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Abstract

Creating and animating 3D biped cartoon characters is
crucial and valuable in various applications. Compared
with geometry, the diverse texture design plays an impor-
tant role in making 3D biped cartoon characters vivid and
charming. Therefore, we focus on automatic texture design
for cartoon characters based on input instructions. This
is challenging for domain-specific requirements and a lack
of high-quality data. To address this challenge, we pro-
pose Make-It-Vivid, the first attempt to enable high-quality
texture generation from text in UV space. We prepare a
detailed text-texture paired data for 3D characters by us-
ing vision-question-answering agents. Then we customize a
pretrained text-to-image model to generate texture map with
template structure while preserving the natural 2D image
knowledge. Furthermore, to enhance fine-grained details,
we propose a novel adversarial learning scheme to shorten
the domain gap between original dataset and realistic tex-
ture domain. Extensive experiments show that our approach
outperforms current texture generation methods, resulting
in efficient character texturing and faithful generation with
prompts. Besides, we showcase various applications such
as out of domain generation and texture stylization. We
also provide an efficient generation system for automatic
text-guided textured character generation and animation.

1. Introduction
3D biped cartoon characters [28] breathe life into fictional
characters, conveying actions, and storytelling elements en-
gagingly. These characters find applications in various do-
mains, including video games (e.g., Animal Crossing [1]),
movies (e.g., Zootopia [58]), and the upcoming metaverse.
Yet, the creation and animation of these characters heavily
rely on skilled artists utilizing specialized software, making
it a labor-intensive and time-consuming process.

Compared to the shape of 3D biped cartoon characters,
their textures exhibit a significantly higher level of diversity,
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“A cartoon pig” “wearing blue overall” “plays guitar”“raises hands”

“A rabbit wearing 
suits and tie”

“A fox wearing suits 
and tie in shuimo style”

“A bear wearing 
suits with a bow”

“A cartoon pig wearing blue overall raises hands.”

Text-guided Texture Generation

Text-guided Animatable Cartoon Character Generation

Figure 1. We present Make-it-Vivid, the first attempt that can create
plausible and consistent texture in UV space for 3D biped cartoon
characters from text input within few seconds. Make-it-vivid en-
ables texture generation with fine-grained details in multiple styles
(see above), and also supports efficient text-guided animatable tex-
tured character production (see bottom).

playing a crucial role in creating vivid and charming char-
acters. This work focuses on the automatic design of high-
quality textured characters by generating textures based on
text descriptions, which presents two main challenges. (1)
Demanding domain-specific requirements. Simply dress-
ing 3D biped cartoon characters with appropriate textures is
insufficient to make them attractive. These characters re-
quire textures that possess unique traits, including seman-
tic harmony, consistent global configuration, and rich local
high-frequency details. Consequently, conventional shape
texturing methods are inadequate for cartoon characters, of-
ten resulting in textures with smooth and blurry details, as
well as noticeable seam artifacts [6–8, 21, 29, 30, 41]. (2)
Limited availability of high-quality data. The scarcity
of high-quality data that meets the demanding requirements
further complicates the task. The creation of high-quality
cartoon characters involves a costly and skill-intensive pro-
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cess, resulting in limited availability of such data. Addition-
ally, due to intellectual property (IP) concerns, these data
are often kept private, making it impractical to gather them
from publicly accessible sources on the Internet. Existing
datasets [28] that include character texture data also suffer
from significant limitations in terms of high-frequency de-
tails, inter-instance variations, and paired text descriptions.

In this work, we introduce Make-It-Vivid, a novel tex-
ture generation framework specifically designed for 3D
biped cartoon characters. Our framework enables the gener-
ation of diverse, high-fidelity, and visually compelling tex-
tures in a single forward pass, given text input. To address
the challenge of limited high-quality data, we propose mar-
rying a knowledgeable pre-trained text-to-image (T2I) dif-
fusion model with a topology-aware representation of the
UV space, making Make-It-Vivid the first framework to
leverage diffusion priors in the UV space for 3D biped car-
toon characters. We start by developing a specialized multi-
agent-based captioning system tailored for 3D biped char-
acters. By utilizing vision-question-answering agents, we
can easily generate high-quality descriptions of color, cloth-
ing, and character types based on rendered frontal views for
the UV maps. This process results in a dataset of high-
quality text-UVMap pairs. Once the dataset is prepared,
we customize the pre-trained T2I model to generate high-
quality UV maps. This customization involves introduc-
ing learnable parameters and fine-tuning them on the paired
text-UVMap data while keeping the T2I model fixed to re-
tain its open-domain knowledge. This design allows our
framework to seamlessly integrate with various customized
T2I style models, such as Shuimo style [33] and American
comics, for creative texturing.

While the customized diffusion model generates various
plausible textures faithful to text prompts, the texture qual-
ity often suffers from over-smoothing, making it challeng-
ing to meet demanding domain-specific requirements. This
limitation can be attributed to the lack of high-frequency de-
tails in the training data. Therefore, we create high-quality
images using a T2I model as a proxy for high-frequency
details and innovatively introduce adversarial training [13]
into the diffusion training process, leading to enhanced tex-
ture details. We extensively evaluate the performance of
Make-It-Vivid, demonstrating its superiority in texturing
3D biped characters. Our main contributions are as follows:
• We present Make-It-Vivid, which empowers non-expert

users to effortlessly customize vivid 3D textured charac-
ters with desired identities, styles, and attributes.

• To overcome the limitation of training data, we are the
first to introduce adversarial training into the diffusion
training process, achieving improved image fidelity.

• We showcase the versatility of our approach by exploring
captivating applications in stylized generation and multi-
modality textured character animation.

2. Related Work
3D Generation under Text Guidance. Recent advance-
ments in image generation [9, 10, 17, 37, 39, 40, 42, 43, 53]
have greatly boosted the research progress in 3D assets gen-
eration [8, 16, 25, 38, 49, 50] under text guidance. A set of
works [16, 30, 38, 45, 50] propose to generate 3D shapes
by optimizing a NeRF representation [2, 34], either through
CLIP guidance [16] or Score Distillation Sampling [38] and
Variational Score Distillation [50] via 2D diffusion models.
Though effective, implicit representations such as NeRF
can be infeasible to be deployed for most practical appli-
cations [22, 47]. Subsequent methods [25, 32, 47] tackle
the above problem by directly generating highly realistic 3D
meshes from textual prompts. Specifically, Magic3D [25]
presents a two-stage optimization framework to address the
efficiency and resolution problems observed in NeRF-based
models, while TextMesh [47] employs an SDF backbone to
extract realistic-looking 3D meshes. There are also a num-
ber of works trying to address the different aspects of 3D
content generation. For example, Fantasia3D [8] utilizes
a hybrid representation of 3D shape, namely DMTet [44],
and decouples the problem to geometry and appearance
modeling. Point·E [35] presents an alternative approach
to 3D content generation by utilizing a point cloud diffu-
sion model. Latent-NeRF [30] optimizes SDS loss in Sta-
ble Diffusion’s latent space to allow increased control over
the generation process. Besides, [30] also presents Latent-
Paint, which optimizes neural texture maps based on the
input mesh.
3D Mesh Texturing under Text Guidance. In addition to
generate fully textured shapes, texture generation based on
the given 3D geometry has recently gained significant pop-
ularity. A number of works [8, 21, 29–31, 38] approach
this task by optimizing an implicit representation of both
3D geometry and texture. For example, Text2Mesh [31],
Tango [21] and XMesh [29] innovate 3D mesh texturing by
optimizing the color and displacement for each vertex on
the base mesh based on corresponding text prompt using
CLIP loss [39]. While other methods [8, 25, 30, 38, 48, 50]
leverage SDS loss which helps create high-fidelity and re-
alistic texture. Another set of works introduce an iterative
painting scheme to paint a given 3D model from different
view points [6, 7, 41]. These methods synthesize multi-view
textures based on observations under different viewpoints,
and use depth-aware texture generation and inpainting to
refine the new unpainted areas while preserving consistent
texture from the partially painted area. Albeit improving
results, these works still suffer from severe inconsistencies
across multiple views and seam artifacts due to their in-
painting nature. Furthermore, some of generative models
focus on generating high-fidelity UV textures [11, 12, 18–
20, 52, 54] directly, which shows impressive quality in 3D
face reconstruction and generation. In this paper, we ex-
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Render with multi-views

Q1: Describe the image in detail.

A1: A panda wearing a shirt.

Q2: What is the color of this object?

A2: The color is black and white.

Q3: What is the object wearing?

A3: A shirt and a shorts.

Q4: What is the color of clothes?

A4: A red shirt and a purple shorts.

Q5: What is the pattern on the shirt?

A5: A yellow star.

Q6: Where is the star?

A6: On his chest.

A black and white panda wearing a red shirt and purple shorts with 
a yellow star on his chest.

BLIP2

BLIP2

BLIP2

BLIP2

BLIP2

BLIP2

Summarizing ……

Figure 2. Multi-rounds of dialogue for captioning 3D characters.
For each rendered image, we hard code three questions and use
ChatGPT for asking follow-up three questions, then summarize.

plore UV texture generation on a more challenging but cru-
cial scenario on vivid texture generation.

3. Preliminary

Parametric models of shapes, like 3DMM [4], FLAME [24]
and SMPL [26], are widely used in computer graphics,
computer vision, and other related fields. These models are
designed to represent the 3D shape and appearance of com-
plex objects, such as human bodies and faces, in a compact
and expressive manner.

In order to represent 3D cartoon biped characters with
a consistent topology, we adopt a parametric model Ra-
bit [28] which contains a linear blend model for shapes.
Specifically, the 3D biped character is parameterized as
M = F (B,Θ, Z), where B denotes the identity-related
body parameter, Θ represents the non-rigid pose-related pa-
rameter, and Z represents the latent embedding of texture.

In detail, the generated character shape is defined as
MS = M̄S +

∑|B|
i βisi, where the mean shape is denoted

as M̄S and |B| denotes the dimension of shape coefficients.
si ∈ R3∗N denotes the orthogonal principal components
of vertex displacements of the geometry shape. The coeffi-
cients models the variants of shapes under different identi-
ties. Besides, the shape of eyeballs can be calculated based
on the predefined landmarks.

The pose parameters Θ = [θ1, θ2, ..., θK ] ∈ R69 denotes
the axis-angle of the relative rotation of joint k with respect

to its parents. K = 23 denotes the number of the joints.
Each parameter θk can be converted to the rotation matrix
using Rodrigues’ formular:

v′i =

K∑
k=1

wk,iG
′
k(θ, J)vi,

G′
k(Θ, J) = Gk(Θ, J)Gk(Θ

′, J)−1,

Gk(Θ, J) =
∏

j∈A(k)

[
R(θj) Jj
0 1

],

(1)

where wk,j denotes the skinning weight for the i-th vertex.
Gk(Θ, J) is the global transformation of joint k. Jj denotes
the location of the j-th joint. We use this representation to
animate the mesh using specific pose parameters Θ.

As for parametric texture embedding, Rabit uses a
StyleGAN2-based [17] generator for embedding texture
map to latent codes. Specifically, the texture image T ∈
RH×W×3 is generated by a latent code Z ∈ Rd where the
resolution is 1024 and the dimension d = 512. However,
it can only generate textures unconditionally with low qual-
ity. In this paper, we propose a new text-driven vivid texture
generator which is editable with multiple concepts, such as
color, clothes, style and so on.

4. Text-guided UV Texture Generation

Texturing on the non-rigid cartoon character under simple
instructions is crucial yet inherently challenging. We there-
fore propose the first attempt to prioritize the generation of
texture maps using UV unwrapping, a consistent and es-
sential representation for mesh textures in the traditional
computer graphics pipeline. Drawing inspiration from the
achievements in image synthesis through text-conditional
diffusion models, we have adopted a diffusion model for
generating textures from random noise conditioned by text.

To this end, given a user prompt P , our method is able
to generate a vivid and consistent texture map aware of the
definition of the correspondence between UV space and the
geometry. Inspired by the appealing results from the pre-
trained latent diffusion models, which is trained on large
and diverse text-image pairs, we leverage these knowledge
as semantic priors for our texture generation. To enforce the
texture specifications and meanwhile preserve the generat-
ing ability, we train our texture generator by fine-tuning on
the pretrained LDM.

We train our model on the 3DBiCar dataset for its topol-
ogy consistent mesh model and diversity of cartoon identi-
ties. Our training samples consist of a 3D mesh, a geometry
related UV texture map and a corresponding description.
Since the detail description is not supported, we first pro-
pose a multi-agent character captioning pipeline for gener-
ating detail caption of each 3D textured model.
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Figure 3. Overall framework for training texture generator. Our method takes a pair of data as input including a texture map T , correspond-
ing text description P and mesh model M. We finetune the low-rank adaptor ∆θ for pretrained text-to-image diffusion model to generate
high quality UV texture. In order to improve the quality and perceptual fidelity of synthetic textures, we introduce adversarial training to
enhance the texture details. We leverage synthetic plausible images Iv conditioned by the rendered depth Idv generated by ControlNet C as
a proxy to guide this adversarial training.

4.1. Multi-agent Character Captioning

In this section, we focus on building a text-texture paired
data for training the texture generator. In order to obtain the
detailed description of the 3D model, inspired with [57], we
propose a 3D caption pipeline which focuses on identity and
texture information. The illustration of the caption pipeline
is shown on Fig 2. Specifically, for each model, we firstly
render multi-view images for each textured model and use
Visual Question Answering(VQA) model, BLIP2 [23], to
obtain detailed corresponding descriptions.

Similar with [56], we hard-code the first question as: 1)
“Describe the image in detail” to let BLIP2 generated a
brief initial description of the image. Then, in order to ob-
tain more information about the detail attribute of the color
and cloth types, we start with another two specific questions
to encourage the attention: 2) “What is the color of this ob-
ject?”. 3) “What is the object wearing?”.

Furthermore, in order to enrich image captions and gen-
erate more informative descriptions, we integrate strong
vision-language model, ChatGPT [36], for asking relevant
questions according to the previous knowledge and pro-
gressively obtain more information. ChatGPT is prompted
to ask follow-up questions to investigate more information
about the image. Besides, in order to avoid the caption
model for generating pose ore action-related information,
we deign a head instruction of BLIP2 including: “Answer
given questions. Don’t answer any contents about the pose
or action of the object.”

At last, we use ChatGPT to summarize the descriptions
across multi-views and result in the final caption. Chat-
GPT is able to merge the similar detail information in multi-
views and remove the unlikely ones. We use the final cap-
tion as the detailed prompt of the 3D model and 3D texture
for subsequent training.

4.2. Enhanced UV Texture Generation from Text

Now we use the prepared data for vivid and high-quality UV
texture generation. Each pair of data includes a mesh model
M, a texture map T ∈ RH×W×3 and a corresponding cap-
tion P . To ensure the generation of similar patterns or tem-
plates of the UV map within the dataset while preserving the
generating capabilities, we customize specific parameters of
pretrained text-to-image diffusion model. This customiza-
tion allows us to leverage image knowledge as semantic pri-
ors in our texture generation process. We first start with a
simple baseline that a parameter-efficient finetuning, Low-
Rank Adaptation (LoRA), on the U-Net of the pretrained
latent diffusion model (LDM) [42]. We encode the input
texture T into latent x0 and achieve diffusion process. The
objective of the training is:

Ldiff = Eϵ,x0,t[||ϵ− ϵθ+∆θ(
√
αtx0 +

√
1− αtϵ)||22].

(2)
∆θ denotes the tuned parameters, ϵ denotes the random
noise map, ϵθ+∆θ(·) is the predicted noise generated by de-
noiser integrated with LoRA adapter, αt is the parameter of
noise scheduler at timestamp t.
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(a)

(b)

(c)

(d)

Figure 4. We showcase texture samples related with prompt
“wearing overall” (a) from 3DBiCar [28] dataset; (b) generated
by the texture generator from Rabit [28]; (c) generated by the sim-
ple finetuned LDM; (d) generated by the enhanced fintuned LDM.

After fine-tuning, we can infer the LDM and generate
plausible texture map results related with the text instruc-
tions. However, simple fine-tuning on the collected dataset
can only achieve UV-related texture map in the same do-
main with the dataset, result in limit concept and style vari-
ations. We show some synthetic results in Fig 4 related to
the text “overall”. We first show some selected texture maps
from the dataset in (a), the selected results generated by the
text generator of [28] in (b) and the synthetic results gener-
ated by the simple LDM in in (c). It is obvious that a sim-
ple finetuning of LDM tend to synthesis the structure of the
overall without fine-grained details such as cloth wrinkles.

Therefore, bring the original texture domain to the re-
alistic domain is necessary as it ensures the perceptual re-
alism of the textured 3D model. To fix the domain issue
and boost the quality of texture with fine-grained local de-
tails, we need a set of realistic texture image to represent
the realistic distribution. However, it is hard to build or col-
lect UV texture data that meets the requirements and related
with the character geometry. Hence, we turn to create vivid
synthetic images that looks like object renderings from dif-
ferent viewpoints.

Specifically, we apply a depth-guided image generator
of ControlNet [55] to produce multi-view images guided by
the rendered depth. Then we propose to impose an adver-
sarial loss simultaneously when fine-tuning the parameters
of the adapter. At each iteration, we randomly sample a
camera view v from the pre-defined view set V and render
the input mesh M to multi-view depth images. ControlNet
receives the depth image Idv the text prompt P correspond-

ing with the object, and, in response, synthesis high-quality
images: Iv = C(Idv , y), where y denotes the text embedding
of P . In our case, we set number of renderings for each 3D
characters |V| = 8. As for generated sample, we randomly
sample a timestamp t ∈ (0, 1000) and achieve diffusion
process. Then we use the pretrained decoder to decode the
denoised latent x̂t

0 = (xt −
√
1− αtϵθ+∆θ(xt, y, t))/

√
αt

to the image T̂ t
0 . Then we use a differentiable mesh ren-

derer R to render the textured mesh with texture T̂ t
0 at view

v. The render output is denoted as R(T̂ t
0 , v). And then we

adopt adversary loss to make the rendered image R(T̂ t
0 , v)

has the similar local structure and perceptual realism with
the generated 2D images Iv at the same view. The objective
of the adversarial training can be formulated as:

Ladv = Et,x0,ϵ[logD(R(T̂ t
0 , v)] + Ex0 [log(1−D(Iv))],

(3)
where the rendered image R(T̂ t

0 , v) is considered as a fake
image while the output of the ControlNet is considered as
the real sample. D is the adversarial discriminator that tries
to maximize Ladv . The boost texture results is shown on
Fig 4(d). We can see that after the adversarial training, the
network is able to generate more realistic texture details.
Texture seam fixing. When texturing the 3D model with
synthetic UV texture image, we find that using image gen-
erative model would inevitably ignore the consistency at the
seam of the 3D model and results in black seam artifacts.
This might due to the reason that each processed texture
data is agnostic to the whole perspective 3D knowledge. To
help fix this issue , we first apply a Gaussian filter around
the boundary part of the texture image, which will remove
the ”black seam” on the back of the model. However, this
cannot solve the misalignment at the boundary. Therefore,
we also conduct a simple image restoration technique on the
back view of the model to mitigate the problem.

Specifically, for the generated texture map x0, we render
the textured mesh using the renderer R to obtain the ren-
dered image Tv as seen from the back view. Then we ap-
ply a state-of-the-art image restoration method [51] to help
make the rendered view perceptualy realistic without seam
artifacts. Then we back project the Iv to the updated texture.

5. Experiments
5.1. Dataset

Our model is trained on 3DBiCar [28] dataset. 3DBiCar
spans a wide range of 3D biped cartoon characters, contain-
ing 1,500 high-quality 3D models. The 3D cartoon charac-
ters have diverse identities and shape resulting in 15 char-
acter species, including Human, Bear, Mouse, Cat, Tiger,
Dog, Rabbit, Monkey, Elephant, Fox, Pig, Deer, Hippo, Cat-
tle and Sheep. All the 3D models are rigged and skinned by
the predefined skeleton and skinning weight matrix, which
supports further animation. Note that eyeball meshes and
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OursRabitFantasia3DLatentPaintText2TexTEXTure

A cartoon 
pig wear-
ing a blue 
overall.

A cartoon 
human wear-
ing a blue 
shirt and
white short.

A cartoon 
tiger wear-
ing nothing.

A cartoon 
rabbit wear-
ing striped 
outfit.

Figure 5. Qualitative comparison on the test prompt set with state-of-the-art shape texturing approaches, TEXTure [41], Text2Tex [7],
LatentPaint [30], Fantasia3D [8] and Rabit [28], We show our results with high-quality and consistent texture faithful to the input prompt.

CLIP↑ Time(min)↓ GPU(GB)↓

LatentPaint [30] 27.15 13.95 11.46
Fantasia3D [8] 29.20 21.55 12.42
Text2Tex [7] 28.81 14.35 20.31
TEXTure [41] 29.25 2.38 12.05

Rabit [28] - 0.01 2.39
Ours 29.86 0.03 6.20

Table 1. Quantitative comparison on the test prompt set with other
state-of-the-art texturing method. We also report the inference
time for a single prompt and GPU memory to show our efficiency.

textures are extra modeled to support the facial expression
in the future better. In our experiments, we use the default
texture for eyeballs.

5.2. Implementation Details

Our texture generator is fine-tuned based on the cutting edge
open source model Stable Diffusion [42] version 1.5. We
inject LoRA into the projection matrices of query, key and
value in all of the attention modules. We set the rank of
the LoRA to 8. Then the modified forward pass of in-
put x is: h = W0x + BuvAuvx, where BuvAuv denote
the parameters of adapter. We fine-tune the adapter using
the AdamW [27] with a learning rate 1e − 4. For infer-
ence, we use classifier-free guidance with a guidance weight
ω : ϵ̂ϕ(xt; y, t) = (1 + ω)ϵϕ(xt; y, t) − ωϵϕ(xt; t). In our
experiments, we set ω = 7.5. All the training and inference
are performed on a single NVIDIA A100 GPU.

FID↓ KID(×10−3)↓

Rabit [28] 42.55 6.37
Ours 35.25 5.25

Table 2. Quantitative comparison on the 3DBiCar dataset. Since
results of other approaches have a large domain gap with the origi-
nal texture dataset, so we only compare with Rabit [28] trained on
the same dataset.

5.3. Comparison with State-of-the-art Approach

To the best of our knowledge, we are the first method fo-
cusing on texture creation in UV space of 3D biped cartoon
model under text guidance. For far comparison, we build a
test benchmark consisting of 300 test prompts, comprising
all the 15 different species in dataset. For each species, we
design 20 types of attributes about different combinations of
cloth type and color. All the prompts follow the template: A
cartoon [Species Name] wearing [Cloth Type]. For exam-
ple: “A cartoon rabbit wearing blue shirt and white pants.”
Then we select 15 mesh models for all species from the
dataset as the base mesh and texture each 3D model using
corresponding text prompts. For example, we apply the tex-
ture generated from “A cartoon bear wearing suits.” on the
bear mesh. For all baselines, we render 8 views of each tex-
tured object with white background using the same renderer
setting from Blender [5] under resolution 1024*1024.
Baselines. We compare our method against two types
of shape texturing approach: one is based on multi-view
texture optimization, the other paints shape in a progres-
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(b) Rank 32 (c) Rank 8 (d) Rank 8 + Adv(a) Rank 64

A cartoon 
fox wear-
ing blue 
overall.

A cartoon 
bear wear-
ing suits.

A cartoon 
cat wear-
ing nothing.

Figure 6. Ablation studies of different hyper-parameters and tech-
nical components. We visualize the synthetic results of models
trained with different settings. (d) denotes our current setting.

sive manner. We first compare our approach with Laten-
Paint [30] and Fantasia3D [8], which optimize a 3D im-
plicit scene based on the explicit mesh guided by text un-
der multi-view SDS loss. For Fantasia3D, we only initial-
ize the DMTet [44] based on the conditioned mesh model,
and optimize the texture appearance under the correspon-
dent text prompts. For painting methods, we compare with
TEXTure [41] and Text2tex [7], which progressively gen-
erates partial textures across viewpoints and back-projects
them to the texture space. Besides, we also compare the re-
sults from our texture generator with the StyleGAN2-based
texture generator proposed by Rabit [28].
Qualitative comparisons. We compare the rendering re-
sults across several geometries textured from our approach
against other baselines, as shown in Fig 5. We can see that
our method is able to generated consistent texture to align
faithfully with the conditioned text prompt. In contrast,
painting-based methods like TEXTure and Text2Tex have
noticeable seam artifacts when viewing the side and back
sides of outputs. Optimizing-based methods can generate
multi-view consistent texture. However, LatentPaint can
hardly generate high-quality and text-related neural texture.
While Fantasia3D demonstrates improved rendering results,
there are still noticeable non-smooth artifacts present on
the surfaces. We provide additional visualization of results
using the texture generator from Rabit [28]. Since Rabit
can only generate texture image unconditionally, so we ran-
domly generate 100 texture maps and select relative results
for visually comparison. The results show that the synthetic
texture exhibits low-quality with indistinct structure. We
conduct the user study to obtain the user’s subjective eval-
uation of the fidelity and plausibility of the texture results.
The detail can be found in Supplementary Material.
Quantitative comparisons. We evaluate the text-driven
synthetic textures using average CLIP score to measure the
alignment between texture image with the conditioned text

prompts. The results is shown in Table 1. From the re-
sult we can see that our model achieves the best CLIP
scores, indicating better text-texture alignment. We also
report the run time for generating texture under a specific
text guidance using the default hyper-parameters of each
method on a single GPU. Notably, our method and Rabit
are significantly faster than the optimization-based methods
which indicates our efficiency. Besides, we also use the im-
age quality and diversity metric Frechet Inception Distance
(FID) [15] and Kernel Inception Distance (KID) [3] in Ta-
ble 2. In our experiments, on 3DBiCar dataset, the real dis-
tribution comprises renders of the geometries with the same
settings using their artist designed textures. Results show
that our method achieves better score than the texture gen-
erator of Rabit in terms of both FID and KID.

5.4. Ablation Studies

We perform extensive ablation studies on different choices
of hyper-parameters and the importance of the proposed ad-
versarial learning scheme to investigate their effects on the
final results. Specifically, we vary the rank of the LoRA
adapter, exploring settings of 64, 32, and 8 training with-
out adversarial loss. Then we investigate the effect of ad-
versarial training for texture enhancement. The visualiza-
tion results are presented in Figure 6, where the qualitative
analyses unveil the influence of different settings on texture
quality and diversity. According to the visualizations, it is
evident that finetuning with a large rank introduces notice-
able sawtooth artifacts. While reducing the rank mitigates
this issue, it concurrently leads to textures with a low-poly
and excessively smooth appearance. Lower ranks, such as
8, tend to yield more plausible semantic details. Adding ad-
versarial training will help to enhance the fine-grained pat-
terns in the texture output. Similar visualization results are
also shown on the last two rows on the Fig 4.

6. Applications
Out of domain texture generation. Our method could en-
able realistic UV texture generation that highly faithful with
the text instruction, and even support out of domain gener-
ation such as fashion icons or unreal humanoid characters
from famous fiction or movies while retaining high recog-
nition. We show some of results in Fig 7.
Prompt-based local editing. We also explore the control-
bility of our model as a prompt-based editing method in
Fig 7. Simply using prompt-based editing can help to mod-
ify the texture according to the text while retaining other
concepts. Such an editing capability makes the 3D texture
creation with our model more controllable.
Stylized texture generation. Besides, we can achieve styl-
ization for generated texture by injecting additional param-
eters from the other pretrained adapter S training on the
styled image set. Then the modified forward pass of an in-
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+ Batman + Superman+ Captain America

+ with a Star on it + with “A” on it+ with “X” on it

A bear 
dressed 
like

A bear 
wearing 
a shirt 

Figure 7. Make-It-Vivid enables out of domain generation about
famous fictions and prompt-based local editing.

“A cartoon 
rabbit wear-
ing suits, in
shuimo style.”

Moxin 1.0

Figure 8. Make-It-Vivid enables stylized texturing. We show some
synthetic results in shuimo style generated from our method in-
jected with adapter MoXin 1.0 [33].

put x is: h = W0x + BuvAuvx + wBsAsx, where BsAs

denotes the parameters of S. We set the balance weight
w = 0.5. We show some samples generated by our model
and a pretrained adapter MoXin1.0 [33] which is trained in
a ink and wash painting dataset. We can see that after the
stylization, the model is encouraged to generate plausible
and stylized cloth types which takes large gap with original
domain while preserve the original structure.
Textured characters production and animation. Our
method aims to help users to create and customize vivid and
plausible cartoon character efficiently. Therefore, we show
the progressive generation system capable of creating tex-
tured animatable characters, driven by either text or video in
Figure 9. Specifically, given a text prompt, we first employ
the Large Language Model (LLM) [46] to process the text
and extract three information including subject, texture and
motion. For subject, we leverage a CLIP-based retrieval
method to retrieve the shape with the nearest semantic in
the dataset as the base geometry. Then we leverage our pro-
posed texture model to design its appearance. To generated
related motion according to the text, we directly apply a
state-of-the-art text to motion model [14] to process the text
and generate body rotation parameters. We then derive ani-

“A cartoon rabbit wearing blue overall plays golf.”

Figure 9. Make-It-Vivid supports efficient characters production
and animation under text or video input.

mated characters by applying the generated rotation param-
eters to the pre-defined joint points. Besides, we can also
use video or other human interactions to drive or animate
the created cartoon character.

7. Conclusion
We propose a novel text-guided texture generation in UV
space for 3D biped cartoon characters, which enables to
generate high-quality and semantic plausible UV textures.
To accomplish the lack of high-fidelity data, we leverage
priors from pretrained text-to-image model, which helps to
generate texture map with template structure while preserv-
ing the natural knowledge. Furthermore, we propose an ad-
versarial loss to shorten the domain gap between original
dataset and realistic texture domain while training. Experi-
ments show that our model can achieve efficient texture cre-
ation faithful with text input, supporting multiple stylization
and local editing. Our approach can be easily applied to 3D
character production and animation system, advance the 3D
content creation.
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