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Abstract

In this paper, we study a new problem, Film Removal
(FR), which attempts to remove the interference of wrin-
kled transparent films and reconstruct the original informa-
tion under films for industrial recognition systems. We first
physically model the imaging of industrial materials cov-
ered by the film. Considering the specular highlight from
the film can be effectively recorded by the polarized cam-
era, we build a practical dataset with polarization informa-
tion containing paired data with and without transparent
film. We aim to remove interference from the film (specu-
lar highlights and other degradations) with an end-to-end
framework. To locate the specular highlight, we use an an-
gle estimation network to optimize the polarization angle
with the minimized specular highlight. The image with min-
imized specular highlight is set as a prior for supporting
the reconstruction network. Based on the prior and the
polarized images, the reconstruction network can decou-
ple all degradations from the film. Extensive experiments
show that our framework achieves SOTA performance in
both image reconstruction and industrial downstream tasks.
Our code will be released at https://github.com/
jqtangust/FilmRemoval.

1. Introduction
Various deep-learning-based recognition models have

been employed in the industrial environment, e.g., defect
detection [28], code recognition [25], etc. However, the
model failures would sometimes happen due to the insuffi-
cient robustness [40] towards different perturbations [8, 10,
24, 32, 39]. The wrinkled transparent film is one of them,
which is usually covered or packaged on industrial materi-
als or products for protection. Its interference could cause
the failure of varying downstream tasks, e.g., text OCR and
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Figure 1. The Red box presents a challenge in industrial recog-
nition systems, where the product information is often hidden be-
neath the wrinkled transparent film. The Green box is the image
we expect to generate, with the film layer removed. Removing the
wrinkled film makes the information on industrial material clearer.

QR code recognition, in Fig. 1. Regarding the wide usage
of such films in industrial scenarios, it is worth opening the
research direction to remove these films from images.

For the first time, we address a novel problem of wrin-
kled transparent Film Removal (FR), which aims to remove
the transparent film and reveal the hidden information, ben-
efiting the robustness of the industrial downstream models.

Although some solutions have attempted to remove sur-
face highlight [6, 31, 34], they have not accurately modeled
the imaging of the wrinkled transparent film. Except for
the highlight, they cannot remove the effects of other vari-
ous degradations from the film, e.g., light transmittance and
material texture. Therefore, they cannot remove the trans-
parent film thoroughly.

In this paper, we explicitly model the imaging of wrin-
kled transparent film into two parts: the specular highlight
Ih from the film, and the diffuse reflection Imd from the ma-
terials under the film, as shown in Fig. 2. The diffuse reflec-
tion can be influenced by the properties of the film. Thus,
it is divided into the original component (Im) and various
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Figure 2. Wrinkled Transparent Film Model. (A) The polarized image. (B) The 3D physics model of the local region. The light is reflected
through the transparent wrinkled film and captured by the polarization camera. (C) The light path diagram. Polarized cameras capture
two components: Specular Reflection (Ih), and Diffuse Reflection (Imd). The Original Diffuse Reflection (Im) would be interfered by
various degradations (Imd − Im) from the film.

degradations (Imd − Im). Therefore, our objective is to de-
couple the specular highlight and other degradations caused
by the film and reconstruct the original diffuse reflection.

We build an end-to-end framework for decoupling two
different degradations in the Wrinkled Transparent Film
Model (Fig. 2), which consists of the prior estimation and
reconstruction network. We notice that specular highlight
is significantly related to polarization angles, while other
parts are not. Based on this observation, we use an An-
gle Estimation Network to learn the polar angle correspond-
ing to the minimized specular highlight, which is driven by
a Polarization-based Location Model. Images with mini-
mized specular highlights are set as the priors for the later
reconstruction network to remove all degradations.

There is currently no suitable dataset for the FR problem,
since most of the existing datasets [5,18,34] are targeted to-
wards specular reflection removal only. Also, most datasets
do not consider the real industrial environment. Therefore,
we build a new dataset that consists of paired images cov-
ered by the film and the uncovered ground truth in the in-
dustrial optical photography system. Moreover, it’s proved
that the specular highlight from the film can be effectively
captured by the polarization camera [21, 34, 37], which is
now cheap to be installed in industrial systems [22]. Thus,
we follow the collection pipeline of existing polarization
datasets [4, 9], and capture each object with four polarized
images under four polar directions in one shot. It’s empiri-
cally proved by our experiments that with the input of these
polarization clues, networks can better locate the specular
highlight and recover the hidden information under the film.

Extensive experiments prove that our designed network
achieves SOTA performance in the FR problem. Our con-
tributions are summarized as follows:

• To the best of our knowledge, we are the first to ad-
dress the new problem of Film Removal (FR), which

aims to remove the whole wrinkled transparent film in
industrial scenarios.

• To solve FR, we model the wrinkled film physically
and propose an end-to-end reconstruction network for
FR with a learnable polarization-based prior, which
helps the network locate the specular highlight reflec-
tion in the film.

• We also build a new practical dataset in the real indus-
trial optical photography system, which contains var-
ious polarized image pairs with and without the film.

• Extensive experiments are conducted to prove the ef-
fectiveness of our dataset and method, which achieves
SOTA performance in both image reconstruction and
downstream industrial tasks.

2. Related Work
2.1. Polarization Model and Application

Polarization refers to the property of the transverse wave
oscillating in different directions. Since light is a kind of
wave, this phenomenon describes the distribution of light
waves in all directions [1]. Conventional cameras or human
eyes are insensitive to polarization. Thus, polarization is
often used as a way to supplement additional visual infor-
mation. It is often used in a wide range of fields such as
optics [29], materials science [27], and physics [7, 36], etc.

In the field of computer vision, polarization provides dif-
ferent angles of view, hence allowing a more efficient inter-
pretation of complex scenes. In recent years, polarization
has been widely used for complex tasks such as Integral
Imaging [38], Rendering [2], 3D Shape [44], Segmenta-
tion [14], and Reflection Removal [12, 15, 34], etc.

In the real world, since natural light is mixed with mul-
tiple wavelengths, its refraction time is different when it is
injected into an optically active material, thus, a phase shift
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Figure 3. Model of elliptically polarized light. E represents po-
larized light at any angle, which can be calculated by this model.
Imax and Imin are two components indicating the maximum and
minimum intensity of elliptically polarized light.

occurs. A physical description of this phenomenon is el-
liptically polarized light (i.e., partially polarized light), as
shown in Eq. (1).{

Ex = Ex0 cos (ωt)
Ey = Ey0 cos (ωt− σ)

, (1)

where (x, y) is the Cartesian basis in the space of Jones
vectors, Ex and Ey is the component of the light on the
basis, (x, y). ω is the frequency and σ is the phase dif-
ference of Ex and Ey . Ex0 and Ey0 are the field strength
of a pair of orthogonal waves. Eq. (1) describes the vibra-
tion of the polarized light in different angles, t. Based on
this model, our solution only considers a simplified situa-
tion where σ = 90◦. Eq. (1) can be simplified to Eq. (2),

E2
x

E2
x0

+
E2

y

E2
y0

= 1. (2)

2.2. Specular Highlight Removal via Polarization

Since the film includes unpredictable specular reflection,
our task includes the procedure to remove these degrada-
tions. There have been several solutions to remove specular
reflection using polarization information. Nayar et al. [21]
first used polarization to determine the color of the specu-
lar component to separate the interfaces. Then, Umeyama
et al. [30] adopted independent component analysis to sep-
arate the diffuse and specular reflection components of sur-
face reflection. Zhang et al. [42] considered the effect of po-
larization angle and attempted to get the appropriate global
angle using Newton’s method, but this method did not make
full use of the local information. Wen et al. [34] separated
specular reflection regions by using image chromaticity.

Although conventional methods are available for remov-
ing specular highlight reflections, they are not able to accu-
rately model the imaging of wrinkled transparent films, and
thus do not adequately address the problem of eliminating
all degradations from wrinkled transparent films.

3. Dataset
While some datasets exist for the removal of specular re-

flection [11,13,34], there is currently no dataset for film re-
moval in the industrial environment. As shown in Fig. 2, the
characteristics of the specular highlight information from
the film can be effectively modeled by the polarized image.

Diverse
Wrinkled Films

Polarized 
Camera

Objective Pipeline

Object Flow

Optical
Clamp

Fixed
Industry 
Lighting

Monitor 
& Pre-processing

Fixed

……

Diverse
Industrial Scenarios

Figure 4. Prototype of industrial optical photography pipeline. We
have built an optical pipeline for capturing the dataset in the indus-
trial environment. As objects traverse the objective pipeline, the
polarizing camera captures images continuously. Subsequently,
the acquired data is sent to the monitor for pre-processing.

Leveraging this polarization information can significantly
enhance image reconstruction. Therefore, we construct a
paired dataset based on polarized images. Polarized im-
ages can capture light amplitude information from wrinkled
films at different angles, and making full use of this infor-
mation will significantly facilitate the decoupling of degra-
dation information occurring from the film.

3.1. Industrial Optical Photography Pipeline
Fig. 4 illustrates the prototype of our pipeline. Within

this industrial pipeline, we maintain a consistent posture
and angle for both the camera and lighting resources. The
objective pipeline sequentially passes different detected ob-
jects under the camera.

To effectively capture optical information in multiple po-
larization directions within a single image, we employ the
HIKROBOT MV-CH050-10UP camera1, which integrates
the Sony IMX250MZR CMOS sensor2. This sensor con-
tains four different angles of polarization (0◦, 45◦, 90◦, and
135◦) as Bayer pattern, allowing us to capture four polar-
ization angles in high definition with a single shot.

Finally, there is a monitor that controls the camera shut-
ter and adjusts camera parameters. We utilize auto-exposure
and auto-focus strategies to set the appropriate focal length,
exposure time, and ISO for each specific scenario automat-
ically. This is essential since the thickness and surface of
the products on the industrial line may vary, requiring slight
adjustments in camera parameters to ensure image quality.

3.2. Capturing Polarized Images
When capturing polarized images, the imaging system

initially captures an image of the ground truth uncovered
by the film, Irawgt . Subsequently, with the complex transpar-

1https://www.hikrobotics.com/cn/machinevision/
productdetail?id=3886

2https://www.sony-semicon.com/en/products/is/
industry/polarization.html
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ent film placed over the ground truth, we capture the image
Irawinput that needs to be recovered.

3.3. Data Diversity and Robustness
To build a diverse and robust dataset, we follow the

rules in industrial manufacturing. As depicted in Fig. 4,
the current industrial pipeline includes 315 dynamic indus-
trial scenarios, which can be categorized into three types:
QR codes, text, and products. To enhance the diversity, we
have different films with diverse material properties, cov-
erage areas, film thicknesses, and levels of wrinkling. The
film exhibits significant variability across each scenario.

On the other hand, to ensure the stability of the industrial
imaging pipeline, we maintained a consistent intensity level
for the industrial light source and fixed the distance between
the camera and the object flow. This helps to minimize the
influence of errors external to the industrial system.

3.4. Prepossessing
Each pixel of the image captured by the polarization sen-

sor is represented by four-pixel dots, each corresponding
to the intensity of light at four distinct polarization angles.
We first need to decompose it into 4 subgraphs with differ-
ent angles, and then we restore it to its original resolution
using edge-aware residual interpolation (EARI) demosaick-
ing [20]. This process is described in Eq. (3).

{I0gt, I45gt , I90gt , I135gt } = M(Fd(I
raw
gt )),

{I0input, I45input, I90input, I135input} = M(Fd(I
raw
input)),

(3)

where Fd(·) is the decomposing operator, M(·) is EARI
demosaicking. Taking Irawgt and Irawinput as inputs, we obtain
full-resolution polarized images with four different angles.

To generate the ground truth image, we follow the stan-
dard procedure from the polarized image processing library,
polanalyser3. Firstly, we introduce stokes parameters [3].
According to this physical model, the first stoke parameter
S0 describes the total intensity of the optical beam, and it
can be calculated by Eq. (4).

S0 = E2
x0 + E2

y0 = Ix + Iy, (4)
where Ix ⊥ Iy . E2

x0 and E2
y0 are the field strength of a

pair of orthogonal waves in Fig. 3, which can be calculated
by a pair of orthogonal polarization components, Ix and Iy .
Subsequently, we can calculate one ground truth Igt as

Igt = G(
S0

2
) = (

I0gt + I45gt + I90gt + I135gt

4
)

1
γ

, (5)
where G(·) is a gamma correction function, and we empiri-
cally set the gamma value, γ, to 2.2.

3.5. Training and Testing
During training, our network mixed all the scenes for

training, and the final network is applicable to data from all
scenarios. Besides, to ensure the robustness and generaliza-
tion of our dataset, we adopt 10-fold cross-validation [23]

3https://github.com/elerac/polanalyser/wiki

Specular Highlight, Ih ... Other Degradations, Id

Figure 5. Two Decoupling Components. Specular highlight, Ih
and other degradations, Id. The Red box shows the degradations,
the Green box is the Ground Truth.
to evaluate the results. The dataset is divided into ten parts,
and nine of them are used as training data and one as test
data in turn. Each test will yield a corresponding accuracy
rate, which is then averaged as the final accuracy.

4. Method
Although some conventional methods have used polar-

ization information to remove surface specular highlight re-
flection, they assume the light intensity as a binary com-
position [34], i.e., transmission and reflection. However,
the light intensity from the wrinkled film is more complex,
which is not only influenced by film surface highlight but
also mixed with various degradations, e.g., light transmit-
tance and material texture.

In this section, we first model the wrinkled transparent
film physically in Fig. 2, which is our method’s motivation.
Then, we use an end-to-end network for reconstructing the
original information in Fig. 6. Besides, since the highlight
region is more tricky to recover, we build a polarization-
based prior into the end-to-end framework to assist in locat-
ing highlight regions.

4.1. Modelling the Wrinkled Transparent Film
Based on the Industrial Optical Photography System in

Sec. 3.1, the light intensity for materials covered with the
wrinkled transparent film will be captured by the polarized
camera in Fig. 2(A)(B). The captured light intensity con-
sists of two parts, i.e., the specular highlight reflection of the
film’s polarized regions [19, 26], the diffuse reflection from
the materials under the film, which could be influenced by
light transmittance, the texture of the film in Fig. 2(C). Such
a composition is written in Eq. (6).

I = Imd + Ih = Im + Id + Ih, (6)
where + denotes the linear superposition of different light
components, I is the light intensity captured by the cam-
era, Imd is the diffuse reflection component of the material
through various film degradations, Ih is the specular reflec-
tion part from the film’s highlighted regions. Then, Imd can
be decoupled to two parts, Im and Id. Im is the original dif-
fuse reflection component of the material and Id is caused
by other various degradations through film. In Fig. 2(C), the
optical path diagram illustrates this process.

Based on Eq. (6), the FR task can be implemented by
retaining the information of Im and decoupling Ih and Id
(both of them are caused by the film layer). This is ex-
pressed in Eq. (7), as
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Figure 6. Overall framework. The polarized images, AoP and DoP are fed into Angle Estimation Net (A-Net), denoted as fA, for estimating
the angle, A. Subsequently, the Polarization-based Location Model (PLM), represented as Ip, takes A as input to estimate the image prior,
P . This prior provides important highlight location information for the reconstruction network. Finally, the reconstruction network (R-Net)
is trained to restore the original diffuse reflection in industrial materials.

Im = I − Ih − Id, (7)
where − denotes the decoupling operator. Fig. 5 visualizes
these two components for decoupling in our FR task.

Based on this model, our whole framework is based on
an end-to-end reconstruction network for decoupling these
two parts in Sec. 4.3. Before that, to support the network for
decoupling Ih, we estimate a polarized prior for locating the
highlight regions in Sec. 4.2.

4.2. Estimating a Polarized Prior for Locating Ih

To decouple the specular reflection components, it is bet-
ter to locate the highlight regions on the surface of the wrin-
kled film, which provides a prior to facilitate the decoupling
network. However, these regions are hard to predict since
images are captured in variable scenarios. To this end, we
introduce the polarization information for this problem.

Based on Fresnel’s theory [35], the specular reflection
component of optically active materials is an elliptically po-
larized light, which changes under different angles of polar-
ization orientation, while the rest of the components remain
almost constant. It can be employed in estimating Ih, which
is a specular reflection component. Thus, we propose a po-
larized prior P , which is represented as the optimized I with
the minimized Ih, as shown in Eq. (8). The difference be-
tween P and the input I indicates the regions of Ih.

P = Im + Id +min Ih. (8)
Eq. (8), i.e., the polarized version of Eq. (6), can be ac-

quired with Malus’s Law [16] and the elliptical polariza-
tion model in Sec. 2.1. We use a pair of orthogonal max-
imum and minimum components and the angle variable

Prior Location (Highlighted) Location

Figure 7. Location of specular highlight. The P is the polarized
prior. We can calculate the location of highlight by Ih −min Ih.

θ ∈ [0, 2π) to rewrite Eq. (8) as
Ih = Ip(θ) = Imax cos

2 θ + Imin sin
2 θ, (9)

where Ip(θ) is the Polarization-based Location Model to de-
scribe the polarized light in the angle of θ, Imax and Imin is
a pair of orthogonal maximum and minimum components in
Fig. 3. Given the input data {I0input, I45input, I90input, I135input},
Imax and Imin can be computed by the Stokes parame-
ters [3], from Eq. (10) and Eq. (11).

Imax = S0 +

√
S2
1 + S2

2

2
, Imin = S0 −

√
S2
1 + S2

2

2
, (10)

S0 = E2
x0 + E2

y0 = I0input + I90input,

S1 = E2
x0 − E2

y0 = I0input − I90input,

S2 = E2
a0 − E2

b0 = I45input − I135input,

(11)

where (a, b) is the Cartesian basis rotated by 45° in the
space of (x, y), and E2

a0 as well as E2
b0 are the field

strengths under this basis.
Since Ih is the only polarized component that is deter-

mined by θ, P in Eq. (8) can also be formulated as Eq. (12).
P = Im + Id +min Ih

= Im + Id +min
θ

Ip(θ)

= Im + Id +min
θ

(Imax cos
2 θ + Imin sin

2 θ).

(12)
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Different pixels in one image correspond to varying opti-
mized values for θ. Thus, we estimate pixel-wise θ with a
learning-based network, obtaining the angle map A. The in-
put includes images with polarization information, i.e., I0,
I45, I90, and I135. In addition, our input also includes two
essential physics statistics, angle of polarization (AoP) and
degree of polarization (DoP) [17]. The AoP provides in-
formation about the object’s surface normal, which helps to
analyze the difference in the surface structure between the
object and film. The DoP offers information on the intensity
of polarized light, so it can facilitate the network to utilize
the polarized light accurately. Both of them can promote
the model to learn the appropriate angle better. Eq. (13)
describes this procedure.

A = fA(I
0
input ⊕ I45input ⊕ I90input ⊕ I135input ⊕ SAoP ⊕ SDoP ), (13)

where, A ∈ Rh×w×1 is the pixel-wise angle map, SAoP ∈
Rh×w×1 and SDoP ∈ Rh×w×1 indicate the AoP and DoP
map respectively, ⊕ is the concatenation operator, and fA(·)
is angle estimation network. The network structure employs
a lightweight Residual Dense Network [43] with a large per-
ception field to capture more global information.

After obtaining the angle map A, we can get the prior
with minimized Ih by Eq. (14).

P = Im + Id + Imax cos
2 A+ Imin sin

2 A, (14)
where P ∈ Rh×w×1. Fig. 7 visualize the Prior, P , and the
location of Ih (highlighted). We can accurately estimate the
location of the specular highlight.

4.3. Reconstructing Im with a Prior
In this section, we set a reconstruction network fr

to decouple both Id and Ih, with the input of I (i.e.,
I0input,I

45
input,I

90
input, and I135input) and P . The obtained prior

P from Sec. 4.2 can already provide the estimation of Ih by
comparing with I . Thus, fr can be focused on the assess-
ment of Id. The reconstruction network is implemented as a
common Residual Dense Network [43]. The reconstruction
process can be expressed as Eq. (15).
Irec = fr(I

0
input ⊕ I45input ⊕ I90input ⊕ I135input ⊕ P ), (15)

where, Irec ∈ Rh×w×1 is the reconstructed image.

4.4. Details in Implementation
Our framework is implemented by PyTorch, and we use

Polanalyser library4 to process the polarized images. It is
trained with L1 loss between Irec and Igt in an end-to-end
manner. Besides, the learning rate is 5×10−5, and it decays
to half of the original for every 2× 104 iterations.

5. Experiment
In our experiment, we evaluate the performance of the

proposed framework in three aspects. First, as an image
reconstruction task, we conduct qualitative and quantita-
tive evaluations with reconstruction-related metrics (e.g.,

4https://github.com/elerac/polanalyser/wiki

PSNR, SSIM). Second, as an upstream task in the industry,
two downstream scenarios (e.g., QR code reading, and Text
OCR) are selected to evaluate the reliability of our proposed
algorithm. Finally, we conduct ablation studies to analyze
the roles of different components.

5.1. Baselines
There is no existing baseline for this new problem. Thus,

we choose two general SOTA methods in image reconstruc-
tion, Uformer [33] and Restormer [41] to evaluate the per-
formance. Considering the connection between the film re-
moval and highlight removal, we also compare with two
SOTA polarization and non-polarization highlight removal
baselines, Polar-HR [34] and SHIQ [6], respectively.

To make a fair comparison, we follow the same training
setting in our framework and input four polarized images to
reconstruct one image without wrinkled transparent film in
Uformer [33], Restormer [41]. In Polar-HR [34], it is a tra-
ditional training-free model and, therefore, shares the same
input and output data as our approach. Besides, in SHIQ [6],
since it cannot support polarized images, we convert four
polarized images to one unpolarized image.

5.2. Evaluation on Reconstruction Task
Quantitative Evaluation To measure the quantitative per-
formance of the algorithm, we refer to commonly used met-
rics for Image Reconstruction: peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM). Also, to com-
pare the overall performance of our dataset, we use 10-fold
cross-validation during training and testing. This strategy
ensures the evaluation’s reliability and further proves the
proposed algorithm’s robustness.

The quantitative results are shown in Table 1. In the
last column of Table 1, µ is the mean value, and σ is the
variance of the 10-fold performance. These experimental
results show the average PSNR is 36.48 and the average
SSIM is 0.9824, and the results demonstrate the high qual-
ity of our reconstructed images. In addition, the variance
of PSNR and SSIM are 0.57 and 1.23× 10−5, respectively,
and this proves the proposed algorithm is stable and robust.
Qualitative Evaluation To evaluate the reconstruction per-
formance of the algorithm in a qualitative way, we show
some visual results. Our results are shown in Fig. 8. Al-
though Polar-HR [34] and SHIQ [6] can remove some of
the highlights, their models cannot model the film cor-
rectly and, therefore, cannot remove the film itself. Besides,
it can be observed that our algorithm can reconstruct re-
gions where text or QR codes are corrupted by highlights
through polarization information, while Uformer [33] and
Restormer [41] produce fake artifacts in these regions.

5.3. Evaluation on Downstream Applications
In industrial environments, it is common to use trans-

parent films to cover products, which may negatively im-
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K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 µ ↑ σ ↓
SHIQ [6] PSNR 23.47 22.11 21.95 21.69 21.77 21.03 20.86 20.46 21.10 21.31 21.58 0.64

SSIM 0.7899 0.7640 0.7416 0.7439 0.7459 0.7465 0.7499 0.7412 0.7465 0.7300 0.7499 2.41× 10−4

Polar-HR [34] PSNR 23.31 22.80 22.13 21.58 21.94 22.00 22.03 21.99 22.18 21.95 22.19 0.22
SSIM 0.7642 0.7421 0.7220 0.7099 0.7064 0.7098 0.7128 0.7017 0.7102 0.6968 0.7176 3.80× 10−4

Uformer [33] PSNR 31.85 31.95 31.39 31.19 31.81 32.04 31.68 31.98 31.85 31.01 31.68 0.11
SSIM 0.9519 0.9456 0.9371 0.9364 0.9434 0.9421 0.9438 0.9435 0.9457 0.9363 0.9426 2.17× 10−5

Restormer [41] PSNR 34.35 35.02 34.44 33.71 34.88 35.13 34.31 34.33 34.51 32.49 34.32 0.52
SSIM 0.9771 0.9770 0.9721 0.9678 0.9757 0.9746 0.9742 0.9741 0.9759 0.9633 0.9731 1.75× 10−5

Ours PSNR 36.76 37.29 36.62 35.12 36.93 37.21 36.24 36.67 36.94 35.02 36.48 0.57
SSIM 0.9852 0.9859 0.9822 0.9767 0.9845 0.9833 0.9836 0.9830 0.9850 0.9749 0.9824 1.23 × 10−5

Table 1. Quantitative evaluation in 10-fold cross-validation. The K-I indicates the Ith fold.
Input (Intensity) SHIQ [6] Polar-HR [34] Uformer [33] Restormer [41] Ours Ground Truth

Figure 8. Qualitative Evaluation. Compared with other baselines, our model can reconstruct more realistic details in highlight regions
instead of fake artifacts. Please zoom in for more details.

SHIQ [6] Polar-HR [34] Uformer [33]

Read Number 7 17 18
Read Rate 8.05% 19.54% 20.69%

Restormer [41] Ours Ground Truth

Read Number 24 63 87
Read Rate 27.58% 72.41% 100%

Table 2. QR code reading rate. Compared with other baselines,
our approach can improve the performance of QR codes scanner
in the industrial environment.
pact the robustness of downstream algorithms. To evaluate
the effectiveness of our solution in such settings, we con-
duct two tests on two downstream tasks: QR Code Reading
and Text Optical Character Recognition (Text OCR). These
tasks are particularly relevant as they require access to raw
information, which provides a rigorous test of the effective-
ness of our algorithms in industrial scenarios.
QR Code Reading The read rate is a critical performance
metric for manufacturing pipelines in industrial systems. In
this experiment, we compare our method with other base-
lines in Table 2. Our upstream algorithm leads to a signifi-
cant improvement in the performance of the QR code read-
ing. The qualitative results in Fig. 9 demonstrate that our
algorithm not only removes the film but also significantly

recovers the QR code information under the film.
Text OCR Text OCR is also an important downstream in-
dustrial task. We compared our algorithm with other base-
lines, as shown in Fig. 10. Our method can restore more
hidden text information accurately.

5.4. Ablation Study
We conduct ablation studies, which mainly validate the

effectiveness of our proposed polarization dataset and one
crucial component in our framework. To ensure that the
experimental settings are consistent, we perform 10-fold
cross-validation for the ablation experiments as well and
draw two boxplots for further analysis.
Effectiveness of the Polarized Information To prove the
effectiveness of polarized information, we eliminate all
components that need polarization information, which in-
clude four polarization images. Since the Polarization-
based Location Model is driven by the Imax and Imin,
which need to be calculated with polarization images as in-
put, this structure is also removed. Other settings remain
constant. Without the support of polarized information, the
quantitative performance has a considerable decrease, as
shown in Fig. 11 (w/o Polarized information). Also, the per-
formance of the network is limited by the lack of guidance
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Input (Intensity) SHIQ [6] Polar-HR [34]

Uformer [33] Restormer [41] Ours

Figure 9. Performance of QR code reading in the industry. In
the original image, the QR code scanner fails to detect QR code
information. Polar-HR [34] and SHIQ [6] can only eliminate
the specular reflection on the QR code, and Uformer [33] and
Restormer [41] can only generate false artifacts in highlight re-
gions. Our method can help industrial QR code scanners achieve
a higher performance.

Input (Intensity) SHIQ [6] Polar-HR [34]
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Figure 10. Performance of text OCR in the industry. Compared
to other baselines, our method can reconstruct more original text
information for recognition.

Ours w/o AoP & DoP w/o Polarized Information w/o Prior
33.5
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35.5
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0.972
0.974
0.976
0.978

0.98
0.982
0.984
0.986
0.988

(B) SSIM

Figure 11. PSNR (A) and SSIM (B) in ablation study. We use two
boxplots to describe the performance after t-fold cross-validation.
The results show that our dataset, the extracted prior, the AoP, and
the DoP contribute to the framework performance improvement.

information, so it cannot remove all degradation. Besides,
removing the polarization information will induce artifacts
in highlight regions, as shown in Fig. 12.
Effectiveness of AoP and DoP To prove the effectiveness
of AoP and DoP, we eliminate AoP and DoP in the an-
gle estimation network. The qualitative results presented
in Fig. 13 demonstrate that AoP and DoP can help locate
the highlight more significantly, and also improve overall

Figure 12. Qualitative evaluation of w/o Polarization Information.
Compared with w/o polarization information (Red), introducing
polarization information avoids the generation of artifacts and re-
constructs the realistic details (Green).

Figure 13. Highlight location heatmap. Compared with “w/o AoP
& DoP” (In Red Box), introducing AoP and DoP (In Green Box)
can help the A-Net to infer more highlight regions.

Figure 14. Qualitative Evaluation of w/o Prior. Compared with
“w/o Prior” (In Red Box), our solution (In Green Box) is more
effective to remove highlight and infer original information.
performance in Fig. 11 (w/o AoP & DoP).
Effectiveness of Prior To prove the effectiveness of polar-
ized prior, we eliminate the angle estimation network and
the PLM in our network while retaining only the polarized
images and the reconstruction network. In this case, the net-
work can only implicitly facilitate the polarized information
in the reconstruction network. Since there is no polarized
prior that indicates highlight regions, this can lead to a de-
crease in the performance of the network to recover high-
light regions (as shown in Fig. 14), while causing overall
performance to decrease in Fig. 11 (w/o Prior).

6. Conclusion
In this study, we pioneer the investigation of the Film Re-

moval (FR) problem, aiming to eliminate the disturbances
caused by wrinkled transparent films and to restore the ob-
scured information. We propose an end-to-end framework
to effectively remove all degradations caused by the film
with a polarized prior to minimizing highlight. Besides,
we build a practical polarized dataset containing paired data
for this problem. Experiments in the industry have demon-
strated the potential application. We believe that the de-
ployment of our algorithms will considerably improve the
robustness of downstream industrial recognition systems.
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