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Abstract

Multiple instance learning (MIL) is the most widely used
framework in computational pathology, encompassing sub-
typing, diagnosis, prognosis, and more. However, the ex-
isting MIL paradigm typically requires an offline instance
feature extractor, such as a pre-trained ResNet or a foun-
dation model. This approach lacks the capability for fea-
ture fine-tuning within the specific downstream tasks, limit-
ing its adaptability and performance. To address this issue,
we propose a Re-embedded Regional Transformer (R2T)
for re-embedding the instance features online, which cap-
tures fine-grained local features and establishes connec-
tions across different regions. Unlike existing works that
focus on pre-training powerful feature extractor or design-
ing sophisticated instance aggregator, R2T is tailored to
re-embed instance features online. It serves as a portable
module that can seamlessly integrate into mainstream MIL
models. Extensive experimental results on common com-
putational pathology tasks validate that: 1) feature re-
embedding improves the performance of MIL models based
on ResNet-50 features to the level of foundation model fea-
tures, and further enhances the performance of founda-
tion model features; 2) the R2T can introduce more signifi-
cant performance improvements to various MIL models; 3)
R2T-MIL, as an R2T-enhanced AB-MIL, outperforms other
latest methods by a large margin. The code is available
at: https://github.com/DearCaat/RRT-MIL.

1. Introduction
Computational pathology [6, 7, 25] is an interdisciplinary
field that combines pathology, image analysis, and com-
puter science to develop and apply computational meth-
ods for the analysis and interpretation of pathological im-
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Figure 1. Top: The conventional MIL paradigm lacks fine-tuning
of the offline embedded instance features. Bottom: The proposed
MIL paradigm that introduces instance feature re-embedding to
provide more discriminative features for the MIL model.

ages (also known as whole slide images, WSIs). This
field utilizes advanced algorithms, machine learning, and
artificial intelligence techniques to assist pathologists in
tasks like sub-typing [12], diagnosis [16, 41], progno-
sis [32, 39], and more. However, the process of pixel-level
labeling in ultra-high resolution WSIs is time-consuming
and labor-intensive, posing challenges for traditional deep
learning methods that rely on pixel-level labels in compu-
tational pathology. To address this challenge, multiple in-
stance learning (MIL) approaches have been employed to
treat WSI analysis as a weakly supervised learning prob-
lem [19, 30]. MIL divides each WSI (referred to as a bag)
into numerous image patches or instances. Previous MIL-
based methods mainly follow a three-step process: 1) in-
stance feature extraction, 2) instance feature aggregation,
and 3) bag prediction. However, most previous works focus
on the last two steps, where the extracted offline instance
features are utilized to make bag-level predictions.

Despite achieving “clinical-grade” performance on nu-
merous computational pathology tasks [4, 41], the conven-
tional MIL paradigm faces a significant design challenge
due to the large number of instances involved. The holis-
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tic end-to-end learning of the instance feature extractor,
instance-level feature aggregator, and bag-level predictor
becomes infeasible due to the prohibitively high memory
cost. In previous works, an offline feature extractor pre-
trained on natural images is used to extract instance fea-
tures. However, this approach lacks a feature fine-tuning
process for specific downstream tasks [18, 22, 41], result-
ing in low discriminative features and sub-optimal perfor-
mance, as illustrated in Figure 1(a). To mitigate this is-
sue, some works [4, 11, 14] have employed self-supervised
methods to pre-train a more powerful feature extractor on
a massive amount of WSIs, which are known as founda-
tion models. Nevertheless, pre-training foundation model
requires huge amounts of data (>200k WSIs) and compu-
tational resources. Furthermore, the challenge of lack-
ing feature fine-tuning remains unresolved. An intuitive
way of addressing the issue is to perform online features re-
embedding using representation learning techniques before
MIL models. As shown in Figure 1(b), re-embedding mod-
ules can be trained end-to-end with MIL models to provide
supervised feature fine-tuning. It enables fully exploiting
the knowledge beneficial to the final task.

As a powerful representation learning method, Trans-
former [29] has proven to be effective for representation
learning and has demonstrated promising results in various
domains [3, 38, 40]. However, directly applying the ex-
isting Transformers for re-embedding is challenging due to
the characteristics of WSI. The main problem is the unac-
ceptable memory consumption caused by the massive in-
put of image patches. The linear multi-head self-attention
(MSA) [36] can alleviate the memory dilemma, but suf-
fers from high computational cost and sub-optimal perfor-
mance. Moreover, the global MSA fails to capture the local
detail features that are crucial for computational pathology.

In this paper, we propose Re-embedded Regional Trans-
former (R2T), which leverages the advantages of the na-
tive MSA while overcoming its limitations. Specifically,
R2T applies the native MSA to each local region separately.
Then, it uses a Cross-region MSA (CR-MSA) to fuse the
information from different regions. Finally, a novel Em-
bedded Position Encoding Generator (EPEG) is used to ef-
fectively encode the positional information of the patches.
By incorporating with mainstream MIL models, the pro-
posed R2T can ensure efficient computation while main-
taining powerful representation capabilities to fine-tune the
offline features according to the specific downstream tasks.
The main contributions can be summarized as follows:
• We propose a novel paradigm for MIL models that in-

corporates a re-embedding module to address the issue
of poor discriminative ability in instance features caused
by offline feature extractors. The proposed feature re-
embedding fashion can effectively improve MIL models,
even achieving competitive performance compared to the

latest foundation model.
• For re-embedding instance features, we design a Re-

embedded Regional Transformer (R2T) which can be
seamlessly integrated into mainstream MIL models to fur-
ther improve performance. By incorporating the R2T into
AB-MIL, we present the R2T-MIL, which achieves state-
of-the-art performance on various computational pathol-
ogy benchmarks.

• We introduce two novel components for the R2T: the
Cross-region MSA and the Embedded Position Encod-
ing Generator. The former enables effective information
fusion across different regions. The latter combines the
benefits of relative and convolutional position encodings
to encode the positional information more effectively.

2. Related Work
2.1. Computational Pathology

The transition from traditional glass slides to digital pathol-
ogy has provided a wealth of opportunities for computa-
tional pathology, which aims to combine pathology, im-
age analysis, and computer science techniques to develop
computer-assisted methods for analyzing pathology im-
ages [6, 7, 25]. By harnessing the power of advanced ma-
chine learning algorithms, computational pathology can en-
able large-scale data analysis and facilitate collaboration
among pathologists and researchers. Traditionally, patholo-
gists relied on visual examination of tissue samples under a
microscope to make diagnoses. However, this manual pro-
cess was not only time-consuming but also prone to subjec-
tive interpretations and human errors. With the emergence
of computational pathology, these limitations are being ad-
dressed in remarkable ways. By automating labor-intensive
processes, it can liberate pathologists’ time, enabling them
to focus on complex and critical decision-making tasks.
Meanwhile, its ability to leverage vast amounts of data,
combined with advanced analytic, holds great promise for
breakthroughs in personalized medicine. By extracting
quantitative features from pathology images, computational
pathology can assist in making diagnosis [12, 14, 18], pre-
dicting patient outcomes [34, 46], identifying biomark-
ers [9, 35], and guiding tailored treatment strategies [27].

2.2. Multiple Instance Learning

Multiple instance learning (MIL) is the most widely used
paradigm in computational pathology, involving three key
steps: slide patching, instance feature extraction, and bag
label prediction [2, 12, 18]. Due to the ultra-high res-
olution of WSIs, the instance features are typically ex-
tracted by pre-trained models, especially ResNet-50 pre-
trained on ImageNet. However, the inherent difference be-
tween pathology images and nature images results in poor
discrimination of extracted features. Some self-supervised
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learning-based methods [4, 11, 14, 21, 43] attempt to alle-
viate the feature bias by pre-training feature extractor on a
large number of WSIs. For example, Huang et al. adapted
CLIP [20] to pre-train a vision Transformer called PLIP,
with more than 200k slide-text pairs [11]. These efforts
aim to enhance the discrimination of offline features by
leveraging the vast amount of pathology-specific informa-
tion available in the pre-training data. The extracted in-
stance features are then utilized for bag prediction in com-
putational pathology. These methods can be categorized
into instance label fusion [2, 8, 13, 37] and instance fea-
ture fusion [14, 18, 22, 23, 41]. Instance label fusion meth-
ods first obtain instance labels and then pool them to ob-
tain the bag label, while instance feature fusion methods
aggregate all instance features into a high-level bag embed-
ding and then obtain the bag prediction. Recently, Trans-
former blocks [29] have been utilized to aggregate instance
features [15, 22, 31], demonstrating the advantage of self-
attention over traditional attention [12, 14, 18] in model-
ing mutual instance information. While existing methods
in computational pathology have shown promising results,
most of them primarily focus on how to aggregate discrim-
inative information from pre-extracted features. However,
the pre-extracted features lack fine-tuning on specific down-
stream tasks, resulting in sub-optimal performance.

3. Methodology
3.1. Preliminary

From the perspective of MIL, a WSI X is considered as a
bag while its patches are deemed as instances in this bag,
which can be represented as X = {xi}Ii=1. The instance
number I varies for different bags. For a classification task,
there exists a known label Y for a bag and an unknown la-
bel yi for each of its instances. If there is at least one pos-
itive instance in a bag, then this bag is positive; otherwise,
it is negative. The goal of a MIL model M(·) is to pre-
dict the bag label with all instances Ŷ ← M(X). Follow-
ing the recent popular approaches [13, 37], the MIL predic-
tion process can be divided into three steps: instance feature
extraction, instance feature aggregation, and bag classifica-
tion. Specifically, this process can be defined as follows:

Ŷ ←M(X) := C(A(F(X))), (1)

where F(·), A(·), and C(·) are the mapping functions of
these aforementioned steps respectively.

In computational pathology, extracting all instances in a
bag poses a huge computational challenge for the end-to-
end optimization of these three steps. Therefore, most ex-
isting approaches rely on a pre-trained deep learning model
to obtain instance features first. Then, they only optimize
the aggregation and classification steps. However, the non-
fine-tuned features lead to sub-optimal performance,

even if the features are extracted by a foundation model.
An intuitive way to address this problem is by re-embedding
based on the extracted instance features, while most of the
existing approaches pay more attention to feature aggrega-
tion and neglect the importance of re-embedding. In this
paper, we include a re-embedding step after the instance
feature extraction and update the bag labeling as follows,

Ŷ ←M(X) := C(A(R(F(X)))), (2)

whereR(·) is the mapping function of the re-embedding.

3.2. Re-embedded Regional Transformer

As illustrated in Figure 2, we propose a Re-embedded Re-
gional Transformer (R2Transformer, R2T) to re-embed the
input instance features as the new instance representations,

Z = {zi}Ii=1 := R(H) ∈ RI×D, (3)

where R(·) is the mapping function of the R2Transformer
here, H = {hi}Ii=1 := F(X) ∈ RI×D is the processed in-
put instance features, and zi = R(hi) is the new embedding
of the i-th instance. D is the dimension of the embedding.
The R2Transformer can be flexibly plugged into the MIL
framework as a re-embedding module after feature input
and before instance aggregation to reduce bias caused by the
shift between offline feature learning and downstream tasks.
The whole re-embedding process in the R2Transformer can
be formulated as,

Ẑ = R-MSA (LN (H)) +H

Z = CR-MSA
(

LN
(
Ẑ
))

+ Ẑ
(4)

where R-MSA(·) denotes Regional Multi-head Self-
attention, CR-MSA(·) denotes Cross-region MSA, and
LN(·) denotes Layer Normalization.
Regional Multi-head Self-attention: Since instance num-
ber I is very large, most Transformers in this field com-
monly adopt two strategies to avoid the Out-of-Memory is-
sue. The first method is to sample or aggregate the origi-
nal large instance set into a small one, after which global
self-attention is performed [15, 44]. The second method
performs the Nystrom algorithm [36] to approximate the
global self-attention [22]. Although these methods address
the scalability issue of self-attention with a large I , they ne-
glect the fact that the tumor areas are local and only occupy
a small part of the whole image. Performing global self-
attention on all instances results in feature homogenization.
Moreover, different from the conventional MIL application
scenarios, the instances in each bag have ordinal relations in
computational pathology due to the fact that they are all col-
lected from the same slide in order. These facts motivate us
to design the Regional Multi-head Self-attention (R-MSA)
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Figure 2. Overview of proposed R2T-MIL. A set of patches is first cropped from the tissue regions of a slide and embedded in features
by an offline extractor. Then, the sequence is processed with the R2T module: (1) region partition, (2) feature re-embedding within each
region, and (3) cross-region feature fusion. Finally, a MIL model predicts the bag labels using the re-embedded instance features.

that divides the bag into several different regions and per-
forms self-attention in each region separately. R-MSA takes
into account the aforementioned WSI properties and makes
use of instance ordinal relation information to reduce com-
putation complexity and highlight salient local features.

In R-MSA, the input instance features are reshaped into
a 2-D feature map, H ∈ RI×D → H ∈ R⌈

√
I⌉×⌈√I⌉×D.

And L × L regions are then divided evenly across the map
in a non-overlapping manner, with each containing M ×
M instances where L × M = ⌈

√
I⌉. For example, the

region partition starts from the top-left instance, and an 8×
8 feature map is evenly partitioned into 2 × 2 regions of
size 4× 4 (L = 2,M = 4). We fix the number of regions L
rather than the size of regions M to obtain L × L regions
with adaptive size. By default, L is set to 8. Self-attention
is computed within each local region. The whole process of
R-MSA can be denoted as,

Step 1 : H ∈ RI×D Squaring−→ H ∈ RL2×M2×D,

Step 2 : H
Partition−→ {H l}L

2

l=1, H
l ∈ RM×M×D,

Step 3 : Ẑ := {Ẑl}L
2

l=1, Ẑ
l = S(H l) ∈ RM×M×D,

(5)

where S(·) is vanilla multi-head self-attention with our pro-
posed Embedded Position Encoding Generator (EPEG).
Embedded Position Encoding Generator: Inspired
by [22], we adopt a convolutional computation called Po-
sition Encoding Generator (PEG) [5] to address the chal-
lenge of traditional position encoding strategies being un-
able to handle input sequences of variable length. Differ-
ent from previous methods, we propose a novel approach
called Embedded PEG (EPEG) by incorporating PEG into
the R-MSA module, inspired by the relative position encod-
ing strategy [17, 24, 33]. By embedding the PEG into the
MSA module, EPEG can utilize a lightweight 1-D convo-
lution Conv1-D(·) to more effectively encode in each region

𝑊ொ 𝑊 𝑊

𝑍ିଵ

SoftMax

𝑍
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Matrix 
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Attention 
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𝒍

Figure 3. Illustration of Embedded Position Encoding Generator.

separately. The structure of EPEG is shown in Figure 3.
Taking the instances in the l-th region as an example, the
EPEG can be formulated as,

αl
ij = SoftMax

(
elij+Conv1-D

(
elij

))
, (6)

where αl
ij is the attention weight of H l

j with respect to H l
i ,

and elij is calculated using a scaled dot-product attention.
Cross-region Multi-head Self-attention: R-MSA only
considers the features within each region, which limits its
modeling power of context-based semantic features. This
is crucial for downstream tasks, such as prognosis, which
requires a more comprehensive judgment. To effectively
model the cross-region connections, we propose Cross-
region Multi-head Self-attention (CR-MSA). First, we ag-
gregate the representative features Rl of each region,

W l
a = SoftMaxMm=1

(
Ẑl
mΦ

)
,

Rl = W l⊤
a Ẑl,

(7)

where Φ ∈ RD×K denotes learnable parameters. We uti-
lize vanilla MSA to model the cross-region connection,
R̂ = S (R). Finally, the updated representative features
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Methods
CAMELYON-16 TCGA-BRCA

Accuracy AUC F1-score Accuracy AUC F1-score
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AB-MIL [12] 90.06±0.72 94.54±0.30 87.83±0.83 86.41±4.92 91.10±2.52 81.64±4.71
CLAM [18] 90.14±0.85 94.70±0.76 88.10±0.63 85.17±2.70 91.67±1.78 80.37±3.04
DSMIL [14] 90.17±1.02 94.57±0.40 87.65±1.18 87.20±2.69 91.58±1.33 82.41±2.92
TransMIL [22] 89.22±2.32 93.51±2.13 85.10±4.33 84.68±2.67 90.80±1.91 79.86±2.63
DTFD-MIL [41] 90.22±0.36 95.15±0.14 87.62±0.59 85.92±1.76 91.43±1.64 81.09±2.05
IBMIL [16] 91.23±0.41 94.80±1.03 88.80±0.89 84.19±3.40 91.01±2.32 79.45±3.42
MHIM-MIL [26] 91.81±0.82 96.14±0.52 89.94±0.70 86.73±5.59 92.36±1.58 82.43±5.47
R2T-MIL 92.40±0.31 97.32±0.29 90.63±0.45 88.33±0.67 93.17±1.45 83.70±0.95

PL
IP
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et
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ed

AB-MIL [12] 94.66±0.42 97.30±0.31 93.29±0.54 85.45±2.32 91.73±2.26 80.60±2.66
CLAM [18] 93.73±0.54 97.17±0.50 91.60±0.60 86.70±1.35 92.16±2.02 81.91±1.78
DSMIL [14] 94.40±0.85 97.06±0.56 92.78±1.15 87.25±2.70 91.80±1.67 82.18±2.28
TransMIL [22] 94.40±0.43 97.88±0.21 92.81±0.43 85.83±3.44 92.17±2.20 81.12±3.25
DTFD-MIL [41] 94.57±0.31 97.29±0.23 93.12±0.40 86.42±2.67 92.16±2.42 81.77±2.73
IBMIL [16] 93.90±0.66 97.04±0.18 92.44±0.64 87.57±1.48 91.71±1.74 82.78±2.02
MHIM-MIL [26] 95.32±0.31 97.79±0.15 94.13±0.42 87.07±2.20 93.17±2.00 82.48±2.50
R2T-MIL 95.49±0.00 98.05±0.29 94.29±0.04 88.82±3.22 93.80±1.24 84.55±3.55

Table 1. Cancer diagnosis, and sub-typing results on C16 and BRCA. The highest performance is in bold, and the second-best performance
is underlined. With AB-MIL as a baseline, R2T-MIL is not only capable of re-embedding ResNet-50 features to the level of foundation
model (PLIP [11]) features, but also effectively fine-tuning offline PLIP features.

are distributed to each instance in the region with MinMax
normalized weight W l

d,

W l
d = MinMaxMm=1

(
Ẑl
mΦ

)
∈ RM2×K ,

Zl = W l⊤
d R̂lŴ l

d,
(8)

where Ŵ l
d = SoftMaxKk=1

(
Ẑl
mkΦ

)
∈ RK×1.

3.3. R2Transformer-based MIL

Once we obtain the re-embedding of instances, any instance
aggregation method and classifier can be applied to accom-
plish the specific downstream tasks. The re-embedding
R(·) will be optimized with the instance aggregation mod-
ule A(·) and the bag classifier C(·) together,

{R̂, Â, Ĉ} ← argminL(Y, Ŷ ) = L(Y, C(A(R(H)))),
(9)

where L(·, ·) denotes any MIL loss. R2Transformer-based
MIL (R2T-MIL) adopts the instance aggregation method
and the bag classifier of AB-MIL [12] by default.

4. Experiments and Results
4.1. Datasets and Evaluation Metrics

Datasets: We use CAMELYON-16 [1] (C16), TCGA-
BRCA, and TCGA-NSCLC to evaluate the performance
on diagnosis and sub-typing tasks. For prognosis, we use
TCGA-LUAD, TCGA-LUSC, TCGA-BLCA to evaluate
the performance on the survival prediction task. Please refer
to the Supplementary Material for more details.

Evaluation Metrics: For diagnosis and sub-typing, we
leverage Accuracy, Area Under Curve (AUC), and F1-score
to evaluate model performance. We only report AUC in
ablation experiments. For survival prediction, we report the
C-index in all datasets. To reduce the impact of data split on
model evaluation, we follow [18, 42, 45] and apply 5-fold
cross-validation in all remaining datasets except C16. We
report the mean and standard deviation of the metrics over
N folds. For C16, we follow [26] and use 3-times 3-fold
cross-validation to alleviate the effects of random seed.
Compared Methods: Seven influential MIL approaches
are employed for comparison. They are AB-MIL [12],
DSMIL [14], CLAM [18], DTFD-MIL [41], Trans-
MIL [22], IBMIL [16], and MHIM-MIL [26]. We repro-
duce the results of these methods under the same settings.
Implementation Details: We adopt ResNet50 [10] pre-
trained with ImageNet-1k and the latest foundation model
PLIP [11] pre-trained with OpenPath as the offline feature
extractors. Supplementary Material offers more details.

4.2. Main Results

4.2.1 Cancer Diagnosis, and Sub-typing

Table 1 presents the diagnosis and sub-typing perfor-
mances of different MIL approaches on the C16 and BRCA
datasets. The results demonstrate that our proposed R2T-
MIL achieves the best performance under all metrics on
all benchmarks. Specifically, R2T-MIL gets 0.59%, 1.18%,
and 0.69% performance gains over the second-best meth-
ods in Accuracy, AUC, and F1-score respectively on the

11347



Methods Accuracy AUC F1-score

R
es

N
et

-5
0

AB-MIL 90.32±1.39 95.29±1.14 89.83±1.53

CLAM 90.52±2.08 95.37±1.08 90.08±1.97

DSMIL 90.43±2.52 95.60±0.81 90.03±2.61

TransMIL 90.04±1.86 94.97±1.11 89.94±1.73

DTFD-MIL 89.85±1.53 95.55±1.47 89.60±1.67

IBMIL 90.04±1.48 95.57±1.13 89.73±1.64

MHIM-MIL 91.27±2.35 96.02±1.35 90.85±2.53

R2T-MIL 91.75±2.38 96.40±1.13 91.26±2.60

PL
IP

AB-MIL 90.99±2.43 95.68±1.98 90.52±2.45

CLAM 90.80±2.35 95.46±1.72 90.38±2.46

DSMIL 90.60±2.37 95.78±1.81 90.24±2.51

TransMIL 89.09±2.00 95.30±1.95 88.83±2.16

DTFD-MIL 90.42±2.98 95.83±1.75 89.91±3.01

IBMIL 91.18±3.27 95.62±2.09 90.94±3.20

MHIM-MIL 91.74±1.88 96.21±1.26 91.20±1.89

R2T-MIL 92.13±2.55 96.40±1.45 91.83±2.50

Table 2. Sub-typing results on TCGA-NSCLC.

C16 dataset. On the BRCA dataset, the AUC improve-
ment is 0.69%. R2T-MIL employs the same aggregation
and classification methods as AB-MIL. However, R2T-MIL
significantly outperforms AB-MIL. It increases the AUC by
2.78% and 1.77% on the C16 and BRCA datasets, respec-
tively. The sub-typing results on NSCLC in Table 2 sup-
port a similar observation. We attribute these substantial
performance improvements to the additional re-embedding
step based on our proposed R2T, which surpasses the per-
formance of the foundation model (+0.02% AUC on C16,
+1.37% on BRCA, +0.72% on NSCLC). In addition, we
find that R2T can further enhance the features of the foun-
dation model, achieving considerable improvement. This
validates the effectiveness of re-embedding.

4.2.2 Survival Prediction

Table 3 shows the experimental results on three survival
prediction datasets. It is worth noting that our proposed
R2T-MIL model demonstrates outstanding performance, at-
taining a C-index of 61.13% on the BLCA, 67.19% on
the LUAD, and 60.95% on the LUSC. It outperforms the
compared methods by a significant margin, with improve-
ments of 2.23%, 3.08%, and 1.77% over the second-best
methods, respectively. Furthermore, our proposed feature
re-embedding strategy can yield substantial improvements
even when working with high-quality features extracted by
the foundation model. Particularly, compared to AB-MIL,
our feature re-embedding strategy brings performance im-
provements of 4.8%, 3.85%, and 3.3% for the three datasets,
respectively. These results highlight the consistent and re-
liable performance of our proposed strategy and method,
indicating its efficacy in predicting survival outcomes.

Methods BLCA LUAD LUSC

R
es

N
et

-5
0

AB-MIL 57.50±3.94 58.78±4.90 56.51±7.14

CLAM 57.57±3.73 59.60±3.93 56.65±6.90

DSMIL 57.42±2.25 59.31±4.75 55.03±6.61

TransMIL 58.90±4.70 64.11±1.99 56.39±2.94

DTFD-MIL 56.98±3.24 59.48±2.61 55.16±4.33

IBMIL 58.41±2.90 58.58±4.67 59.18±3.29

MHIM-MIL 58.36±3.26 60.32±4.41 56.08±6.33

R2T-MIL 61.13±2.36 67.19±4.02 60.95±4.41

PL
IP

AB-MIL 59.18±2.48 62.09±4.38 57.12±2.39

CLAM 61.58±2.89 64.05±4.70 58.00±3.34

DSMIL 58.96±1.80 63.82±5.56 56.12±2.21

TransMIL 56.20±3.26 63.55±2.94 58.84±3.28

DTFD-MIL 59.67±4.71 61.78±2.33 57.75±3.52

IBMIL 56.32±2.69 58.86±3.40 57.33±3.28

MHIM-MIL 60.92±3.38 62.94±4.58 55.95±2.54

R2T-MIL 63.98±2.26 65.94±1.34 60.42±2.15

Table 3. Survival Prediction results on three main datasets.

4.3. Ablation Study

4.3.1 Re-Embedding Matters in Pathology

Foundation Model Features vs. Re-embedding Fea-
tures: Table 4 and Figure 4 compare the performance of
the features extracted by the foundation model PLIP [11]
and various re-embedding features. The PLIP is based on
the multi-modal foundation model CLIP [20] and uses up
to 200K slide-text pairs for pre-training. Although this
high-cost pre-training brings some improvement on differ-
ent tasks, it still has bottlenecks. We attribute this to the
dilemma of the traditional paradigm that even the best of-
fline pre-training features cannot address the issue of insuf-
ficient feature fine-tuning for downstream tasks. In contrast,
re-embedding modules that can be end-to-end trained with
MIL models provide supervised feature fine-tuning, which
enables full exploitation of the knowledge beneficial to the
final task. Hence, we can see from Table 4 that any re-
embedding structure achieves a considerable improvement
on all tasks. Some tailored structures, such as our proposed
R2T, can have a significant performance advantage in most
of the tasks. Moreover, Figure 4 shows that this improve-
ment is not limited to the classical AB-MIL, but can widely
benefit different MIL models. Table 1 demonstrates that
the re-embedding approach is still effective on foundation
model features. Therefore, compared to foundation model
features, re-embedding features are a cheaper, more versa-
tile alternative and effective booster.
Different Re-embedding Discussion: The bottom part of
Table 4 presents the performance of AB-MIL under dif-
ferent feature settings. We employ four methods, includ-
ing TranMIL, N-MSA, the local version of N-MSA, and
our proposed R2T to re-embed the features. From observa-
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Figure 4. Performance improvement by adding R2T. Features re-embedded by R2T online outperform PLIP offline features on most tasks.

Model C16↑ NSCLC↑ LUAD↑ TTC16 ↓

AB-MIL+R50 94.52 95.28 58.78 3.1s
AB-MIL+PLIP 97.30 95.68 62.09 -
R50+Re-embedding
+TransMIL (global) 95.80 95.58 63.24 13.2s
+N-MSA (global) 96.20 95.51 63.99 7.7s
+N-MSA (local) 96.47 95.97 65.41 29.8s
+R2T (local) 97.32 96.40 67.19 6.5s

Table 4. Comparison of different instance features under AB-MIL.
We report the train time per epoch on C16 (TTC16). The pre-
training time is not included for comparison.

tions, all four re-embedded AB-MILs perform better than
the original one. The performance improvement by Trans-
MIL, N-MSA, and R2T are 1.28%, 1.68%, and 2.80%,
respectively, on C16, while these numbers on LUAD are
4.46%, 4.14%, and 8.41%, respectively. This phenomenon
validates the importance of re-embedding in MIL-based
computational pathology. Among the four employed re-
embedding approaches, R2T boosts the AB-MIL with the
most considerable improvements while incurring the lowest
computational cost. Specifically, R2T achieves more per-
formance gains (+0.85% on C16 and +2.63% on LUAD)
while only requiring a 1/5 inference time compared with
the second-best approaches.
The Applicability of R2T in MIL Frameworks: We in-
corporate the R2T into different MIL frameworks as a
re-embedding module for studying its applicability. The
performance improvements achieved by this re-embedding
module in different frameworks are shown in Figure 4.
The results reveal that the R2T is capable of improving all
MIL frameworks on all tasks. Moreover, the improvement
brought by R2T surpasses the foundation model features on
two tasks except for diagnosis, and reaches a similar level
on C16. This clearly verifies the good applicability of R2T.

4.3.2 Local is more Appropriate than Global

To investigate the role of local self-attention in computa-
tional pathology, we replace the naive MSA in the parti-
tioned regions with N-MSA [36]. The results in Table 4
demonstrate that feature re-embedding within local regions,

Model C16↑ NSCLC↑ LUAD↑

w/o 96.82 96.01 65.45
PEG3×3 96.86 (+0.04) 96.11 (+0.10) 65.61 (+0.16)
PEG7×7 95.47 (-1.35) 95.94 (-0.07) 65.14 (-0.31)
PPEG 93.00 (-3.82) 96.03 (+0.02) 65.28 (-0.17)
EPEG 97.32 (+0.50) 96.40 (+0.39) 67.19 (+1.74)

Table 5. Comparison results of different position encoding. The
PPEG [22] consists of a 3×3, 5×5, and 7×7 convolution block.

called +N-MSA (local), outperforms the global method un-
der the same N-MSA. This validates the superiority of lo-
cal self-attention in mining fine-grained features over global
ones. The cost of the performance improvement in local
self-attention brings a new problem. The local ones suffer
from a higher computational burden than the global ones
(around 4× more training time). Our proposed R2T can al-
leviate this problem since it employs a more naive MSA,
which significantly reduces the computational cost. An-
other advantage of local self-attention is that it improves
the diversity of the re-embedded features, as shown in Fig-
ure 5 (c) and (d). Throughout, the local self-attention fash-
ion is far more appropriate for re-embedding in computa-
tional pathology, and our proposed R2T ensures both good
performance and good efficiency in local self-attention.

4.3.3 Effects of EPEG

We discuss the impact of various positional encoding meth-
ods that can handle variable input lengths in detail here.
Table 5 shows that the conventional conditional positional
encoding methods for the input, such as PEG [5] and
PPEG [22], do not effectively improve the performance.
More parameters and more complex structures do not bring
significant improvements, but rather the simplest PEG3×3

achieves slight improvements on both tasks. In contrast, the
EPEG, which is embedded in MSA, can benefit from a more
lightweight 1-D convolution, and encode the attention ma-
trix more directly. This enables it to model the positional
information more effectively in the re-embedding module.
For instance, EPEG obtains 0.50%, 0.39%, and 1.74% im-
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Figure 5. The tSNE [28] visualization of instance features from the CAMELYON-16 dataset, comparing (a) features extracted by ResNet-
50 pre-trained on ImageNet-1k, (b) features extracted by PLIP, (c) features after N-MSA re-embedding, and (d) features after R2T re-
embedding. In (a), we obtain instance-level labels from the tumor annotations and report the instance numbers of different labels.

provements on C16, NSCLC, and LUAD, respectively.

4.3.4 Impact of Cross-Region MSA

Although R-MSA can effectively mine the fine-grained fea-
tures of local regions, the hard partitioning would restrict
the range of re-embedding to each separate region. This
impairs the discriminative power of the features, as they
lack cross-region connections. The left figure in Table 6
illustrates this phenomenon, where all features are divided
into 64 clusters (corresponding to the number of regions).
Even though one cluster can capture fine-grained features,
the key clusters are scattered and not cohesive. This af-
fects the expression of context-based semantic information,
which is crucial for downstream tasks. The right figure
shows the significant improvement of the feature distribu-
tion after adding the CR-MSA module, and the table results
also prove its effectiveness. Moreover, such multi-region-
based semantic information is more important for survival
prediction than the other two tasks. This is because this task
is based on cases, where each bag contains multiple slides,
which requires a more comprehensive discrimination.

4.4. Visualization

We visualize the features before and after re-embedding
with different ways in Figure 5. From observations, we
can summarize that: 1) The offline feature extractor fails
to learn the discriminative instance features, even with a
foundation model trained on 200K slide-text pairs, espe-
cially when the instance distribution is extremely imbal-
anced, e.g., 1:224 positive-to-negative ratio; 2) Global self-
attention enables the re-embedding of instance features, but
its attention distribution is almost uniform. This indicates
that its re-embedded features are homogeneous and lack
diversity, which limits the performance of advanced MIL

Model C16↑ NSCLC↑ LUAD↑

w/o 96.89 96.24 63.03
w/ CR-MSA 97.32 (+0.43) 96.40 (+0.16) 67.19 (+4.16)

Table 6. Quantitative and qualitative analysis of CR-MSA.

models. 3) The features re-embedded by R2T not only en-
hance discriminability but also alleviate the issue of feature
homogenization.

5. Conclusion

In this work, we have demonstrated the importance of
instance feature re-embedding for computational pathol-
ogy algorithms based on MIL, alleviating the issue of the
under-learning of instance features in the conventional MIL
paradigm. We have also shown that Transformer-based re-
embedding modules can consistently boost the performance
of various MIL methods regardless of their architectures.
However, the main result of this paper is the introduction
of the Re-embedded Regional Transformer and two novel
components: CR-MSA and EPEG. We have evidence of the
importance of the local Transformer in the age of the foun-
dation model and its versatility as a re-embedding module.
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