate scenes during the arrange-
ment diffusion process can be expressed as:

pϕ(ût−1|ût) := N (µϕ(ût, t,v), σ
2
t I), (12)

where we iteratively update the object locations and orien-
tations ut via pϕ conditioned on v.

Text-conditioned scene synthesis. Given a list of sen-
tences describing the desired object classes and inter-object
spatial relationship as conditional inputs, we can employ a
pre-trained BERT encoder [11] to extract word embeddings
z ∈ R48×768, then we utilize cross attention layers to in-
ject the language guidance into the denoising network that
predicts out noise via ϵϕ(xt, t, z), as depicted in Fig. 3.

4. Experiments
Datasets For experimental comparisons, we use the large-
scale 3D indoor scene dataset 3D-FRONT [17] as the
benchmark. 3D-FRONT is a synthetic dataset composed
of 6,813 houses with 14,629 rooms, where each room is ar-
ranged by a collection of high-quality 3D furniture objects
from the 3D-FUTURE dataset [18]. Following ATISS [44],
we use three types of indoor rooms for training and evalua-
tion, including 4,041 bedrooms, 900 dining rooms, and 813
living rooms. For each room type, we use 80% of rooms as
the training sets, while the remaining are for testing.

Baselines We compare against state-of-the-art scene syn-
thesis approaches using various generative models, includ-
ing: 1) DepthGAN [76], learning a volumetric generative
adversarial network from multi-view semantic-segmented
depth maps; 2) Sync2Gen [75], learning a latent space
through a variational auto-encoder of scene object arrange-
ments represented by a sequence of 3D object attributes; A
Bayesian optimization stage based on the relative attributes
prior model further regularized and refined the results. 3)
ATISS [44], an autoregressive model to sequentially predict
the 3D object bounding box attributes.

Implementation We train our scene diffusion models on
different types of indoor rooms respectively. They are
trained on a single RTX 3090 with a batch size of 128 for
T = 100, 000 epochs. The learning rate is initialized to
lr = 2e−4 and then gradually decreases with the decay
rate of 0.5 in every 15,000 epochs. For the diffusion pro-
cesses, we use the default settings from the denoising diffu-
sion probabilistic models (DDPM) [25], where the noise in-
tensity is linearly increased from 0.0001 to 0.02 with 1,000-
time steps. During inference, we first use the ancestral sam-
pling strategy to obtain the object properties and then re-
trieve the most similar CAD model in the 3D-FUTURE [18]
for each object based on generated shape codes.

Evaluation Metrics Following previous works [44, 69,
75], we use Fréchet inception distance (FID) [23], Ker-
nel inception distance [2] (KID × 0.001), scene classifica-
tion accuracy (SCA), and Category KL divergence (CKL
× 0.01) to measure the plausibility and diversity of 1,000
synthesized scenes. For FID, KID, and SCA, we render the
generated and ground-truth scenes into 256×256 semantic
maps through top-down orthographic projections, where the
texture of each object is uniquely determined by the asso-
ciate color of its semantic class. We use a unified camera
and rendering setting for all methods to ensure fair compar-
isons. For CKL, we calculate the KL divergence between
the semantic class distributions of synthesized scenes and
ground-truth scenes. For FID, KID, and CKL, the lower
number denotes a better approximation of the data distribu-
tion. FID and KID can also manifest the result diversity.
For the SCA, a score close to 50% represents that the gen-
erated scenes are indistinguishable from real scenes. Ad-
ditionally, we delve into scene complexity, symmetry, and
object interactions using the following metrics: Number
of objects (Obj): This metric quantifies the average object
count per scene. Number of symmetric object pairs (Sym):
It measures the average number of symmetric object pairs in
each scene. Pair-wise object bounding box intersection over
union (PIoU × 0.01) assesses the intersection over union
between pairwise object bounding boxes. This metric pro-
vides insights into object interactions and intersections. The
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(a) DepthGAN [76] (b) Sync2Gen [75] (c) ATISS [44] (d) Ours

Figure 4. Unconditional scene synthesis. We compare our method with the state-of-the-art by generating from random noises, where our
results present higher diversity and better plausibility with fewer penetration issues and more symmetric pairs.

Method
Bedroom Dining room Living room

FID ↓ KID ↓ SCA % CKL ↓ FID ↓ KID ↓ SCA % CKL ↓ FID ↓ KID ↓ SCA % CKL ↓

DepthGAN [76] 40.15 18.54 96.04 5.04 81.13 50.63 98.59 9.72 88.10 63.81 97.85 7.95
Sync2Gen* 33.59 13.78 87.11 2.67 48.79 12.01 91.43 5.03 47.14 11.42 86.71 1.60

Sync2Gen [75] 31.07 11.21 82.97 2.24 46.05 8.74 88.02 4.96 48.45 12.31 84.57 7.52
ATISS [44] 18.60 1.72 61.71 0.78 38.66 5.62 71.34 0.64 40.83 5.18 72.66 0.69

Ours 17.21 0.70 52.15 0.35 32.60 0.72 55.50 0.22 36.18 0.88 57.81 0.21

Table 1. Quantitative comparisons on the task of unconditional scene synthesis. The Sync2Gen* is a variant of Sync2Gen [75] without
Bayesian optimization. Note that for the Scene Classification Accuracy (SCA), the score closer to 50% is better.

proximity of Obj, Sym, and PIoU to the ground truth statis-
tics indicates closeness in scene configuration patterns.

4.1. Unconditional Scene Synthesis

Fig. 4 visualizes the qualitative comparisons of different
scene synthesis methods. We observe that both Depth-
GAN [76] and Sync2Gen [75] are vulnerable to object in-
tersections. While ATISS [44] can alleviate the penetration

issue by autoregressive scene priors, it cannot always gen-
erate reasonable scene results. However, our scene diffu-
sion can synthesize natural and diverse scene arrangements.
Tab. 1 presents the quantitative comparisons under various
evaluation metrics. Our method consistently outperforms
others in all metrics, which clearly demonstrates that our
method can generate more diverse and plausible scenes.
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Method
Bedroom Dining Living

Obj Sym PIoU Obj Sym PIoU Obj Sym PIoU

DepthGAN 5.12 0.03 0.35 9.64 0.19 0.17 6.70 0.01 0.14
Sync2Gen 6.25 0.85 0.51 8.65 2.85 0.55 9.03 2.27 0.39

ATISS 5.47 0.33 0.50 11.96 2.75 1.61 10.81 1.42 1.10
Ours 4.99 0.72 0.43 10.95 4.47 0.65 11.85 3.47 0.39

GT 5.00 0.71 0.43 10.80 4.22 0.48 11.70 3.59 0.30

Table 2. The average of object numbers (Obj.), symmetric object
pairs (Sym.), and pairwise box IoU (PIoU) in unconditionally gen-
erated scenes. The closer to the statistics of GT, the better.

4.2. Ablation Studies

Method FID ↓ KID ↓ SCA % CKL ↓ Obj Sym PIoU

C1 29.08 4.59 73.63 0.76 5.10 0.70 0.46
C2 19.78 2.07 54.53 0.69 5.03 0.63 0.38
C3 17.93 1.29 55.14 0.46 5.02 0.64 0.47
C4 18.40 1.55 55.42 0.66 4.97 0.50 0.52
C5 17.21 0.70 52.15 0.35 4.99 0.72 0.43

Table 3. Quantitative ablation studies on the task of unconditional
scene synthesis on the 3D-FRONT bedrooms.

We conduct detailed ablation studies to verify the effec-
tiveness of each design in our scene diffusion models. The
quantitative results are provided in Tab. 3. We refer to the
supplementary material for more detailed explanations.

What is the effect of UNet-1D+Attention as the de-
noiser? (C1 vs. C5) We investigate the different choices
of denoising networks. The performances degrade when we
use the transformer in DALLE-2 [48].

What is the effect of multiple prediction heads in the de-
noiser? (C2 vs. C5) In the denoiser, we use three different
encoding and prediction heads for respective object prop-
erties, e.g. bounding box parameter, semantic class labels,
and geometry codes. Multiple diffusion heads with indi-
vidual losses for attributes can prevent biasing towards one
attribute in a single encoding and prediction head.

What is the effect of the IoU loss? (C3 vs. C5) The IoU
loss can penalize object intersections, promote more reason-
able placements, and preserve symmetries. This is reflected
by consistent improvement in each metric.

What is the effect of geometry feature diffusion? (C4 vs.
C5) The geometry feature enables better capture of sym-
metric placements and semantically coherent arrangements.
Fig. 5 shows that our model can find symmetric nightstands
by beds due to the geometry awareness of the diffusion pro-
cess and shape retrieval. This is supported by Sym: 0.72 (w/
shape diffusion) vs. 0.50 (w/o shape diffusion) in Tab. 3.
More plausible synthesis results improve FID, KID, and
SCA. Besides, the decrease in CKL can manifest that the

Partial scene w/o shape code w. shape code

(a) (b) (a) (b)

(a) (b) (a) (b)

Figure 5. (b) w/ shape diffusion captures symmetries vs. (a) w/o.
The shape latent diffusion promotes symmetry discovery.

joint diffusion of geometry code and object layout can learn
more similar object class distribution.
Can DiffuScene generate novel scenes? In Fig. 6, We re-
trieve the three most similar training scenes for a generated
scene using the Chamfer distance. Our result reveals unique
object compositions, highlighting our method’s ability to
generate novel scenes rather than reproducing training data.

Partial scene w/o shape code w. shape code

(a) (b) (c) (d)
Figure 6. Left: Ours. Right: top-3 nearest scenes in the train set.

4.3. Applications

Scene Completion We compare against ATISS [44] on
the task of scene completion. As shown in Fig. 7, our
method can produce more diverse completion results with
high fidelity, fewer intersections, and more symmetries.

Room Method FID ↓ KID ↓ #Sym. PIoU

Bedroom
ATISS 27.14 1.56 0.01 0.84
LEGO 23.73 4.70 0.45 0.89
Ours 22.16 1.02 0.70 0.61

Living room
ATISS 44.94 5.41 1.42 1.73
LEGO 45.40 9.57 2.50 1.63
Ours 41.15 2.24 3.69 0.95

Table 4. Quantitative comparisons on the task of scene arrange-
ment on the 3D-FRONT bedrooms and dining rooms. Given a
collection of objects as inputs, we predict their locations and ori-
entations to obtain object placements.

Scene Re-arrangement We also conduct comparisons
with ATISS [44] on the application of scene re-arrangement.
As depicted in Fig. 8, our method generates more favorable
object placements and more symmetric relations compared
to ATISS [44] and LEGO [70].

Text-conditioned Scene Synthesis Given a text prompt
describing a partial scene configuration, we aim to synthe-
size a whole scene satisfying the input. We conduct a per-
ceptual user study for the text-conditioned scene synthesis.
Given a text prompt and a ground-truth scene as a refer-
ence, we ask the attendance two questions for each pair
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(a) Partial Scenes (b) ATISS [44] (c) Ours

Figure 7. Scene completion from partial scenes with only 3 objects given as inputs. Compared to ATISS, our diffusion-based method
produces more diverse completion results with higher fidelity, fewer intersections, and more symmetries.

(a) Noisy Scenes (b) ATISS [44] (c) LEGO [70] (d) Ours

Figure 8. Scene re-arrangements of collections of random objects. Compared to ATISS and LEGO, our method generates more favorable
object placements with more symmetric pairs.

of results from ATISS and ours: which of the synthesized
scenes is closely matched with the input text, and which one
is more realistic and reasonable. We collect the answers of
225 scenes from 45 users. 62% of users prefer our method
to ATISS in realism. 55% of users are in favor of us in the
matching score. This illustrates that our text-conditioned
model generates more realistic scenes while capturing more
accurate object relationships described in the text prompt.
Please refer to the supplementary material for more details.

4.4. Limitations

Although we have shown impressive scene synthesis re-
sults, our method still has some limitations. First, the shape
retrieval searches the closest shape with the same semantics
within defined classes of CAD models. Thus, the retrieved
model could fail to match the style of the desired scene.
Second, the object textures are from the provided 3D CAD
model dataset via shape retrieval. An interesting direction
is to integrate texture diffusion into our model. Third, we
only consider single-room generation and train our model
on a specific room type. Thus, our method cannot synthe-
size large-scale scenes with multiple rooms. Finally, we
rely on 3D labeled scenes to drive the learning of scene dif-
fusion. Leveraging scene datasets with only 2D labels to
learn scene diffusion priors is also a promising direction.
We leave these mentioned limitations as our future efforts.

5. Conclusion
In this work, we introduced DiffuScene, a novel method
for generative indoor scene synthesis based on a denois-
ing diffusion probabilistic model that learns holistic scene
configuration priors in the full set diffusion process of ob-

(a) Input text (b) Reference

(c) ATISS [44] (d) Ours

Figure 9. Text-conditioned scene synthesis. The input text only
describes a partial scene configuration. Our method generates a
more plausible scene matching the input text.

ject semantics, bounding boxes, and geometry features.We
applied our method to several downstream applications,
namely scene completion, scene re-arrangement, and text-
conditioned scene synthesis. Compared to prior state-of-
the-art methods. Our approach can synthesize more plausi-
ble and diverse indoor scenes as has been measured by dif-
ferent metrics and confirmed in a user study. Our method
is an important piece in the puzzle of 3D generative mod-
eling and we hope that it will inspire research in denoising
diffusion-based 3D synthesis.
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