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Abstract

With the advent of ensemble-based attacks, the transfer-
ability of generated adversarial examples is elevated by a
noticeable margin despite many methods only employing
superficial integration yet ignoring the diversity between
ensemble models. However, most of them compromise the
latent value of the diversity between generated perturbation
from distinct models which we argue is also able to increase
the adversarial transferability, especially heterogeneous at-
tacks. To address the issues, we propose a novel method
of Stochastic Mini-batch black-box attack with Ensemble
Reweighing using reinforcement learning (SMER) to pro-
duce highly transferable adversarial examples. We empha-
size the diversity between surrogate models achieving indi-
vidual perturbation iteratively. In order to customize the
individual effect between surrogates, ensemble reweighing
is introduced to refine ensemble weights by maximizing at-
tack loss based on reinforcement learning which functions
on the ultimate transferability elevation. Extensive exper-
iments demonstrate our superiority to recent ensemble at-
tacks with a significant margin across different black-box
attack scenarios, especially on heterogeneous conditions.
https://github.com/tangbwb/SMER

1. Introduction
It is acknowledged that CNNs are susceptible to adversar-
ial attacks involving imperceptible perturbations [1, 11]. A
plethora of studies [4, 37, 38, 49] suggests that the gen-
erated adversarial examples exhibit cross-model transfer-
ability, thus enhancing black-box attacks. Furthermore,
these adversarial examples play a pivotal role in bolster-
ing the robustness of CNNs as evidenced by improvements
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Figure 1. (a) The optimal direction search of SVRE, AdaEA and
SMER. Existing approaches primarily focus on reducing ensem-
ble diversity, whereas diversity plays a crucial role in enhancing
transferability in our proposal. It is worth noting that for better
clarification, our SMER incorporates three iterative perturbation
steps, ranging from s+1 to s+3, whereas the others employ only
a single iterative step. (b) The average attack performance, based
on TI-DIM, of existing ensemble-based strategies sharply declines
under heterogeneous conditions.

in error-tolerant rates [5, 31] and aiding other applications
[39–41]. Additionally, the rise in popularity of ViTs [3]
has spurred corresponding investigations into adversarial
robustness [6, 26–28, 42]. A diverse array of technical ap-
proaches has been developed to achieve black-box adver-
sarial attacks. Early methods primarily rely on gradient-
based optimization techniques [11, 16]. Subsequent ad-
vancements [8–10, 20] elevate the potency of the attacks
to a higher level.

Ensemble-based strategies [21, 22, 36] are pragmatic to
integrate different models, albeit simply average the fusion.
The advantages of ensemble-based methods over typical
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Figure 2. The diagram illustrates the procedure of our method attacking a benign image x. (Left) There is an ensemble set {f} and its
corresponding weights set {ω}. In each internal loop, the perturbation δk is maximized under the currently stochastically selected model
fξk . To leverage the contributions between models, we bring the reward of reinforcement learning to update the weights ω by optimizer
with transformed reward. (Right) The graph illustrates the internal perturbation search process. δSV RE and δOurs denote the perturbation
of SVRE and our algorithm respectively, while the redder color indicates the lower loss. The optimization is accelerated by the variant
gradient along the bound in limited searches.

gradient-based approaches lie in two key factors: (1) They
can be combined with advanced gradient-based methods,
e.g. translation-invariant method (TIM) [11], (2) They har-
ness the strengths from diverse surrogate models. Typically,
ensemble-based methods focus on leveraging the latter ad-
vantage, exploring how to integrate surrogate models to pro-
duce adversarial examples with high transferability. As de-
picted in Figure 1 (a), Stochastic Variance Reduced Ensem-
ble Adversarial Attack (SVRE) [45] incorporates the opti-
mization of Stochastic Variance Reduced Gradient (SVRG)
[18] to reduce the diversity of generated perturbations from
distinct models. Similarly, Adaptive Model Ensemble Ad-
versarial Attack (AdaEA) [6] introduces a discrepancy ra-
tio and utilizes a disparity-reduced filter to fuse ensemble
outputs with reduced diversity. SVRE and AdaEA aim to
update iterative perturbations using SVRG and adaptation
techniques, respectively, to optimize ensemble average gra-
dients. Consequently, optimization in each step across the
entire ensemble can be viewed as a batch operation.

It is noteworthy that attacks can be categorized into three
types: 1) homogeneous attacks based on homogeneous
ensemble, e.g. from only CNNs ensemble to CNN victims,
2) heterogeneous attacks based on homogeneous ensem-
ble, e.g. from only CNNs ensemble to ViT victims, 3) het-
erogeneous ensemble, i.e. Mix ensemble. Existing meth-
ods manually decrease the discrepancy of generated pertur-
bation between surrogates on the iterative batch-like opti-
mization and obtain a satisfactory ASR in homogeneous at-
tacks. However, ASR drops significantly in both heteroge-
neous attacks and ensemble scenarios. Thus, strategies for
mitigating diversity may compromise individual superior-
ity in either heterogeneous attacks or ensemble settings. It
is worth considering allowing individual models more free-

dom, which may further enhance the versatility of black-
box attacks in both heterogeneous attacks and ensembles.

In contrast to existing methods [6, 45], we refrain from
constraining the diversity of generated perturbations across
different surrogates, a challenging task given the variability
in architectures. Instead, we advocate for producing adver-
sarial examples from individual models independently, akin
to mini-batch optimization for iterative perturbations as il-
lustrated in Figure 1 (a). Additionally, we note that each
individual surrogate impacts black-box results differently.
Therefore, to further tailor the individuality between surro-
gates, we propose reweighing ensemble weights using rein-
forcement learning, aiming to maximize attack loss and de-
termine the optimal direction. Consequently, the iteratively
generated adversarial perturbation is designed to maximize
the attack loss for the current surrogate.

The summary of our contributions is as follows:
• We introduce a novel stochastic mini-batch black-box

attack with ensemble reweighing using reinforcement
learning. Unlike conventional approaches, our method
embraces the unconstrained diversity of generated pertur-
bations, as illustrated on the left side of Figure 2.

• To enhance the influence of diversity, we propose stochas-
tic mini-batch perturbation to generate adversarial exam-
ples from each individual surrogate in the current itera-
tion. Furthermore, to differentiate the diversity within
the ensemble, we introduce ensemble reweighing to ad-
just ensemble weights using reinforcement learning.

• SMER serves as a plug-and-play method, offering conve-
nience in integrating with multiple ensemble surrogates
across various basic attacks. Extensive experiments vali-
date the high effectiveness and superior transferability of
our generated adversarial examples in black-box settings.
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2. Related Work
Gradient-based Attacks. Gradient descent, the primary
optimization method for CNNs, can have an inverse effect
when employing gradient ascent. Consequently, numerous
methods have emerged to integrate single surrogates for
transfer-based black-box attacks. Goodfellow et al. [11]
introduced the fast gradient sign method (FGSM) for ad-
versarial attacks in one step. Iterative strategies [20, 25]
extend the Attack Success Rate (ASR) of one-step attacks.
Attacks with momentum [8] enhance transferability and ef-
fectiveness in black-box scenarios. Techniques like ran-
dom resizing, padding [44], translation-invariant methods
[9], and scale-invariant methods [21] reshape inputs to im-
prove transferable attack performance.

The performance of transfer-based black-box attacks
with a single surrogate falls below expectations due to lim-
ited transferability.
Ensemble-based Attacks. The ensemble-based method
has shown promise in enhancing the performance of
transfer-based attacks [22]. Three common approaches to
ensemble include ensemble on predictions, ensemble on
loss, and ensemble on logits, with the latter proving more
effective [8]. Consequently, recent studies predominantly
focus on leveraging ensemble surrogates for improved effi-
cacy and efficiency. Zheng et al. [47] explore generating
adversarial examples using meta-learning with separate en-
semble surrogates. Addressing potential issues with vanish-
ing gradients during attacks, SVRE [45] reduces gradient
variance using SVRG [18]. To mitigate discrepancies be-
tween CNNs and ViTs [3], AdaEA [6] fuses ensemble out-
puts by monitoring discrepancy ratios and updates direction
using a disparity-reduced filter, thereby reducing perturba-
tion discrepancies among surrogates.

Despite the significant results presented by the afore-
mentioned pioneering ensemble-based approaches, their at-
tack performance requires further improvement, whether
the victim is homogeneous or heterogeneous.
Defensive Methods. Due to the susceptibility of Deep Neu-
ral Networks (DNNs) to adversarial attacks, several studies
have emphasized the need for robustness enhancement. Ad-
versarial training has proven effective in bolstering classi-
fier robustness [25, 27, 36]. Additionally, other approaches
directly operate on input adversarial examples, such as re-
versing adversarial features [29, 46], utilizing compression
techniques [12, 23], and employing randomized smoothing
[17]. Furthermore, the emergence of recent ViT [3] has
demonstrated superior performance compared to conven-
tional CNNs, albeit with a similar vulnerability to adversar-
ial attacks. Consequently, defensive approaches have been
proposed, focusing on structural modifications for state-of-
the-art recognition models. For instance, the Robust Vision
Transformer [28] enhances ViT blocks with robust transfor-
mations, while Mao et al. [26] improve the generalization

and robustness of ViT through discrete representation, re-
sulting in Robust ViTs equipped with innovative architec-
tures and resilience against adversaries.

In general, the versatility of adversarial attacks against
both CNNs and ViTs can be more effectively gauged
through advanced defensive methods, especially consider-
ing that commonly trained models have been extensively
scrutinized and exhibit superior ASR [45].

Algorithm 1 SMER with MI-FGSM attack algorithm
Input: A benign image x and its corresponding label y, en-
semble surrogates {f1, f2, . . . , fM}, cross-entropy loss J ,
ensemble weights {ω1, ω2, . . . , ωM}, reinforcement learn-
ing reward R, weights update scheme Sh, perturbation
norm L∞ and bound ε, number of iterations T , number of
internal loops K, step size α, internal step size β, decay
factor µ, internal decay factor µ̃.
Output: Adversarial example x̂ with ‖x̂− x‖∞ ≤ ε.

1: α = ε/T ;
2: g0 = 0; x̂0 = x;
3: Initialize ensemble surrogates ωf(x);
4: Initialize Sh;
5: for t = 0 to T − 1 do
6: g̃0 = 0; x̃0 = x̂t;
7: Initialize model action ξ;
8: for k = 0 to K − 1 do
9: Calculate logits l(x̃k) = ωξk · fξk(x̃k);

10: Update internal gradient
g̃k+1 = µ̃ · g̃k + ∇J(l(x̃k),y)

‖∇J(l(x̃k),y)‖1 ;

11: Calculate reward R = J(
∑M
i=1 ωifi(x̃k), y);

12: Update w by Sh(R);
13: x̃k+1 = Clipεx(x̃k + β · sign(g̃k+1));
14: end for
15: Update gradient gt+1 = µ · gt + g̃K

‖g̃K‖1 ;
16: x̂t+1 = Clipεx(x̂t + α · sign(gt+1));
17: end for
18: return x̂ = x̂T .

3. Methodology
3.1. Preliminaries

The ensemble-based attacks [8] commonly employ the ad-
ditive perturbation δ [7, 11] that is generated from the gra-
dient backward to perturb a benign image x and produce
adversarial example x̂, i.e. x̂ = x + δ. It is usual to utilize
Lp norm, which can be denoted as ‖δ‖p ≤ ε, to constrain
δ for the imperceptibility. To align with previous works, we
employ L∞ for the following comparisons. The perturbed
image x̂ is expected to fool the image recognition victim f ,
i.e. f(x̂) 6= y, where y denotes the ground-truth label of
the image x. Hence, the typical process of the iteratively
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gradient-based attack with the single surrogate model can
be described as:

x̂t+1 = x̂t + α · sign(∇xJ(f(x̂t), y)), (1)

where J is the loss function and x̂t denotes the iteratively
generated adversarial example. The gradient-based attack
can be extended into an ensemble-based method when in-
corporating multiple models. As demonstrated in the results
of MI-FGSM [8], it exhibits superior performance when
applied to ensembles based on logits, a technique widely
adopted in related works [45]. The ensemble operation can
be represented as l(x) =

∑M
i=1 ωifi(x), where l(x) denotes

the ensemble logits derived from M surrogates. Thus, in-
corporating cross-entropy loss, the ensemble-based attack
can be expressed as:

x̂t+1 = x̂t + α · sign(∇x(−1y · log(softmax(l(x))))),
(2)

where 1y represents the one-hot encoding of ground-truth
label y. SVRE [45] is to mitigate the difference of gener-
ated perturbation between models. Their main contribution,
the internal update, i.e. gm = ∇xJ(x̂m, y)−∇xJ(x̂t, y)+
genst , where the unbiased estimate gm is to reduce the gradi-
ent variance, i.e. generated perturbation diversity between
surrogates and x̂m denotes the generated adversarial exam-
ple within internal loops. On the one hand, SVRE mitigates
generated gradient diversity to satisfy E(∇xJ(x̂t, y)) =
genst that makes generated perturbation from each surrogate
converge. On the other hand, the batch-like optimization
limits the performance when it encounters heterogeneous
victims due to constraining the gradient diversity as shown
in Figure 1 (b).

Therefore, we propose the method utilizing stochas-
tic mini-batch to maximize the perturbation from individ-
ual models with ensemble reweighing using reinforcement
learning for refining model diversity as depicted in the left
of Figure 2.

3.2. Stochastic Mini-batch Perturbing

Considering the diversity of back-propagated gradients [6]
and the inefficiency of methods mitigating diversity, partic-
ularly in cross-architecture attacks as depicted in Figure 1
(b), we propose a straightforward approach to exploit di-
versity by treating each surrogate as an individual. Thus,
the iterative perturbation optimization resembles mini-batch
optimization, wherein the iterative mini-batch perturbation
is solely derived from the current surrogate. For ensemble-
based attacks, M ensemble surrogates can be denoted as
{f1, f2, . . . , fM}. The initial perturbation can be assumed
as {0}C×H×W which can be denoted in the right of Figure
2. In most gradient-based iterative attack methods, pertur-
bation will be constantly optimized using gradient ascent
after every iteration.

Therefore, we employ internal iterative perturbing to
search the optimal direction for producing the outer per-
turbation. The ultimate desire is to produce the optimal
perturbation, i.e. δ∗, and perturb the benign image, i.e.
x̂ = x + δ∗, for fooling the entire ensemble surrogates as
much as possible. Hence, the perturbation iterative genera-
tion G(x) resembles the perturbation optimization, and the
process can be formulated as:

δ∗ = inf
x
G(x), (3)

where the expectation is to satisfy E[‖G(x) − δ∗‖] ≤ ε.
In the k inner loop, a single surrogate model is randomly
selected to perform a one-step perturbation. It is essen-
tial to note that each surrogate model holds equal impor-
tance, requiring us to traverse all surrogate models after
M loops. The model selected for generating stochastic
mini-batches is determined by ξ, a stochastic sequence of
model indices following the aforementioned selection pro-
tocol. Each model assesses the input image and generates
scores, and the perturbation can achieve its optimal value
for the current model following gradient calculation in the
current loop. Consequently, the update for each inner loop
can be described as:

x̃k+1 = x̃k + α · sign(∇xJ(fξk(x̃k), y)). (4)

The current adversarial example x̃k+1 is derived from the
former one x̃k. G(xk) = α · sign(∇xJ(fξk(x̃k), y))
denotes the perturbation generation, and it is bounded as
‖G(x)‖∞ ≤ ε. Consequently, the search process can be
demonstrated as:

x̂ = argmax
x

J(fξ(x), y). (5)

3.3. Ensemble Reweighing

To enhance the impact of diverse perturbations, we propose
differentiating diversity further by individual models. Given
the unknown specific expected adversarial examples, we
utilize unsupervised ensemble reweighing with reinforce-
ment learning to optimize the process, as outlined in Al-
gorithm 1. In each loop, the weights {ω1, ω2, . . . , ωM}
serve as the agents to be optimized through reinforcement
learning, with updates based on the reward R. The ultimate
goal is to generate perturbations that threaten all surrogate
models, maximizing the total attack rewards, i.e. Rtotal =
max

∑T×K
j=1 Rj . It is important to note that each update in

the reinforcement process relies solely on the immediately
preceding result x̃k, and the subsequent results are unpre-
dictable. Empirical evidence suggests that maximizing the
attack loss J leads to optimal attack performance, while the
ensemble surrogates are accessible. Therefore, it is practi-
cal to maximize the internal reward Rj and conduct model-
based reinforcement learning for the update. We simplify
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Base Attack
Adversarial Training Transformation-based Method Robust Vision Transformer

Inc-v3ens3 Inc-v3ens4 IncRes-v2ens Average R&P NIPS-r3 Bit-R JPEG FD ComDefend Average RVT-S∗ Drvit Vit+DAT Average

I-FGSM

Ens [8] 27.1 24.5 15.7 22.4 15.2 18.9 26.0 41.8 37.1 56.0 32.5 31.8 33.9 20.1 28.6
SVRE [45] 40.1 37.3 24.8 34.0 25.0 34.1 31.0 62.1 50.4 67.0 44.9 40.6 39.0 24.0 34.5
AdaEA [6] 35.4 31.8 18.6 28.6 17.9 28.0 46.5 66.8 53.9 82.8 49.3 42.4 43.9 25.3 37.2
SMER 57.9 51.0 38.8 49.2 38.1 50.0 47.1 75.7 57.2 93.9 60.3 49.6 44.4 29.3 41.1

MI-FGSM

Ens [8] 50.5 49.3 32.3 44.0 33.0 44.6 39.7 75.9 62.8 77.5 55.6 60.0 59.2 39.5 52.9
SVRE [45] 64.5 59.0 39.1 54.2 40.7 59.5 43.4 89.1 73.3 86.6 65.4 70.6 66.6 44.0 60.4
AdaEA [6] 45.5 41.4 24.2 37.0 26.1 41.9 69.8 81.4 73.6 91.1 64.0 59.1 59.5 37.5 52.0
SMER 75.2 66.0 45.2 62.1 53.7 70.6 83.2 94.2 88.9 98.6 81.6 75.2 69.9 48.6 64.6

TIM

Ens [8] 73.5 68.1 59.7 67.1 60.5 67.2 49.3 82.6 74.8 85.1 69.9 52.8 69.1 40.7 54.2
SVRE [45] 87.9 85.6 79.7 84.4 80.2 83.8 62.3 92.0 84.0 92.2 82.4 65.9 77.1 47.0 63.3
AdaEA [6] 82.1 79.7 74.0 78.6 72.6 76.9 87.1 85.0 87.7 94.1 83.9 60.9 75.3 42.3 59.5
SMER 92.5 89.6 86.1 89.4 85.2 88.7 93.9 95.4 95.3 98.3 92.8 77.9 82.1 58.5 72.8

TI-DIM

Ens [8] 87.4 84.3 77.6 83.1 81.2 85.7 63.0 91.7 84.3 91.9 83.0 58.2 72.9 42.7 57.9
SVRE [45] 95.3 93.7 90.1 93.0 91.9 93.2 72.9 96.5 90.8 96.0 90.2 75.7 84.5 54.7 71.6
AdaEA [6] 84.8 83.6 78.1 82.2 76.9 81.6 89.8 88.6 90.5 90.9 86.4 63.4 77.8 44.7 62.0
SMER 98.2 96.3 94.7 96.4 95.2 96.3 98.3 98.8 98.7 99.1 97.7 88.4 89.9 71.5 83.3

Table 1. The ASR (%) on adversarial training, transformation-based methods and robust ViTs between Ens, SVRE, AdaEA and SMER.
The adversarial examples are generated on four ensemble surrogates: Inc-v3, IncRes-v2, Res-101 and Inc-v4, with four attack baselines.

Rj to R, which can be described as:

R = max
x̃k

J(

M∑
i=1

ωifi(x̃k), y). (6)

However, to conduct the update scheme in practice, we
transform the reward function to a minimized loss. From
our observation, loss JR = − ln(R) contributes positive
results to optimizing weights w, and stochastic gradient de-
scent optimizer (SGD) is efficient in this task of limited iter-
ation for parameterized weights. The update scheme for the
weights w is denoted as Sh in Algorithm 1. The objective
function can be written as:

w = argmin
x̃k

JR(

M∑
i=1

ωifi(x̃k), y). (7)

The objective function of the SMER can be eventually sum-
marized as:

x̂ = argmax
x

J(ωξfξ(x), y)− JR(
M∑
i=1

ωifi(x), y). (8)

4. Experiments
In this section, we validate the performance of SMER under
settings of both homogeneous and heterogeneous attacks,
as well as against defensive methods. Additionally, we in-
vestigate feature attention alteration, iterative discrepancy,
average attack loss performance, and ensemble types.

4.1. Experimental Setup

Datasets. Experiments are conducted on ImageNet-
compatible datasets [30] which is deliberately built and uti-
lized in recently related attack works [9, 45].

Models. We select abundant CNNs including Inception
v3 (Inc-v3) [33], Inception ResNet v2 (IncRes-v2) [13],
ResNet v2-101 (Res-101) [34], ResNet v2-152 (Res-152)
[34], Inception v4 (Inc-v4) [34], ResNet-18 (Res-18) [14],
ResNet-50 (Res-50) [14], WideResNet-50 (WRN50) [48],
WideResNet-101 (WRN101) [48], BiT-M-R50×1 (BiT-50)
[19] and BiT-M-R101 (BiT-101) [19]. In addition, three
adversarial-trained models, Inc-v3ens3 [36], Inc-v3ens4 [36]
and IncRes-v2ens [36] are chosen for evaluation. Moreover,
a group of ViTs including ViT-Base (ViT-B) [3], ViT-Tiny
(ViT-T) [3], ViT-Small (ViT-S) [3], DeiT-Base (DeiT-B)
[35], DeiT-Tiny (DeiT-T) [35], DeiT-Small (DeiT-S) [35],
Swin-Base (Swin-B) [24], Swin-Tiny (Swin-T) [24], Swin-
Small (Swin-S) [24] are selected in our experiments. The
specific configurations are shown below the tables.
Defenses. To evaluate the versatility of SMER, we choose
defensive methods including R&P [43], NIPS-r3 [2], Bit-R
[46], JPEG [12], FD [23], ComDefend [15]. Besides, an-
other three robust vision transformers, RVT-S* [28], Drvit
[26] and Vit+Dat [27] are employed for evaluation.
Baselines and comparisons. Following the latest works
[6, 45], we also integrate our SMER method into four at-
tack baselines, including i.e. I-FGSM [11], MI-FGSM [8],
TIM [9] and TI-DIM [9]. At the same time, we also share
identical implementations with ensemble attack (Ens) [8],
SVRE [45], and AdaEA [6].
Parameters. We implement experiments on the same struc-
tural sets. The perturbation bound ε = 16/255, the iterative
number T is set to 10, and the step size α = ε/10. For
methods with momentum, the decay factor is 1.0. For meth-
ods equipping with translation kernel, the size is 5× 5. The
diverse and scale-invariant operation refer to [21]. The in-
ternal loopsK are four times of model number. The internal
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Base Attack
CNN ViT

Res-50 WRN101 Inc-v4 BiT-50 BiT-101 Average ViT-B ViT-S DeiT-B DeiT-S Swin-B Swin-S Average

I-FGSM

Ens [8] 57.5 66.0 64.7 65.4 54.7 61.7 46.1 70.2 64.4 84.3 27.8 42.2 55.8
SVRE [45] 63.9 72.1 71.2 69.8 58.6 67.1 38.9 58.2 55.1 71.3 27.6 44.7 49.3
AdaEA [6] 74.0 80.3 74.7 78.3 69.4 75.3 68.0 90.8 85.1 95.1 46.9 66.6 75.4
SMER 77.8 83.1 79.0 81.7 73.5 79.0 69.1 91.0 85.8 97.3 47.0 63.5 75.6

MI-FGSM

Ens [8] 80.6 84.1 82.4 83.8 77.9 81.8 73.0 90.2 88.2 96.0 53.7 69.9 78.5
SVRE [45] 85.3 87.8 87.2 87.2 79.5 85.4 67.5 85.6 81.8 91.1 52.1 70.7 74.8
AdaEA [6] 83.5 84.4 81.4 85.3 77.5 82.4 77.5 94.5 89.5 97.9 60.5 74.4 82.4
SMER 91.6 92.3 91.3 91.7 87.0 90.8 88.0 97.8 95.6 99.6 66.7 82.5 88.4

TIM

Ens [8] 51.4 67.6 71.4 75.5 63.5 65.9 40.5 62.8 52.9 73.6 17.0 29.5 46.1
SVRE [45] 62.3 78.3 80.6 79.7 68.5 73.9 42.0 66.4 57.5 75.5 21.8 36.3 49.9
AdaEA [6] 60.9 75.0 77.7 80.5 71.4 73.1 53.8 81.3 69.6 88.0 24.5 41.8 59.8
SMER 79.5 87.8 87.4 89.7 82.2 85.3 72.9 91.3 84.6 96.2 37.1 59.2 73.6

TI-DIM

Ens [8] 60.2 74.7 77.5 80.8 71.9 73.0 39.2 63.0 50.2 71.5 18.1 32.1 45.7
SVRE [45] 69.5 83.2 90.0 87.7 79.8 82.0 48.0 73.8 62.6 81.3 24.7 43.7 55.7
AdaEA [6] 63.5 77.4 79.2 83.4 73.5 75.4 48.1 74.8 63.2 82.5 24.2 40.9 55.6
SMER 90.8 95.5 96.9 97.8 95.7 95.3 86.5 97.0 94.3 98.5 53.4 77.6 84.6

Table 2. The ASR (%) of Ens, SVRE, AdaEA and SMER attacking CNNs and ViTs. The adversarial examples are generated on four
ensemble surrogates: Res-18, Inc-v3, ViT-T and DeiT-T, with four attack baselines respectively.

Base Attack Inc-v3ens3 Inc-v3ens4 IncRes-v2ens Average

TIM

Ens [8] 1.6 1.7 1.8 1.7
SVRE [45] 4.4 4.7 3.0 4.0
AdaEA [6] 1.3 0.8 0.8 1.0
SMER 19.8 15.2 12.4 15.8

TI-DIM

Ens [8] 2.4 2.4 2.0 2.3
SVRE [45] 5.0 5.3 5.1 5.1
AdaEA [6] 3.3 2.4 2.1 2.6
SMER 31.2 26.6 24.1 27.3

Table 3. The ASR (%) of targeted attack of Ens, SVRE, AdaEA
and SMER. The adversarial examples are generated on four en-
semble surrogates: Inc-v3, IncRes-v2, Res-101 and Inc-v4, with
four attack baselines respectively.

step size β and the internal decay factor are both the same
as the outer step size and decay factor respectively. SGD
optimizer with learning rate lr = 0.02 is employed for the
optimization of ensemble weights.

4.2. Attacks based on Homogeneous CNN Ensemble

The vulnerability of conventional recognition systems to
adversarial attacks is well-documented, hence we evaluate
the effectiveness of our SMER on various defensive meth-
ods. There are two groups of homogeneous tests, i.e. adver-
sarial training and transformation-based method, and one
group of heterogeneous tests, i.e. robust vision transform-
ers in this section. All adversarial examples are crafted on
four commonly trained surrogates, i.e., Inc-v3, IncRes-v2,
Res-101 and Inc-v4. Additionally, we present the results of
the homogeneous ViT ensemble in Section 4.5.
Adversarial Training. The adversarial examples gener-
ated by SMER from commonly trained surrogates against
adversarial-trained victims outperform those from the other

three methods for each basic attack, as shown in Table 1.
Particularly noteworthy is the significant ASR increment
observed with I-FGSM, averaging about 26.8%, 15.2%, and
20.6% compared to Ens, SVRE, and AdaEA, respectively.

Transformation-based Method. Input transformation
aims to mitigate the impact of adversarial artifacts and pre-
serve the original features. It is evident that SMER exhibits
similar superiority when attacking transformation-based de-
fenses, as shown in Table 1. Despite fluctuations across
different evaluations, SMER achieves the largest average
increment, reaching 27.8% on I-FGSM compared to Ens,
while 16.1% and 17.6% increments are observed on MI-
FGSM compared to SVRE and AdaEA, respectively. No-
tably, the most aggressive attack occurs with TI-DIM, con-
sistent with previous experiments, indicating that SMER is
capable of leveraging advanced attacks rather than compro-
mising them.

Robust ViT. ViT has emerged as the new generation for
classification, with robust vision transformers enhancing
their corresponding robustness. In this section, we employ
robust ViTs [26–28] to evaluate the transferability of het-
erogeneous attacks. It is observed that when integrated with
TI-DIM, our approach achieves superior competitive ASR
averages (up to 83.3%) compared to the other three methods
in Table 1. SMER still outperforms other approaches on less
advanced baselines by a remarkable margin. This suggests
that SMER is capable of generating adversarial examples
with higher transferability from CNNs to ViTs.

From the results above, it is evident that our SMER
achieves superior performance in both homogeneous and
heterogeneous attacks compared to other methods. This
is primarily attributed to our approach leveraging diverse
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Ensemble
Type

Ensemble
Models Attack CNN ViT

Res-50 WRN50-2 Bit-101 Average ViT-B DeiT-B Swin-B Average

Only
CNNs

Res-18
Inc-v3, BiT-50

AdaEA 81.4 68.0 80.9 76.8 35.0 45.0 36.7 38.9
SMER 90.6 79.8 92.1 87.5 43.4 49.4 39.3 44.0

Res-18, Inc-v3
BiT-50, Inc-v4

AdaEA 83.1 74.6 79.0 78.9 40.5 51.6 36.7 42.9
SMER 93.6 86.8 93.9 91.4 48.9 56.2 49.8 51.6

Only
ViTs

ViT-T
DeiT-T, Swin-T

AdaEA 62.0 47.7 66.3 58.7 78.2 92.5 71.4 80.7
SMER 77.5 60.1 75.1 70.9 89.9 97.1 93.7 93.6

ViT-T, Swin-T
DeiT-T, ViT-S

AdaEA 66.3 50.0 69.4 61.9 93.6 94.5 75.8 88.0
SMER 84.5 70.9 84.5 80.0 98.8 99.2 96.9 98.3

Mix

Res-18
ViT-T, Inc-v3

AdaEA 80.2 63.2 75.5 73.0 62.1 72.1 46.4 60.2
SMER 88.5 75.0 82.1 81.9 75.3 80.1 52.0 69.1

Inc-v3
ViT-T, Swin-T

AdaEA 69.6 55.5 67.7 64.3 65.9 77.7 71.6 71.7
SMER 77.2 63.7 73.0 71.3 79.0 86.7 91.3 85.7

Res-18, Inc-v3
ViT-T, DeiT-T

AdaEA 79.8 64.0 78.7 74.2 74.8 85.6 54.4 71.6
SMER 91.6 78.8 87.0 85.8 88.0 95.6 66.7 83.4

Table 4. The ASR (%) of AdaEA and SMER on three ensemble types, i.e. only CNNs, only ViTs and Mixed. The adversarial examples
are generated on MI-FGSM baselines to achieve black-box attacks.

strengths from each surrogate, which facilitates optimal di-
rection search. Additionally, the reweighing operation is
delegated to the surrogates themselves, enabling accurate
weight adjustments.

4.3. Attacks based on Heterogeneous Ensemble

The back-propagated gradients of CNNs and ViTs differ
[6, 45], and we incorporate ViTs to assess adversarial gen-
eration in a heterogeneous ensemble, i.e. the Mix ensemble,
to further evaluate the ability of our SMER.

The performance clearly demonstrates that the ASR of
our algorithm surpasses the other three approaches on both
CNNs and ViTs, as shown in Table 2. This contribution
mainly stems from the unconstrained diversity in perturba-
tions, which circumvents the challenges of mitigating dis-
crepancies and maximizes the attack effectiveness for the
current model at each perturbation step. Consequently,
SMER is capable of generating highly transferable pertur-
bations under a mixed ensemble.

4.4. Targeted Attacks

The evaluation for targeted attacks can also demonstrate
versatility to some extent, though the three compared meth-
ods were not initially designed for this purpose. Targeted
attacks are typically described as follows: x̂t+1 = x̂t − α ·
sign(∇xJ(f(x̂t), ŷ)), where ŷ denotes the targeted label.
SMER exhibits remarkable performance on the advanced
baseline TI-DIM, surpassing the other three counterparts by
25.0%, 22.2%, and 24.7%, as shown in Table 3. These re-
sults indicate that SMER can generate highly transferable
perturbations for the targeted label without additional mod-

ification. It also suggests that mitigating diversity is incom-
patible with targeted attacks.

4.5. Further Analysis

Ensemble types. We further demonstrate our superior per-
formance of attacks on different ensemble types. SMER
outperforms counterparts on both homogeneous ensembles,
i.e., only CNNs and only ViTs, and heterogeneous ensem-
bles, i.e., the Mix, as shown in Table 4. Specifically, SMER
integrated with only CNNs achieves the highest average
ASR of 91.4%, which is 12.5% higher than AdaEA on CNN
victims. Meanwhile, SMER achieves an average ASR of
98.3% against ViT victims when integrated with only ViTs,
which is 10.3% higher than AdaEA. Additionally, SMER
outperforms AdaEA by up to 12.5%, 18.1%, and 13.9%
across the three ensemble types, respectively. The advan-
tage of SMER lies in its emphasis on perturbation diversity,
which avoids the challenges of constrained convergence.
Interestingly, the general trend indicates that as the ensem-
ble number increases, the ASR increment of SMER com-
pared to AdaEA is higher. This is likely because more en-
semble surrogates imply greater diversity, which positively
impacts the black-box transferability of SMER.
Attention alteration. We introduce feature attention region
alteration [32], quantified by the Structural Similarity Index
Measure (SSIM), to assess the ability of attacks to impact
the classifiers, as shown in Figure 3. A larger SSIM gap be-
tween the first and the last attention map indicates a larger
difference. The numerical results show that the first iter-
atively generated examples share similar attention regions
compared to the original attention maps in almost every
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Figure 3. The hot maps of feature attention altering from the
first perturbed images to the last perturbed images for SMER and
SVRE with SSIM comparison. The redder region indicates more
attention. Larger SSIM change indicates larger alteration in nu-
merical value.

comparison, while the last output examples exhibit signif-
icant variation. The SSIM gaps of SMER exceed those of
SVRE, indicating larger map alterations.
Discrepancy. We quantify the discrepancy by computing
the reciprocal of the cosine similarity between the gradients
generated by each method at each iteration and the average
gradients from the entire ensemble for adversarial examples
obtained at the same iteration, where a larger discrepancy
indicates a larger difference from the ensemble average in
Figure 4 (a). SMER witnesses a striking increase compared
with the other two methods despite the initial decline. Inter-
estingly, the discrepancy of the compared algorithms con-
tinuously rises while they propose to decrease it. It could be
ascribed to the toughness of convergence under the bound
and the limited steps.
Average loss. While ASR typically indicates attack perfor-
mance, the average loss can also reflect the transferability of
adversarial examples. In Figure 4 (b), SMER consistently
shows a higher average loss compared to other approaches
in each comparison, suggesting its ability to produce highly
transferable adversaries.
Ablation study. To elucidate the effectiveness of each com-
ponent in SMER, we conduct corresponding studies using
adversarial examples from the ensemble employed in sec-
tion 4.2. The results are averaged from Inc-v3ens3, Inc-
v3ens4, and IncRes-v2ens. In Figure 5 (a), we observe that
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Figure 5. (a) The ASR of SMER with different selected patterns.
(b) The ablation study of two components in SMER.

the efficacy of the random pattern (Rand) in SMER leads to
about a 5% improvement compared to the sequential pattern
(Seq). Figure 5 (b) demonstrates that the collaboration of
reweighing (RE) and mini-batch (MB) operations can grad-
ually increase the ASR. The base is the typical attack of the
ensemble on logits. It is notable that the reweighing oper-
ation substitutes constant weights, which formerly compro-
mised the diversity of ensemble surrogates contributing to
the perturbation, and instead allows the surrogates to cus-
tomize individual weights. Meanwhile, the mini-batch op-
eration avoids fusing the devised customized outputs from
the diverse ensemble, instead promoting individual influ-
ence, which further enhances customization.

5. Conclusion
In this paper, we introduce a novel method called SMER,
which prioritizes diversity between models and generates
adversarial examples by individual models with ensemble
reweighing using reinforcement learning to customize
model diversity. This approach aims to maximize at-
tack loss and identify the optimal direction. Extensive
experimental results demonstrate that SMER not only
surpasses other methods with notable superiority across
various black-box scenarios but also exhibits significant
aggressiveness when integrated with ensemble surrogates
featuring high discrepancy. In summary, SMER enhances
the transferability of adversarial examples across both
homogeneous and heterogeneous ensembles, effectively
addressing both homogeneous and heterogeneous attacks.
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