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Abstract

We present a method for automatically modifying a

NeRF representation based on a single observation of a

non-rigid transformed version of the original scene. Our

method defines the transformation as a 3D flow, specifically

as a weighted linear blending of rigid transformations of 3D

anchor points that are defined on the surface of the scene.

In order to identify anchor points, we introduce a novel cor-

respondence algorithm that first matches RGB-based pairs,

then leverages multi-view information and 3D reprojection

to robustly filter false positives in two steps. We also intro-

duce a new dataset for exploring the problem of modifying

a NeRF scene through a single observation. Our dataset1

contains 113 synthetic scenes leveraging 47 3D assets. We

show that our proposed method outperforms NeRF editing

methods as well as diffusion-based methods, and we also

explore different methods for filtering correspondences.

1. Introduction

Transforming a neural radiance field (NeRF) based on a sin-

gle RGBD image is an important problem. Consider the

field of robotics as an example, where NeRFs are often used

to represent complicated 3D scenes [17, 35, 42, 48, 55]. No-

tably, whenever the scene is modified, the robot has to re-

capture multiple views to re-train a new NeRF. This process

discards important information from the original scene and

is time consuming. We are hence interested in developing

tools that allow a given NeRF scene to be transformed into a

new scene observed via a single RGBD image (see Fig. 1).

Concretely, we are interested in retrieving the transformed

scene geometry and rendering the new scene from different

perspectives.

NeRF editing is a natural approach for solving this prob-

lem, and current works have shown tremendous success at

modifying NeRF appearance [1] or geometry [12] from user

inputs. However, most NeRF editing methods [24, 31, 36]

1https://nerfdeformer.github.io/
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Novel views of the transformed sceneOriginal NeRF trained from multiview scene

Single RGB-D from transformed scene
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Exported mesh of the transformed scene

Figure 1. Problem definition. Given a NeRF of the original scene,

and a single RGBD image of the transformed scene, we are in-

terested in producing novel views and exporting a mesh of this

transformed scene. Here we visualize the NeRF (top left) and a

transformation of the scene (bottom left). We then show how the

scene is re-rendered given a new camera pose in the transformed

scene (top right) and its scene mesh (bottom right).

do not offer an automatic mechanism to match the trans-

formed scene and thus require to manually define the trans-

form (which can be non-trivial for non-rigid transforma-

tions). In our problem setting, user input is not available.

Other successful works have looked at NeRF transforma-

tion through time [29, 32], where the time component is

densely sampled. In contrast, we only assume a single

RGBD view of the transformed scene. Although this sin-

gle observation alone (without access to the original NeRF

scene) can be used to directly retrieve the transformed scene

via pretrained methods such as DreamGaussian [40], our

experiments show that this approach struggles to recover

the real geometry of the object.

Transforming a NeRF using a single RGBD introduces

challenges: what is the non-rigid transformation being ob-

served? what object parts correspond to each other? how

did the unseen part (not visible in the RGBD image) de-

form? Inspired by mesh shape manipulation [37], we pro-
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pose NeRFDeformer which addresses this problem by mod-

eling the transformation as a 3D scene flow. Concretely,

the flow is a weighted linear blending of rigid transforma-

tions through 3D anchor points on the surface of the scene.

This definition is more flexible than the MLP-based flow

used by prior work [1, 29, 32] as we can express an ap-

proximate inverse flow. As the flow definition leverages

anchor points from the original scene to the transformed

scene, we design a novel robust NeRF-based correspon-

dence matching between the NeRF scene and the RGBD

observation. The method first fuses pixel correspondences

from the pixel matching approach ASpanFormer [4], then

applies two steps of filtering in pixel and 3D space.

We demonstrate efficacy of our method on a challeng-

ing curated dataset. This dataset was specifically designed

for this problem: 113 scenes are created from 47 dy-

namic Objaverse assets [5]. We also propose different base-

lines for the problem of single-view NeRF transformation.

More specifically we show that adding depth information to

SINE [1] is not enough to retrieve more complicated scenes

with non-rigid transformations. Our method achieves the

best results for both geometric reconstruction and novel

view synthesis.

Our contributions are summarized as follows: 1) We ex-

plore how a 3D scene flow can be built from 3D corre-

spondences to transform a given NeRF to a novel scene,

for which there is only single RGBD image observation.

2) We present a novel robust NeRF-based correspondence

matching procedure between the original NeRF scene and

the transformed observation. 3) We introduce a comprehen-

sive new dataset for evaluating this problem setting.

2. Related Work

Neural editing and transformation. Many works have ad-

dressed neural 3D scene editing and transformation. Scene-

level editing works [7–9, 16, 26, 54, 60] can change

the global appearance of a scene like the global palette,

style [16] or lighting [7]. This differs from object-level edit-

ing works [24, 36, 44, 52] which often learn decompositions

of the scene. They can add or remove objects, or apply a

rigid transformation. In general, these approaches focus on

a single global rigid transformation and when present only

adjust one global attribute.

Some prior works consider geometric editing. Seal-

3D [46] defines the scene flow directly from a user’s 2D

edits, while others [12, 31, 53, 57] use a mesh as a proxy

to define local coordinates for ray bending. Importantly, the

former work is only suitable for simple geometric edits like

scaling or translation, while the latter works need laborious

user edits in the form of 3D vertex displacements. In con-

trast, our method performs a non-rigid transformation given

a single RGBD image and does not need laborious 3D edits.

Some conditional generative approaches [1, 13, 20, 45]

learn a distribution over NeRF parameters from a large 3D

asset dataset. Editing is then formulated as mapping a given

target image to a NeRF parameter [1, 20]. Such formulation

restricts edits to the distribution of objects captured in the

dataset, which is often not flexible enough to honor desired

user requests (which we demonstrate in the experiment sec-

tion). SINE [1], the closest work to ours, achieves great

results on the problem of geometric editing through a sin-

gle observation. Different from our formulation, SINE [1]

represents flow via an MLP, which struggles to model accu-

rate cyclic flows (forward and backward). They use Flow-

Former [10] to find 2D correspondences between the trans-

formed view and a single original view captured from the

same camera pose as the transformed view. This approach

limits the number of high quality correspondences. For

these reasons, SINE struggles with complicated non-rigid

transformations.

Notably, plenty of dynamic NeRF approaches also ad-

dress the problem of deforming NeRF scenes [14, 29, 32,

50, 59]. These methods focus on deforming scenes through

time, where the time component is well sampled. In con-

trast, we assume multiple views for one point in time and

one single transformed view at a second discrete trans-

formed time. Dynamic NeRF approaches struggle to cap-

ture the non-rigid transformation in such a setting because

the amount of regularization is limited and correspondences

can be hard to obtain implicitly.

Pixel correspondence matching. Optical flow methods

like RAFT [43] or FlowFormer [10] predict correspon-

dences for all pixels from an image pair. However, both

are trained on image pairs with small camera movement

in between which does not suit our setting. DINOv2 [28]

uses self-supervised learning to learn a per-pixel embedding

which can be used for correspondence matching. However,

the matching is coarse and possibly less accurate to guide

our 3D scene flow formulation. SuperGlue [34] matches

keypoints detected from SuperPoint [6], and LoFTR [38] as

well as ASpanFormer [4] match pixels using a downsam-

pled image pair. We show that using such an approach is

effective when combined with proper filtering.

Novel view synthesis from a single view. Early works

on this topic conducted regression-based training on large

datasets, e.g., PixelNeRF [56]. Motivated by diffusion-

based generative models, recent works explore how pre-

trained diffusion models can aid novel view synthesis given

a single view. Specifically, prior approaches exploit text-

conditioned diffusion models [23, 33, 41, 51] or image-

conditioned ones [18, 19, 40]. Differently, we develop an

approach tailored to NeRF non-rigid transformation and ob-

tain superior results given a pretrained NeRF.

3D scene flow representations. Prior works have stud-

ied various representations for modeling 3D scene flows.

As mentioned above, many dynamic NeRF and NeRF edit-
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Original mesh 𝑀𝐴 Transformed mesh 𝑀𝐵

𝐹𝐴→𝐵
𝐹𝐵→𝐴

Rendering in 

Transformed space

Querying in

Original NeRF

Figure 2. Overview of our method: we use two linked flows,

FA→B for transformed geometry reconstruction (bottom) and

FB→A for rendering the transformed scene (top).

ing works [1, 29, 32] apply an MLP-based flow, which

works well when images are plenty. Notably, often a cyclic

loss is required to connect two directions, which struggles

when the transformations are complicated. Online non-rigid

tracking methods [3, 11, 27] explore linear blending of an-

chor points as a flow design, but they do not apply their flow

on NeRF-based new view synthesis. In the field of avatar

modeling, many works rely on domain-specific templates,

e.g., SMPL [21], to model the 3D scene flow [30, 49]. Our

problem differs since we work on adapting NeRFs for gen-

eral scenes and do not assume that a domain-specific object

template is available.

3. NeRFDeformer

Consider an original scene A that has been transformed into

a scene B, see Figure Fig. 2. Our goal is two-fold: render

the transformed scene B from novel viewpoints, and extract

the geometry MB of the transformed scene. To address

these goals we assume the availability of 1) a pre-trained

NeRF Φ that can be used to render the original scene A

from arbitrary camera poses, and 2) a single RGBD im-

age (IB , DB) that captures the transformed scene B from a

camera pose CB ∈ SE(3).

At its core, our method recovers both a forward FA→B

and backward FB→A 3D scene flow to link the two scenes:

pB = FA→B(pA) (1)

pA = FB→A(pB), (2)

where pA ∈ R
3 is a point in A, while pB ∈ R

3 is the corre-

sponding point in B. As explained in the later subsections,

the two transforms are defined only near the surface.

Original scene Transformed scene

𝐹𝐴→𝐵

Figure 3. Forward flow of our method in the 2D case. Green dots

are the anchor points vi, the purple × is a query point, connected

to its K-nearest (K = 3 here) anchor points’ transformation ξ.

Blue dashed lines indicate the warp of the 2D space.

Given a point pA and direction dA in the original scene,

the NeRF can be queried for both color c = (r, g, b) and

density σ ∈ R+:

c, σ = Φ(pA, dA). (3)

To render novel views depicting the transformed scene B,

we sample points (pB) viewed along a ray in the trans-

formed scene and apply the backward 3D scene flow FB→A

to obtain the corresponding points (pA). The direction dA

for each point is computed from the transformed difference

between neighboring points along the ray, to preserve local

geometry. These transformed points and directions are then

fed to the original NeRF-based rendering given in Eq. (3).

Similarly, the mesh MA = (V, E) consisting of ver-

tices V and triangle faces E is obtained from the NeRF Φ
of the original scene via the classic marching cubes algo-

rithm [22]. The transformed mesh MB is then obtained by

applying the forward flow to all the original vertices:

MB = ({FA→B(v) : v ∈ V}, E), (4)

where we preserve topology by reusing the triangle faces E .

Thus, it is apparent that the two 3D scene flows play an

integral role in the process of novel view rendering, as well

as in supporting recovering geometry of the transformed

scene. As a result, the core of our method is aimed at recov-

ering these scene flows. In the following we first detail the

3D scene flow is defined with local linear transformations

and its trainable parameters (see Sec. 3.1). We then dis-

cuss how to optimize the trainable parameters (see Sec. 3.2)

which is based on 3D corresponding points. Finally we dis-

cuss how corresponding points are extracted from the avail-

able information (see Sec. 3.3).

3.1. 3D Scene Flow as Linear Blending of Locally
Rigid Transformations

In this work we define the forward flow to map any arbitrary

location pA from the original space (A) to a location pB

in the transformed space (B). The mapping is formulated
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as a weighted linear blending of rigid transformations ξi ∈
SE(3), which are anchored at distinct 3D points. In our

case the anchor points are the vertices vi ∈ V of the triangle

mesh MA = (V, E) extracted via marching cubes from the

original NeRF Φ as illustrated in Fig. 3.

Each vertex vi has an associated 6D rigid transform ξi
that contains a rotation Ri, a rotation origin vi, and a trans-

lation ti; so that the rigid transformation and its inverse are

given by

ξi(p
A) = Ri(p

A − vi) + vi + ti, and (5)

ξ−1
i (pB) = R⊤

i (p
B − vi − ti) + vi, (6)

where each rotation matrix Ri and translation vector ti can

be thought of as parametric quantities that depend on the

corresponding anchor point vi ∈ V . For more details, see

the supplementary material.

The 3D flow is defined by computing the following nor-

malized weighted sum of rigid transformations to obtain the

transformed point FA→B(pA):

FA→B(pA) =
∑

k∈K(pA,V)

w(pA, vk) ξk(p
A), (7)

where the summation is over K-nearest vertex neighbors,

using the KNN function K(pA,V) to return the K vertex

indices that are closest to the point pA. Each weight is de-

fined as follows:

w(pA, v) ∝

(

1−
∥v − pA∥

maxk∈K(pA,V) ∥vk − pA∥

)

. (8)

Note that in Eq. (7) the farthest neighbor will get zero

weight. The backward flow is defined as follows:

FB→A(pB) =
∑

k∈K(pB ,V′)

w
(

pB , ξk(vk)
)

ξ−1
k (pB). (9)

In particular, the backward flow uses transformed vertices

V ′ ← {ξk(vk), k = 1, . . . , |V |}. (10)

Note from Eq. (5) that ξk(vk) = vk + tk.

As mentioned in Sec. 1, our forward flow and backward

flow definition has two advantages over MLP-based flows

with a cyclic loss, used in prior work [1]: 1) the backward

flow can be extracted from the forward flow without any

training, and 2) forward and backward flows are cyclic only

near the surface area where all linear transformations are

similar. Thus there is no need to encourage them to be cyclic

in empty space. In addition, our flow definition permits ad-

ditional flexibility far from surface areas while encouraging

cyclic behavior near surface areas, which is necessary for

accurate geometric reconstruction and novel view synthe-

sis.

3.2. Embedded Deformation Graph for Scene Flow
Optimization

We now discuss how to find and parameterize rotation ma-

trices Ri and translation vectors ti for each anchor point

vi ∈ {1, . . . , |V |}. The optimization is inspired by embed-

ded deformation graphs [37]. We optimize the loss

LDG = LARAP + α · LCon (11)

to learn the transformation components Ri and ti. The

as-rigid-as-possible (ARAP) loss LARAP regularizes both

transformation components, while the consistency term

LCon focuses on learning the translation terms through 3D

correspondences.

The ARAP loss is applied on a decimated mesh for ef-

ficient computation. In practice when the transformation

is invoked, the parametric functions Ri and ti are com-

puted via a weighted combination of learnable rotation ma-

trices and translation vectors defined on the vertices of the

decimated mesh. The computation is differentiable and

hence end-to-end trainable. The ARAP loss regularizes the

squared distances between each anchored vertex transfor-

mation applied to its neighbors and the actual transformed

neighbor position. We refer the reader to the supplemental

material for more details about this loss term.

The consistency loss LCon constrains the translations of

the vertices for which corresponding points exist. In or-

der to ground the transformation, we first identify a set of

corresponding points between scenes A and B. Let set I
denote the vertex indices for which correspondences ex-

ist. Thus we have the following set of corresponding points

{(vAi , v
B
i ) : i ∈ {1, . . . , |I|}}. The process of selecting

these points is described in the following section, with the

consistency loss defined as follows:

LCon =
1

|I|

∑

i∈I

∥ti + vAi − vBi ∥
2. (12)

Please note that here we do not use a rotation matrix Ri,

because we are manipulating 3D vertices, and therefore no

rotations are needed for transforming them. Moreover, we

do not use any direct visual losses (rgb or depth) as we find

reasonably dense corresponding points to suffice for learn-

ing the 3D flow.

3.3. Robust NeRF­based Correspondence Matching

We seek to produce reliable correspondences between the

original NeRF scene and our transformed scene which is

illustrated in a single RGBD (Fig. 4 (a)). Inspired by the

work of ASpanFormer [4], we first propose to find RGB-

based correspondences between the transformed RGB com-

ponents and original NeRF produced renders which are fil-

tered first in pixel space. Finally we lift the pixel correspon-

dences to 3D and filter the false positives in 3D space.
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𝐼𝐵 𝐼2𝐴

𝐼𝐵 𝐼𝑁−1𝐴

𝐼𝐵 𝐼𝑁𝐴

(b) Rendering original images(a) Transformed view

(c) Pixel-space filtering

𝑟
𝑟

(d) 3D-space filtering

𝐼𝐵  𝐷𝐵

Figure 4. The transformed space image (a) is matched with the

input NeRF scene first via 2D dense matching between the trans-

formed image and original images IA1 , ..., IAN rendered from the

NeRF (b). Pixel-space filtering (c) is applied where we only

show selected matches (red and blue lines represent bad and good

matches respectively). We show how any given pixel in IB can be

matched to multiple views (see green, yellow, and red small cir-

cles). Out of the multiple matches, we keep the one with largest

continuous patch of matched pixels, e.g., in IA1 the green circle

has 2 matched neighbors whereas in IA2 there are 8. Thus we keep

the latter. The points are then unprojected into 3D (d) and keep

pairs that are physically close in the original space while behaving

similarly in the transformed space.

2D pair correspondences and filtering. A set of images is

first rendered from the provided NeRF that fully covers the

hemisphere defined around the object (Fig. 4 (b)). Using

ASpanFormer, dense RGB-based matching is performed

between the transformed image and our RGB NeRF ren-

ders, where low confident correspondences are filtered out.

To handle multiple matches between the transformed image

and different renders (a given pixel might be matched to

multiple locations on different images), the most confident

pair of the lot is selected. This confidence is determined by

the pixel neighbor density size, e.g., the more the adjacent

pixels have matches the more likely the matches are valid

(Fig. 4 (c)). See supplemental for greater details.

3D-space filtering. Using the previous pixel correspon-

dence, their positions in 3D are lifted using the provided

depth information. In order to determine which pairs are

valid, points in the original scene are first clustered, and we

subsequently compare how the clusters behave in the trans-

formed scene (Fig. 4 (d)). If a cluster does not maintain its

tight structure we filter the points that diverged. The intu-

ition is as follows: point pairs that have adjacent points in

the original scene should stay adjacent in the transformed

scene. See supplemental for greater details.

In order to define the anchor points, I, for any valid

pair’s point in the original space, we find the closest vertex

extracted on the mesh. This anchor point is then linked to its

correspondence in 3D. Finally, these anchor point matches

are used to optimize our 3D flow, as previously presented.

3.4. Implementation Details

We use K = 20 in the KNN employed in Eqs. (7)–(9). We

only calculate the flow near the surface (surface distance

< 7e−5) and regard other space as empty since the flow

is only invertible near surface areas. We set α = 0.1 in

Eq. (11). The marching cubes resolution for MA and mesh

decimation hyperparameters are set to obtain |V| ≈ 500k

vertices. Mesh decimation is used to reduce the number

of vertices to 2,000. We use Adam [15] optimizer with a

learning rate of 0.001 to minimize LDG for 3k iterations.

For correspondence matching, original NeRF renders

are from a hemisphere which has the same distance to the

object as CB . Specifically, we sample 200 camera posi-

tions on the hemisphere, render images, and finally aug-

ment images by rotating the yaw to one of the 7 angles:

[0◦,−30◦, 30◦,−60◦, 60◦,−90◦, 90◦]. More hyperparam-

eter details are given in the appendix.

4. Experiments

Dataset. We demonstrate efficacy of baselines and our

method on 113 scenes, which originate from 47 dynamic

object models from the Objaverse dataset [5]. These scenes

cover a wide variety of complex non-rigid transformations.

For each of the 47 dynamic object models, we manually se-

lect one animation frame as the original reference and train

our NeRF Φ via Instant-NGP [25] with default settings [39]

for 100k iterations using 400 images with a resolution of

2880 × 2880, uniformly sampled on a hemisphere above

the object. Then we select one to three transformed anima-

tion frames (depending on the difficulty), different from the

original animation frame(s). For each transformed time, we

render one image and its corresponding depth map as the

transformed view.

Baselines. We compare with generative models such as

Zero123-XL [5], which finetunes a 2D diffusion model to

generate new views given relative camera poses and a tar-
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get image; as well as DreamGaussian [40], which is a 3D-

aware Gaussian splatting based diffusion model. We also

include two naive baselines: Φ and Φ finetuned. The for-

mer keeps the original NeRF without any change while the

later finetunes the NeRF for an extra 2k iterations on the

given transformed view using the default 2D reconstruc-

tion loss. Furthermore, we compare our method with a re-

implementation (details in the supplemental) of SINE [1].

Note that for a fair comparison, for the methods that do not

require depth as input like DreamGaussian, we still use the

ground truth depth to solve the scale ambiguity; and SINE

and our method use depth.

Metrics. For novel view synthesis, we use Peak Signal-to-

Noise Ratio (PSNR), Structural Similarity Index Measure

(SSIM) [47] and Learned Perceptual Image Patch Similar-

ity (LPIPS) [58] as the metrics. We render 30 new views

different from the training view poses and calculate the av-

erage of these metrics on 30 views, and then average across

113 scenes. For geometric reconstruction evaluation, we

compute chamfer distance (CD) and Volume IoU (VmIoU).

Since the process of marching cube on a collapsed NeRF

scene can lead to bad reconstructions, we define a suc-

cessful reconstruction when the chamfer distance is below

0.004. As such we report metrics for both all scenes (CD),

for scenes that are below that threshold (CD (success)), and

we also report the success rate for each method.

Results. Tab. 1 shows quantitative results for our method

and baselines on our proposed dataset. See Fig. 5 for qual-

itative results. Tab. 1 is separated in two parts, where

we first present results on visual fidelity reconstruction

(left most columns) and on geometric fidelity (right most

columns). The original NeRF (Φ), trained on the orig-

inal scene without any further changing, performs better

than other diffusion-based methods such as Zero123-XL or

DreamGaussian. Diffusion-based models do not perform as

well as their prior knowledge might not cover the content

of the proposed scenes, e.g., it has a knowledge about cats

but less about doors (see Fig. 5), and it ignores the infor-

mation from the prior NeRF. When fine-tuning the origi-

nal NeRF scene to the transformed observation, the NeRF

collapses as it does not have multiple views for constrain-

ing its behaviour. Overall our method is the best suited to

both visually reconstruct the scene and extract a meaning-

ful mesh with a success rate of 90%. We also observe that

DreamGaussian [40] can capture the coarse shape of the

object but lacks fine-grained texture and geometry, while

SINE [1] produces inconsistent transformations as it tends

to pick wrong correspondences. A real world experiment is

included in Fig. 6, showing the potential of our method for

handling imperfect settings (camera pose noise).

Ablations

The quantitative results of our ablation study are provided in

Tab. 2. Our goal is to motivate some key design decisions in

our method, especially compared with SINE. Note that the

settings for the results in row 3-1 of Tab. 2 correspond to the

design choices for our implementation of SINE [1]. Further

note, row 4 shows the design choices of our final method.

Correspondence matching. We first analyze the effec-

tiveness of ASpanFormer [4] as a pixel correspondence

matching method and compare to FlowFormer [10] used for

SINE [1]. Comparing row 1-1 and 1-2 in Tab. 2, we find

ASpanFormer correspondences lead to better performance

in all metrics. This is expected as ASpanFormer is trained

on a dataset with large displacements while FlowFormer

is trained on image pairs from adjacent frames in videos,

i.e., the displacements are smaller. Although the correspon-

dences are stronger, it is still important to exploit correspon-

dences from multiple views and filter the false positives to

improve further.

Single/multiple views for correspondence. In Sec. 3.3 we

presented a method that leverages NeRF to render multiple

views, and as such here we evaluate the impact of object

coverage (single or multiple views). Our method (row 4

in Tab. 2) is compared with the baseline in row 1-2, which

only uses correspondences between the transformed image

and a single original image whereas both are rendered from

the same camera pose. Using multiple original images im-

proves all metrics significantly. Fig. 7 (c,d,e) visualizes the

correspondences obtained for a specific scene when using a

single original image and when using multiple original im-

ages. Trivially multiple images outperforms using a single

image.

Correspondence Filtering. We also compare using cor-

respondence from multiple images obtained via ASpan-

Former and only filter based on method confidence scores

(row 2 in Tab. 2). Results indicate that filtering of corre-

spondences is a non-trivial problem and our pixel-level fil-

tering with specially designed scores and our 3D filtering

are adequate for our problem (Fig. 7 (c,f)).

Scene Flow. Our scene flow is compared with the MLP

cyclic flow for new view synthesis used in SINE [1]. Com-

paring Tab. 2 row 1-1 with row 3-1, or Tab. 2 row 4-1 with

row 3-2, we observe that the MLP design hampers the per-

formance in all metrics. We believe that the cyclic con-

straint is too strong and limits the expressiveness of the

MLP. Replacing our flow representation method (row 4)

with a MLP (row 3-2) leads to a decrease in performance.

Please note that we only run experiments for visual metrics

as we observed that using an MLP in spaces that do not have

coverage extremely degrades the quality of the output. See

Fig. 8 for qualitative results.

Depth quality. We test injecting noise to the transformed

view depth via SimKinect [2]. We explore 3 different levels
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Training & transformed views View 1 View 2 Mesh

Figure 5. Qualitative results comparing our method to prior work. We first show in the left-most columns the original scene and the

transformed view. The other columns show different renderings of the transformed scene: ground truth in blue, DreamGaussian [40] in

green, SINE [1] in yellow, and our method in red (lexicographic order within each 2× 2 block).
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Table 1. Main results, comparing the proposed method to baselines. CD is multiplied by 1000 for better readability.

Methods
New view synthesis Geometric reconstruction

PSNR ↑ SSIM ↑ LPIPS ↓ CD ↓ CD (success) ↓ succ rate ↑ VmIoU ↑

Zero123-XL [5] 14.1±3.9 0.799±0.071 0.265±0.076 / / / /

DreamGaussian [40] 19.8±4.2 0.868±0.057 0.149±0.067 7.36±5.1 2.46±0.84 0.336 0.306±0.18

NeRF Φ 21.3±3.6 0.876±0.059 0.125±0.061 13.2±16 1.72±0.95 0.372 0.315±0.23

NeRF finetuned 21.6±3.5 0.826±0.096 0.198±0.100 228±270 1.85±1.10 0.195 0.312±0.25

SINE [1]* 22.1±3.8 0.883±0.052 0.115±0.053 6.40±13 1.85±1.10 0.637 0.515±0.25

Ours 25.9±4.2 0.924±0.034 0.061±0.040 1.46±2.9 0.62±0.79 0.903 0.666±0.20

Table 2. Ablation results demonstrating the efficacy of our design choices. (FF for FlowFormer [10], ASpF for ASpanFormer [4])

#
2D

matching

Original

images

Our

flow
Filtering

New view synthesis Geometric reconstruction

PSNR↑ SSIM ↑ LPIPS ↓ CD ↓ succ rate ↑ VmIoU ↑

1-1 FF single ✓ None 22.6±4.4 0.895±0.058 0.106±0.046 6.40±13 0.637 0.515±0.25

1-2 ASpF single ✓ None 23.9±4.2 0.910±0.041 0.083±0.046 3.54±6.4 0.726 0.545±0.22

2 ASpF multiple ✓ 2D naive 22.1±4.0 0.893±0.043 0.113±0.050 7.80±8.4 0.434 0.296±0.18

3-1 FF single MLP None 22.1±3.8 0.883±0.052 0.115±0.053 / / /

3-2 ASpF multiple MLP 2D + 3D 22.5±3.5 0.890±0.041 0.107±0.044 / / /

4 ASpF multiple ✓ 2D + 3D 25.9±4.2 0.924±0.034 0.061±0.040 1.46±2.9 0.903 0.666±0.20

Figure 6. Real world results. Left: the original scene of a half-

opened box, where the first image is a training view (take from 364

images), second and third images are NeRF renders, and the last

image is the mesh reconstruction. Right: the transformed scene

of the same box fully opened, where the first image is the unique

training view, second and third image are NeRF renders, and the

last image the mesh reconstruction.

(a) Original scene (b) Transformed view (c) Ours

(d) Row 1-1 (e) Row 1-2 (f) Row 2

Figure 7. Correspondences. (a,b) depict the original and trans-

formed scene. (c) to (f) are results of our method and three other

ablations. Row numbers are from Tab. 2.

of noise (s.d. 0.3, 0.5, 1.0), where the chamfer distances

are from 2.00 to 2.13 and PSNR from 23.6 to 24.4 for all

of them. Depth noise does degrade the output, although our

method still outperforms all baselines.

(a) Original scene (b) Ours (view 1) (c) Ours (view 2)

(d) Transformed view (e) Row 3-2 (view 1) (f) Row 3-2 (view 2)

Figure 8. Rendering of different flow methods. Please refer to

Tab. 2 for method references. The red rectangle in (d) highlights

the region that the MLP cyclic flow struggles to model as FB→A

changes drastically in space. MLP flow (e,f) vs. ours (b,c).

5. Conclusion

NeRFDeformer successfully transforms a NeRF scene us-

ing only a single RGBD observation of the transformed

scene. The method uses local linear transformations on the

surface to map the original configuration to the transformed

one. In order to learn these linear transformations we intro-

duce a new method to find dense correspondences between

a NeRF scene and a single RGBD observation.

Future work should include exploring relaxing the need

of depth input, such as through leveraging prior knowledge

about shape or scene compositions. We are also interested

in grounding diffusion models through scene flow to help

determine where generation should be focused on.
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