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Abstract

Predicting the trajectories of road agents is essential for
autonomous driving systems. The recent mainstream meth-
ods follow a static paradigm, which predicts the future tra-
jectory by using a fixed duration of historical frames. These
methods make the predictions independently even at adja-
cent time steps, which leads to potential instability and tem-
poral inconsistency. As successive time steps have largely
overlapping historical frames, their forecasting should have
intrinsic correlation, such as overlapping predicted trajec-
tories should be consistent, or be different but share the
same motion goal depending on the road situation. Moti-
vated by this, in this work, we introduce HPNet, a novel dy-
namic trajectory forecasting method. Aiming for stable and
accurate trajectory forecasting, our method leverages not
only historical frames including maps and agent states, but
also historical predictions. Specifically, we newly design
a Historical Prediction Attention module to automatically
encode the dynamic relationship between successive predic-
tions. Besides, it also extends the attention range beyond the
currently visible window benefitting from the use of histor-
ical predictions. The proposed Historical Prediction Atten-
tion together with the Agent Attention and Mode Attention is
further formulated as the Triple Factorized Attention mod-
ule, serving as the core design of HPNet. Experiments on
the Argoverse and INTERACTION datasets show that HP-
Net achieves state-of-the-art performance, and generates
accurate and stable future trajectories. Our code are avail-
able at https://github.com/XiaolongTang23/
HPNet.

1. Introduction
Accurate and reliable trajectory prediction of road agents
such as cars and pedestrians is critical to the decision-
making and safety of autonomous driving systems. How-
ever, trajectory prediction is extremely challenging. On the
one hand, an agent’s motion is influenced not only by road
geometry and rules but also by surrounding agents. On the

Figure 1. The difference between previous methods and ours. Pre-
vious methods (upper) treat trajectory prediction as a static task,
predicting future trajectories based on a fixed-length sequence of
historical frames. They independently forecast trajectories even
at adjacent timesteps, despite the considerable overlap in input
data. In contrast, HPNet (lower) views trajectory prediction as
a dynamic task. It not only leverages historical frames but also
historical prediction embeddings to forecast trajectories.

other hand, the agent’s intentions are unknown, leading to
high levels of future uncertainty.

Recently, researches such as Macformer [10], HiVT
[44], and Multipath++ [32] have achieved notable results
by employing intricately designed network architectures to
seamlessly fuse heterogeneous information including agent
history, agent-agent interactions, and agent-map interac-
tions. Wayformer [25] further explores the unified ar-
chitecture for fusing the heterogeneous information. In
addition, to account for future uncertainties, recent work
[3, 17, 20, 24–27, 32, 34, 36, 41, 43, 45] have shifted to-
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wards generating multi-modal future trajectories rather than
single trajectory, since road agents may make varying deci-
sions even in identical scenarios. Anchor-based approaches
[3, 17, 34, 41, 43] utilize multiple candidate goals or prede-
fined paths as anchors to indicate various potential future,
thereby facilitating the generation of multi-modal trajecto-
ries. More recently, models [24, 25, 32, 36, 45] adopt learn-
able queries to generate multi-modal predictions, achieving
promising results.

While the existing methods have achieved great advance-
ments in prediction accuracy, they mostly treat trajectory
prediction as a static task by using a fixed number of histor-
ical frames to predict future trajectories. As shown in Fig. 1,
successive predictions are inherently independent, although
their input overlaps considerably. This static paradigm of
trajectory prediction may lead to instability and tempo-
ral inconsistency in successive predictions, which is not
conducive to the autonomous driving system making safe
and reliable decisions. Aiming for more stable predic-
tion, DCMS [38] proposes to model trajectory prediction
as a dynamic problem. It explicitly considers the corre-
lation between successive predictions and imposes a tem-
poral consistency constraint that requires the overlapping
parts of predicted trajectories at adjacent time steps to be
identical. Moreover, QCNet [45] introduces a query-centric
encoding paradigm to encode location-dependent features
and location-independent features separately, thereby cir-
cumventing redundant encoding in successive predictions.
These preliminary studies show the effectiveness and ratio-
nality of modeling trajectory prediction as a dynamic task.

These works [38, 45] inspire us to think that the intrin-
sic relationship between successive predictions should be
more general, not just consistent. For example, the over-
lapping portions may remain consistent as that in DCMS
[38] or change slightly. Even more, when an agent is navi-
gating through a congested multi-way intersection, the suc-
cessive predictions may be quite different but still share the
same motion goal as shown in Fig. 4 (b). So, in this work,
we present a novel dynamic trajectory prediction method,
HPNet. It models the dynamic relationship between suc-
cessive predictions as the process of History Prediction At-
tention. Specifically, HPNet consists of three components:
Spatio-Temporal Context Encoding, Triple Factorized At-
tention, and Multimodal Output. Initially, the mode queries
aggregate spatio-temporal context to form preliminary pre-
diction embeddings. Subsequently, Triple Factorized At-
tention, comprising Agent Attention, Historical Prediction
Attention, and Mode Attention, models the interactions be-
tween agents, predictions, and modes, respectively, to ob-
tain more informative prediction embeddings. Finally, the
embeddings are decoded as multimodal future trajectories
in the last module.

Our method has two clear advantages: First, our model

establishes a general relationship between successive pre-
dictions, using the historical predictions as references to
improve stability and increase accuracy. Second, in online
inference, existing static attention-based methods are con-
strained within the fixed visible historical range, due to lim-
ited dataset size or computational resources. Instead, our
approach can achieve a larger visible range (i.e. longer at-
tention) without increasing computational overhead, which
is beneficial for better accuracy in practical applications.

2. Related Work
Attention Mechanism. Transformer [33] has achieved no-
table success in fields such as natural language processing
and computer vision. This is largely attributed to the at-
tention mechanism, which considers the whole context and
focuses on the important parts of the input data. Recently,
many methods [6, 7, 15, 16, 19, 24–26, 30, 36, 39, 42, 44–
46] employ attention to process agent history sequence or
model agent-agent and agent-lane interactions, and have
achieved great success in trajectory prediction. The input
for the trajectory prediction task usually encompasses data
across temporal and spatial dimensions. Instead of flatten-
ing the input together into one joint self-attention [6, 36,
39], applying attention to each axis [16, 24–26, 44, 45] may
be more suitable for trajectory prediction task, which leads
to better semantic consistency as well as lower computa-
tional complexity. In our work, the key module Triple Fac-
torized Attention also follows the latter attention approach,
consisting of Historical Prediction Attention, Agent Atten-
tion, and Mode Attention to model the interaction of agents
in three different dimensions.

Multimodal Output. To model future uncertainty dis-
tributions, probabilistic methods [2, 9, 18, 28, 29, 39] firstly
propose to use generative models (e.g., GAN, VAE) to ob-
tain multimodal outputs through multiple samplings. How-
ever, in these methods, the number of sampling iterations
required to produce reliable results is indeterminate, mak-
ing them unreliable for the later decision process of au-
tonomous driving. Afterwards, deterministic methods [3,
17, 20, 22–27, 31, 32, 34–38, 43–45] propose to eliminate
the need of multiple sampling and directly output multi-
modal future trajectories in a single shot, yielding more ac-
curate trajectory prediction. Among them, Anchor-based
approaches usually employ two types of anchors, candidate
targets [17, 20, 34, 43] and predefined paths [3, 27, 41].
These anchors indicate a variety of potential future trajec-
tories, thus effectively improving the prediction accuracy of
multimodal trajectories. However, the performance of these
methods heavily depends on the quality of the anchors, and
sometimes bad anchors can lead to irreparably bad results.
So, inspired by DETR [1], several methods propose to use
learnable queries [24, 25, 31, 32, 36, 45] rather than anchors
to facilitate multimodal output. In these methods, each
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Figure 2. An overview of HPNet. The proposed HPNet encompasses three components: Spatio-Temporal Context Encoding, Triple
Factorized Attention, and Multimodal Output. Firstly, it combines agent and lane features with mode queries to create initial prediction
embeddings. Subsequently, Triple Factorized Attention — comprising Agent Attention, our proposed Historical Prediction Attention, and
Mode Attention — refine these prediction embeddings. Finally, the prediction embeddings are decoded by an MLP to obtain the predicted
trajectories. The predicted trajectories are fed into this pipeline again to enhance the precision of predictions.

mode query can adaptively generate a potential trajectory
for every sample based on its context, which is more flexible
than pre-defined fixed anchors, leading to promising perfor-
mance in trajectory prediction. Lately, there appear some
approaches [7, 31, 36, 45, 46] to combine query-based and
anchor-based methods. For example, ProphNet [36] gen-
erates specific anchors based on the sample and feeds the
anchor information into learnable mode queries to help pro-
duce multimodal trajectories. QCNet [45] adaptively gener-
ates trajectory proposals through anchor-free mode queries
and then refines these proposals based on the context using
anchor-based mode queries.

3. Method
Trajectory forecasting aims to predict the future trajec-
tories of any agent given its historical status. Specifi-
cally, given a fixed length sequence of history status frames
{f−T+1, f−T+2, ..., f0}, the goal is to predict K different
modal trajectories for N agents as below:

L0 = {L0,n,k}n∈[1,N ],k∈[1,K], (1)

where ft = {a1∼N
t ,M}, a1∼N

t represents the features
of all agents in the scene at time t, and M denotes the
high-definition (HD) map including M lane segments. And
each trajectory contains future locations for the next F time
steps:

L0,n,k = {l1,n,k, l2,n,k, ..., lF,n,k}, (2)

where li,n,k ∈ R2 represents the predicted position at time
step i of mode k for agent n. Simultaneously, a probabil-
ity score is usually obtained for each predicted trajectory to
indicate its likelihood of being the path that the agent will
actually follow.

An overview of our proposed HPNet is illustrated in
Fig. 2. As shown, our model consists of three parts: Spatio-
Temporal Context Encoding, Triple Factorized Attention,

and Multimodal Output. Firstly, the spatio-temporal fea-
tures of agents and lanes are aggregated with learnable
mode queries to generate prediction embeddings that can
preliminarily predict future trajectories. Then, Triple Fac-
torized Attention including Agent Attention, Historical Pre-
diction Attention, and Mode Attention are conducted to re-
fine the prediction embeddings. Among them, Agent At-
tention models interactions between agents, Mode Atten-
tion models interactions across different modes (i.e., differ-
ent predicted paths), and Historical Prediction Attention is a
novel module we propose to dynamically model the intrin-
sic correlation between current and historical predictions.
Finally, The prediction embeddings are decoded by a MLP
to obtain the predicted trajectories, which are fed into the
whole pipeline again to enhance the precision of forecasts.

3.1. Spatio-Temporal Context Encoding

HPNet is based on Graph Neural Networks (GNNs) and
adopts relative spatio-temporal position encoding [19, 42,
45, 46]. It encodes the location-independent features of
agents and maps into node embeddings while encoding the
relative spatio-temporal positions into edge embeddings.

Encoding Agent Features. The agent features include
spatial position, motion state, and semantic attributes of
each agent at each time step. Each agent at each time step is
adopted as a node in the graph, and its features represented
as ant = {pt,nx , pt,ny , θt,n, vt,nx , vt,ny , ct,na }, where (pt,nx , pt,ny )
is the location, θt,n is the orientation, (vt,nx , vt,ny ) is the ve-
locity, and ct,na is the attribute. For each agent at each time
step, we take its location as the origin of a local polar coor-
dinate system and its orientation as the positive direction. In
this reference frame, the velocity (vt,nx , vt,ny ) is represented
as (vt,n, φt,n) where vt,n is the velocity magnitude and φt,n

is the direction of velocity. A two-layer MLP is adopted to
encode the location-independent features as agent embed-
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dings Et,n
a = MLP(vt,n, φt,n, ct,na ), where Et,n

a ∈ RD, D
is the encoding dimension.

Encoding Map Features. The map features include spa-
tial position, length, and semantic attributes of each lane
segment. The lane segments are adopted as nodes in the
graph, each of which comprises a set of centerlines along
with some attributes. The location and orientation of the
midpoint of centerlines are used to represent the position
and orientation of each lane segment. The lengths of the
lane segments lm and their attributes cm serve as node fea-
tures, which are encoded through a two-layer MLP as map
embeddings Em = MLP(lm, cm), where Em ∈ RM×D.
Similar to LaneGCN [23], to capture the topological struc-
ture of the map, the lane nodes are connected based on ad-
jacent, predecessor, and successor relationships. Interaction
between lane nodes is then accomplished via self-attention.

Encoding Relative Spatio-Temporal Position. The rel-
ative spatio-temporal positions between nodes are used as
the features for the edges. All nodes in the graph are en-
coded using features in their local polar coordinates, so the
edges represent the transformation relationships between
different local polar coordinates. The edge features can be
denoted as {de, ϕe, ψe, δe}, where de represents the dis-
tance from the source node to the target node, ϕe indi-
cates the orientation of the edge in the target node’s ref-
erence frame, ψe denotes the relative orientation between
the source and target nodes, and δe signifies the time dif-
ference between them. Similarly, a two-layer MLP is
adopted to encode these features into edge embeddings
Ee = MLP(de, ϕe, ψe, δe), where Ee ∈ RY×D, Y is the
number of edges.

Spatio-Temporal Attention. Spatio-temporal attention
comprises two parallel cross-attention modules. Temporal
Attention aggregates the historical embeddings of agents,
while Spatial Attention models agent-lane interaction. We
assign the same learnable mode queries to each agent at
each time step, denoted as {qt,n,k}t∈[1−T,0],n∈[1,N ],k∈[1,K].
Each mode query, as a node in the graph, the spatio-
temporal position of which is identical to the corresponding
agent. For each mode query node, Spatial Attention with
lane nodes is performed within a certain spatial radius R1

and Temporal Attention with agent nodes within a specified
time span I1, respectively. Edges participate in this process
via concatenating with the source node [19, 42, 44–46]:

qSt,n,k = MHA(qt,n,k, [Em, Ee], [Em, Ee]), (3)

qTt,n,k = MHA(qt,n,k, [E
t−I1∼t,n
a , Ee], [E

t−I1∼t,n
a , Ee]),

(4)
where MHA(a, b, c) denotes the multi-head attention with
a as query, b as key, and c as value.The results of the two
cross-attention modules are then summed to generate the
prediction embeddings:

Pt,n,k = qTt,n,k + qSt,n,k. (5)

Subsequently, the prediction embeddings generated from
Eq. (5) are passed through Triple Factorized Attention.
Triple Factorized Attention comprises Agent Attention,
Historical Prediction Attention, and Mode Attention, al-
lowing each prediction embedding to directly or indirectly
‘talk’ to the embeddings of different agents, different time
steps, and different modes. In Sec. 3.2, Sec. 3.3, and
Sec. 3.4, we introduce Agent Attention, Historical Predic-
tion Attention, and Mode Attention, respectively.

3.2. Agent Attention

In the Agent Attention module, self-attention is accom-
plished across agents for each mode and each time step on
these prediction embeddings:

PA
t,n,k = MHA(Pt,n,k, [Pt,n′,k, Ee], [Pt,n′,k, Ee]), (6)

where n′ denotes all agents within a certain radius R2 of
the n-th agent under the same mode and time step. On
the one hand, agent attention models the interactions among
agents within their respective spatio-temporal contexts. On
the other hand, it can also be conceived as the interaction
between the future trajectories of different agents, thereby
mitigating potential collisions.

3.3. Historical Prediction Attention

After aggregating historical agent states, agent-lane interac-
tions, and agent-agent interactions, previous methods typi-
cally begin predicting future trajectories. However, we ob-
serve that the current and historical predictions are usually
correlated, while most existing methods neglect this. For
example, when an agent is moving steadily on a straight
path, the overlapping segments of successive predictions
should be almost the same or vary minimally. When an
agent traverses a busy multi-lane crossroads, the successive
predictions may be quite different but still share the same
motion goal as shown in Fig. 4 (b). Our experiments show
that this kind of correlation between successive predictions
is critical not only for the stability of the predictions but also
for accuracy.

Consequently, to further improve the stability and accu-
racy of trajectory prediction, we design this novel Histori-
cal Prediction Attention. It incorporates historical predic-
tions to inform the current forecast, modeling the dynamic
correlation between successive predictions by the attention
mechanism. Specifically, each prediction embedding per-
forms self-attention with historical prediction embeddings
within the temporal span I2 for each agent and each mode:

PHP
t,n,k = MHA(PA

t,n,k, [P
A
t−I2∼t,n,k, Ee], [P

A
t−I2∼t,n,k, Ee]).

(7)
Here, the prediction embeddings rather than final histor-

ical prediction trajectories are used to model the dynamic
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relationship, because the latter will change the training pro-
cess from parallel execution to serial execution, greatly in-
creasing the time required for training.

Besides improving the accuracy and stability of predic-
tion, this attention in Eq. (7) can also absorb longer history
information beyond the currently visible window, i.e., ex-
tends the attention range. To be specific, without Histori-
cal Prediction Attention, the observation window of PHP

t

is confined to the interval [t − I1, t] as it only uses the I1
previous frames, limited to the time span I1. In contrast, if
I2 = I1, the observation window of Historical Prediction
Attention is twice as long, i.e., [t − I1 − I1, t]. In detail,
the current prediction uses the historical I1 prediction em-
bedding, and thus the observation window is [t−I1, t] w.r.t.
the prediction embedding. However, the prediction embed-
ding at the farthest timestep t− I1 actually already absorbs
attention information from previous [t − I1 − I1, t − I1]
frames. Therefore, the actual observation window of His-
torical Prediction Attention is the sum of the two intervals,
i.e., [t − I1 − I1, t]. In general case that I2 ̸= I1, the ac-
tual observation window of Historical Prediction Attention
is [t − I2 − I1, t], which is also longer than that of most
existing methods [t − I1, t]. The longer attention range of
Historical Prediction Attention can provide more beneficial
information for better trajectory prediction without addi-
tional computational cost.

3.4. Mode Attention

After the historical prediction attention, self-attention is
then applied across different modes of prediction embed-
dings for each agent and each time step, modeling mode-
mode interactions between different future trajectories to
enhance multimodal outputs:

PM
t,n,k = MHA(PHP

t,n,k, [P
HP
t,n,1∼K , Ee], [P

HP
t,n,1∼K , Ee]).

(8)
After Eq. (8), the Triple Factorized Attention is accom-

plished, inducing enhanced prediction embedding. The
Triple Factorized Attention is repeated Nattn = 2 times so
that all prediction embeddings can fully interact with each
other for more accurate prediction.

3.5. Multimodal Output

Finally, all the prediction embeddings are decoded through
a two-layer MLP to obtain multiple future locations:

L1
t,n,k = MLP(PM

t,n,k), (9)

where L1
t,n,k ∈ RF×2. To further enhance the output tra-

jectories, following QCNet [45], L1
t,n,k is taken as the input

of the whole pipeline to further refine the predicted trajecto-
ries. In detail, L1

t,n,k is taken as trajectory proposals and en-
coded into mode queries by another two-layer MLP. These
encoded mode queries replace the learnable mode queries

as inputs of Spatio-Temporal Attention to re-aggregate the
spatio-temporal context and perform Triple Factorized At-
tention again. This refinement process produces a trajectory
refinement ∆Lt,n,k and probability scores π̂t,n,k.

Then, the final predicted trajectory is obtained by sum-
ming the trajectory proposal and the trajectory refinement:

L2
t,n,k = L1

t,n,k +∆Lt,n,k. (10)

3.6. Training Objective

Following the existing works [8, 11, 24, 25, 36, 44, 45],
we adopt the winner-takes-all [21] strategy to optimize our
model. For marginal prediction, the kt,n-th mode to be op-
timized is determined based on the minimum endpoint dis-
placement between the predicted trajectory {L1

t,n,k}k∈[1,K]

and the ground truth Gt,n = {gt+1,n, gt+2,n, ..., gt+F,n}:

kt,n = argmin
k∈[1,K]

(l1t+F,n,k − gt+F,n). (11)

Then, the regression loss function contains two Huber
losses for the trajectory proposals and the refined final tra-
jectories, respectively:

Lt,n
reg1 = LHuber(L

1
t,n,kt,n

, Gt,n), (12)

Lt,n
reg2 = LHuber(L

2
t,n,kt,n

, Gt,n). (13)

Besides, the probability scores are optimized by using the
cross-entropy loss function:

Lt,n
cls = LCE({π̂t,n,k}k∈[1,K], kt,n). (14)

Overall, the total loss function of the whole model is formu-
lated as follows:

L =
1

TN

0∑
t=−T+1

N∑
n=1

(Lt,n
reg1 + Lt,n

reg2 + Lt,n
cls). (15)

For joint prediction, we treat the prediction of all agents
in the same mode as a predicted future and the joint end-
point displacement determines the mode to be optimized.
Please refer to the supplementary material for a detailed ex-
planation of the training objective for joint prediction.

4. Experiments
4.1. Experimental Setup

Dataset. We conduct the experiments on the Argoverse [4]
and INTERACTION [40] datasets. Both are based on real-
world driving scenarios, providing high-definition maps and
detailed motion information, sampled at a frequency of
10Hz. On the Argoverse dataset, we assessed HPNet’s ca-
pability for marginal trajectory prediction. Conversely, on
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Method b-minFDE↓ minFDE↓ MR↓ minADE↓

Single model

LaneGCN [23] 2.0539 1.3622 0.1620 0.8703
mmTransformer [24] 2.0328 1.3383 0.1540 0.8436
DenseTNT [17] 1.9759 1.2815 0.1258 0.8817
THOMAS [15] 1.9736 1.4388 0.1038 0.9423
TPCN [37] 1.9286 1.2442 0.1333 0.8153
SceneTransformer [26] 1.8868 1.2321 0.1255 0.8026
HiVT [44] 1.8422 1.1693 0.1267 0.7735
GANet [35] 1.7899 1.1605 0.1179 0.8060
HPNet(single model) 1.7375 1.0986 0.1067 0.7612

Ensembled model

HOME+GOHOME [13, 14] 1.8601 1.2919 0.0846 0.8904
Multipath++ [32] 1.7932 1.2144 0.1324 0.7897
Macformer [10] 1.7667 1.2141 0.1272 0.8121
DCMS [38] 1.7564 1.1350 0.1094 0.7659
HeteroGCN [12] 1.7512 1.1602 0.1168 0.7890
Wayformer [25] 1.7408 1.1616 0.1186 0.7676
ProphNet [36] 1.6942 1.1337 0.1101 0.7623
QCNet [45] 1.6934 1.0666 0.1056 0.7340
HPNet(ensembled model) 1.6768 1.0856 0.1075 0.7478

Table 1. Comparison of HPNet with the state-of-the-art methods on the Argoverse test set, where b-minFDE is the official ranking metric.
For each metric, the best result is in bold and the second best result is underlined.

Method minJointFDE↓ minJointADE↓
AutoBot [16] 1.0148 0.3123
THOMAS [15] 0.9679 0.4164
Trai-MAE [5] 0.9660 0.3066
HDGT [38] 0.9580 0.3030
FJMP [45] 0.9218 0.2752

HPNet(single model) 0.8231 0.2548

Table 2. Comparison of HPNet with the state-of-the-art methods
on the INTERACTION test set. For each metric, the best result is
in bold and the second best result is underlined.

the INTERACTION dataset, renowned for its complex driv-
ing scenarios and detailed multi-agent interactions, we ex-
amined HPNet’s effectiveness in joint prediction.

Metrics. For our evaluation, we employed official tra-
jectory forecasting metrics, encompassing minimum Aver-
age Displacement Error (minADE), minimum Final Dis-
placement Error (minFDE), Miss Rate (MR), and Brier-
minimum Final Displacement Error (b-minFDE) for Ar-
goverse. MinADE measures the average ℓ2-norm distance
across predicted and actual trajectory points, while minFDE
examines the ℓ2-norm distance at the trajectory’s endpoint.
MR assesses instances where predictions stray more than
2.0 meters from the actual endpoint, gauging model reli-
ability. Lastly, brier-minFDE extends minFDE by incor-
porating the probability part (1 − π̂)2, providing insights

into the model’s confidence in its best prediction. For the
INTERACTION dataset, we employed minJointADE and
minJointFDE metrics to assess joint trajectory prediction
performance. MinJointADE evaluates the average ℓ2-norm
distance across all agents’ predicted and actual trajectories,
while minJointFDE focuses on the ℓ2-norm distance at the
final time step for all agents. To explore the model’s capa-
bility in capturing multimodal outputs, we set K = 6 for
both marginal prediction and joint prediction.

4.2. Comparison with State-of-the-art

Results on Argoverse. The marginal trajectory prediction
results on Argoverse are reported in Tab. 1. Our HPNet
achieves the best results on all indicators among all single
models. Compared to GANet in second place, the improve-
ment is up to 0.052 in b-minFDE, 0.062 in minFDE, and
0.045 in minADE. Moreover, following [32, 36, 38, 45],
HPNet is further compared in the setting of model en-
sembling. As can be seen, our HPNet also performs best
in the official ranking metric. Compared to the single
model, ensembled HPNet only yields a reduction of 0.013
in minFDE. This is mainly because the HPNet’s predictions
are more stable, and thus the improvement from ensem-
bling is smaller than other methods. Overall, our HPNet
achieves state-of-the-art performance, verifying the superi-
ority of our HPNet.

Results on INTERACTION. Tab. 2 shows the results of
our method on the INTERACTION multi-agent track. We

15266



Spatio-Temporal Attention Triple Factorized Attention Metrics

Spatial Temporal Agent Historical Prediction Mode b-minFDE↓ minFDE↓ MR↓ minADE↓
✓ ✓ 1.832 1.203 0.126 0.771

✓ ✓ ✓ ✓ 1.711 1.084 0.102 0.722
✓ ✓ ✓ ✓ 1.527 0.909 0.075 0.661
✓ ✓ ✓ ✓ 1.531 0.894 0.073 0.645

✓ ✓ ✓ ✓ ✓ 1.506 0.871 0.069 0.638

Table 3. Ablation study of Triple Factorized Attention. Experiments are performed on the Argoverse validation set.

achieved state-of-the-art performance on this benchmark,
achieving substantial gains over the second-ranked FJMP,
with improvements of 0.099 in minJointFDE and 0.020 in
minJointADE. This indicates that our HPNet can be used
simply and effectively for joint trajectory prediction.

4.3. Ablation Study

We first conduct ablation studies on Triple Factorized At-
tention to analyze the importance of Agent Attention, His-
torical Prediction Attention, and Mode Attention in our pro-
posed HPNet. Then we explore the impact of Historical
Prediction Attention on prediction accuracy and stability.
Lastly, we examine the influence of Historical Prediction
Attention on the reaction timeliness.

Component Study of Triple Factorized Attention. As
shown in Tab. 3, the model with all components achieves
1.506 in terms of b-minFDE, which is the best result on the
validation set. If removing Triple Factorized Attention, the
performance in terms of b-minFDE drops by 0.326, imply-
ing the importance of the Triple Factorized Attention mod-
ule in the overall model architecture. If removing the Agent
Attention, Historical Prediction Attention, and Mode Atten-
tion, the performance in terms of b-minFDE drops by 0.205,
0.021, and 0.025, respectively. This indicates the effective-
ness of all three attention modules, among which the Agent
Attention between agents and surrounding agents has the
most important influence and is indispensable for predic-
tion. Besides, our proposed Historical Prediction Attention
also plays an important role with obvious improvements on
four metrics, which clearly illustrates the necessity of con-
sidering the relationship between successive predictions.

The Impact of Historical Prediction Attention on Ac-
curacy and Stability. Our proposed Historical Prediction
Attention is expected to improve the accuracy and stabil-
ity of trajectory prediction by considering the relationship
between current and historical predictions. To investigate
whether this expectation is achieved, we conduct compara-
tive experiments on two models: the HPNet and its baseline
model without Historical Prediction Attention. Predictions
are made across 10 time steps, ranging from 20 to 30, with
each prediction utilizing a visible history flame window of

Figure 3. Comparison of prediction Accuracy (b-minFDE↓) and
Stability (summed ADE↓) of our HPNet and its baseline without
Historical Prediction Attention on the Argoverse validation set.

20 time steps and a historical prediction window of equal
length. The accuracy of the predictions is quantified by
using the b-minFDE metric. The stability is assessed by
the summed ADE of the overlapping segments of matched
trajectory pairs at current and previous time steps, where
the matched trajectory pairs are obtained via the Hungarian
matching algorithm.

As shown in Fig. 3 (a), for all predicted time steps, the
performance of HPNet in terms of b-minFDE is better than
that of the baseline. This superior performance indicates
that Historical Prediction Attention indeed improves the ac-
curacy of trajectory prediction. Besides, it is also observed
that the accuracy of both our HPNet and the baseline de-
clines along the temporal axis, and this is mainly because
of the appearance of new agents in later time steps that are
not present in the first 20 frames. Even so, the relative im-
provement of our HPNet over the baseline (i.e., the orange
dashed line) becomes larger over time. When the time step
becomes longer, a big difference is that the actual visible
historical window of our HPNet is beyond 20 time steps as
analyzed in Sec. 3.3, while that of the baseline is always
fixed to 20 time steps. Therefore, this significant relative
improvement over time clearly verifies the benefit from the
longer attention window of Historical Prediction Attention.

As shown in Fig. 3 (b), for all predicted time steps, the
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(a) baseline (w/o Historical Prediction Attention) in 20-24 four time steps.

(b) HPNet (w/ Historical Prediction Attention) in 20-24 four time steps.

Figure 4. Qualitative results on the Argoverse validation set. Baseline (a) alternately forecasts one motion goal (i.e., turn left) and two
motion goals (i.e., turn left and go straight). In contrast, HPNet (b) consistently and reliably predicts the same motion goal (i.e., turn left).
The lanes, historical trajectory, ground truth trajectory, and six predicted trajectories are indicated in grey, green, red, and blue, respectively.

Figure 5. Predictions of HPNet (lower) and baseline (upper).

summed ADE of HPNet between successive time steps is
about 2.25, while the summed ADE of the baseline is about
2.90 which is much larger. This indicates that Histori-
cal Prediction Attention indeed makes predicted trajectories
much more stable. We show an example in Fig. 4 to make
the comparison more intuitive. As shown, the agent chooses
to turn left at the intersection. However, the baseline may be
due to the agent’s pause in the middle moment, alternately
predicting one motion goal (i.e., turn left) and two motion
goals (i.e., turn left and go straight). In contrast, HPNet con-
sistently and reliably predicted the same motion goal (i.e.,
turn left). At the same time, unlike DCMS [38], the suc-
cessive predictions of HPNet only share the same motion
goal in complex road conditions, without forced overlap-
ping waypoints. These stable prediction results enable sub-
sequent modules to produce stable and time-consistent safe
driving decisions. More qualitative results can be found in
the supplementary material.

The Influence of Historical Prediction Attention on

Reaction Timeliness. While Historical Prediction Atten-
tion enhances forecasting stability by leveraging historical
predictions, does it hurt the reaction timeliness? Our answer
is no. This is mainly benefited from the attention mecha-
nism. When an abrupt change occurs (e.g., a sudden right
turn in Fig. 5), the similarity between the current and his-
torical prediction embeddings decreases, leading to reduced
weights for historical predictions. Consequently, the impact
of past predictions on the current moment dynamically di-
minishes. Fig. 5 illustrates a qualitative example where an
agent at an intersection is observed at three consecutive mo-
ments. When the agent shows no specific intention, HPNet
stably and accurately forecasts the possibilities of turning
left or right, outperforming the baseline. At the sudden right
turn (in the final moment), HPNet quickly adjusts to predict
right turns only, with no delay compared to the baseline.

5. Conclusion
In this paper, we propose a novel dynamic trajectory pre-
diction method, HPNet. A Historical Prediction Attention
module is designed to model the dynamic relationship be-
tween successive predictions. It employs historical predic-
tion embeddings to guide current forecast, making the pre-
dicted trajectories more accurate and stable. Experiments
on the Argoverse and INTERACTION datasets demonstrate
that our proposed HPNet achieves state-of-the-art perfor-
mance, and also proves that Historical Prediction Attention
can effectively improve accuracy and stability.
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