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Figure 1. The underwater image capturing process is shown in (a), where an underwater camera captures 3 exemplar images in (b), demon-
strating the attenuation, unstable in-scattering and moving objects during light transport as depicted in (c). We then show a comparison of
underwater scene modeling in (d) and (e), between the proposed method and SeaThru-NeRF [15].

Abstract

Among the numerous efforts towards digitally recovering
the physical world, Neural Radiance Fields (NeRFs) have
proved effective in most cases. However, underwater scene
introduces unique challenges due to the absorbing water
medium, the local change in lighting and the dynamic con-
tents in the scene. We aim at developing a neural under-
water scene representation for these challenges, modeling
the complex process of attenuation, unstable in-scattering
and moving objects during light transport. The proposed
method can reconstruct the scenes from both established
datasets and in-the-wild videos with outstanding fidelity.

1. Introduction
Neural Radiance Fields (NeRF) achieves promising perfor-
mance in representing the scenes above the surface of the
water [23, 25]. Can NeRF still model the scenes under wa-
ter properly?

The answer is negative, due to the widespread “dynamic”
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phenomena underwater, while vanilla NeRF [23] is tailored
for static scenes only. First, an object becomes more and
more difficult to be observed as its distance to the camera
increases, due to the absorbing property of water. This leads
to the foremost dynamic factor in underwater scenes, that is
1 distance-dependent visibility. Next, the scattering ef-
fect of water and the changeable lighting condition intro-
duce another dynamic factor. The illumination observed
from different views are thus time-varying, leading to 2
unstable illumination. Moreover, the underwater ecosys-
tem, teeming with marine life, leads to the third dynamic.
The 3 moving objects such as marine plants and animals
challenge the static assumptions inherent to standard NeRF
models. The synergy of the aforementioned dynamic fac-
tors creates an intricate and multifaceted environment that
is difficult for the current NeRF models to comprehend and
represent accurately. Thus, finding a way to manage such
an environment is crucial for the neural representation of
underwater scenes.

Existing underwater image processing methods [1, 7, 14]
aim at removing the effects of water blending, and simplify
the underwater imaging model with priors, such as the dark
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channel prior [14], haze line prior [7], etc. However, most
of them deal with a single image, and may not help on
alleviating the curse made by dynamic factors, given that
each image is just one static slice in time of a dynamic pro-
cess. A more reasonable approach would be to factor in
dynamics when constructing NeRF models [11, 27, 33], uti-
lizing NeRF variants designed for dynamic objects. How-
ever, those methods designed for scenes above the surface
of the water assume dynamic scenes with constant illumi-
nation and minimal attenuation. If they are applied directly
to underwater scenes, challenges 1 and 2 can quickly in-
validate their assumptions about static properties, thereby
compromising the performance in scene representation.

SeaThru-NeRF [15] has been proposed recently, trying
to model the distance-dependent attenuation from multiple
viewpoints. However, it ignores 2 changing illumination
and 3 dynamic objects in the scene, and also their inter-
twined relationship, resulting in blurry and floater artifacts,
as shown in Fig. 1. Besides, SeaThru-NeRF [15] conditions
the water body on viewing direction, adding to the complex-
ity of the processing pipeline. Their main goal, which is to
remove the water effects and “see through”, also slightly
deviates from our purpose of modeling underwater scene.

Faced with the aforementioned issues, in this paper we
extend neural radiance fields to handle scenes under wa-
ter. We propose to treat the water as an object with semi-
transparent property, and optimize the water parameters
jointly with the objects in the scene. Instead of omitting the
“empty” space between the scene and the camera in vanilla
NeRF setting [18, 23, 35], or using a straight-forward im-
age blending model in 2D space [1, 7], the proposed model
solves the challenge of 1 distance-dependent attenuation
through a 3D formulation that also takes the scattering wa-
ter medium into consideration. Besides, we design an il-
lumination field operating in the logarithmic space and a
self-adaptive tone mapper module that model the 2 unsta-
ble illumination in the scene. The 3 moving objects are op-
timized after the first stage where static part and water body
is reconstructed, enabling a higher efficiency, since only the
moving objects in front of the static counterparts contribute
to the rendered result.

In brief, our contributions can be summarized as follows:
• a simple physics-based model to simulate the distance-

related attenuation of the water medium;
• an illumination field and a self-adaptive tone mapper

module that mimic the unstable illumination observed un-
derwater, preventing the system from naively modeling
illumination as motion; and

• a separated reconstruction scheme, composed of a static
branch aiming at the still structures, and a dynamic branch
for moving objects, leading to a more robust optimization.
With these features integrated, the proposed method not

only outperforms the state-of-the-art methods quantitatively

in scene representation, but also produces more realistic re-
sults in qualitative evaluation. The proposed method also
enables the editing of underwater scenes, such as drain-
ing the water and transferring the water effect to non-
underwater scenes.

2. Related work
Neural radiance fields for dynamic scenes. Neural Ra-
diance Fields [23] (NeRF) emerged as a significant develop-
ment for novel view synthesis, by constructing an implicit,
neural network-based scene representation. Though NeRF
is originally designed for static scenes, the community has
sought for numerous methods to model the inconsistency
across frames.

Nerfies [26] and HyperNeRF [27] apply a deformation
field to map the observation to a canonical scene represen-
tation, and optimizes a per-frame latent. They can han-
dle unstructured videos, but are limited to object-centric
poses. NeRF-in-the-wild [21] also uses a per-frame latent,
enabling handling of diverse illumination and appearance
in the input, while requiring hundreds of images to robustly
optimize the latent space.

Unlike these frame-based methods that optimize a latent
for each view [21, 26, 27], time-based NeRFs try to encode
spatio-temporally varying scene volumetrically. They take
time step, position, and viewing direction as the input of the
neural network, greatly increasing the capability as well as
complexity. Several insightful ideas have been proposed to
blend time into the network. NSFF [16] designs the neu-
ral scene flow fields that can handle complex and fast mo-
tion, DynIBaR [17] gathers the warped frames from tempo-
rally nearby frames to perform realistic rendering, MonoN-
eRF [30] learns a velocity field to further imitate the tempo-
ral consistency. It is also observed that optical flow provides
useful hints for reconstruction [11, 19, 30].

Underwater imaging. Analyzing the images taken un-
derwater has become a hot topic for computer vision com-
munity for the past decades. Removing the effects of wa-
ter requires a physics-based modeling of the scene. Light
propagation in a medium is characterized by radiative trans-
fer equation [8], but the complete computation requires
Monte Carlo simulation, which is prohibitively expensive
for real-time rendering. Many physics-based methods use
certain priors to simplify the problem, such as dark chan-
nel prior [14], white balance [3], or haze line prior [6], and
then separate the back-scatter and transmission part. Some
alleviate the problem for just one water type with a fixed
attenuation coefficient [10, 20]. Some also try removing the
degradation from images through data-driven optimization
process [13]. However, most efforts mentioned only try to
remove the water effects from 2D images, which is nev-
ertheless an ill-posed problem. A more physics-grounded
model with respect to light propagation is proposed [1, 2]
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for underwater image restoration, but still requires known
depth information. To this point, an inherent 3D represen-
tation underwater for a physics-based simulation is desired.

Neural radiance fields for scattering medium. A grow-
ing number of works have found the straight-forward mod-
eling in vanilla NeRF unable to recreate real-world phe-
nomena, such as reflection [12, 31, 38], occlusions [21, 39],
and attenuation when propagating in the media [9, 15, 29].
Previous works introduced physics-grounded model into
NeRF [15, 29], but still naively rely on a combination
of water scattering and opaque object surface, which pre-
vents them from considering the time-varying effects as dis-
cussed before. We attribute their concession to the over-
complicated physical model. In this paper, the water proper-
ties are simplified, and the previously ignored changing illu-
mination and moving objects are considered, which is suit-
able for underwater structure restoration, accessible scene
editing and realistic graphics rendering.

3. Methods
3.1. Problem formulation

The scene representation of Neural Radiance Fields
(NeRFs) is essentially a multi-layer perceptron (MLP) f :
(x,d) → (c, σ) that maps the position x and viewing di-
rection d to the point’s color c and density σ. To render
the color of a ray hitting the camera requires accumulating
the points along the ray parameterized by r(t) = o+ t · d,
where o is the position of the camera and t > 0. The color
C(r) is formulated as

C(r) =

∫ tf

tn

T (t)σ(t)c(t)dt, (1)

where tn and tf are the near and far bounds of rendering,
σ(t) and c(t) refer to the density and color at r(t). T (t)
denotes the accumulated transmittance from tn to t, namely
T (t) = exp(−

∫ t

tn
σ(s)ds).

The vanilla NeRF employs a single branch to repre-
sent the whole scene. However, due to the moving objects
underwater, we consider modeling the underwater scene
by separating the whole scene into a static branch fsta :
(x) → (csta, σsta) and a dynamic branch fdyn : (x, t) →
(cdyn, σdyn). The two branches following the settings in Dy-
namicNeRF [11] can be optimized by the reconstruction er-
ror, given by

Lrecon =
∑

s∈{sta,dyn}

∑
r∈Ms

∥Ĉs(r)−Cs(r)∥2, (2)

where Csta(r) and Cdyn(r) are the rendered color of the
static branch and the dynamic branch respectively, and Ĉ
is the color of ground truth; Msta and Mdyn are the binary

mask for static area and moving objects, estimated by off-
the-shelf optical flow models [34]. Via Eq. (2), the static
branch and dynamic branch are progressively optimized
without affecting each other.

However, solely relying on Eq. (2) does not yield satis-
factory results, with the outcomes exhibiting various arti-
facts. This primarily stems from its limitations in address-
ing the other two dynamics discussed in Sec. 1, specifically
the distance-dependent visibility and unstable illumination.

In the model of vanilla NeRF [23], to effectively cal-
culate Eq. (1) by sampling and summation, NeRF model
is expected to skip the “empty” space that contributes less
to the rendered color [5, 23, 35]. However, in underwa-
ter scenes, the visibility of objects is considerably influ-
enced by the water medium all over the space. Skipping
the water medium can lead to degeneration in the rendered
results, by encouraging NeRF to falsely punish the distance-
dependent visibility caused by water on the color change
of objects. We propose and justify a volume rendering
model that can characterize the distance-dependent visibil-
ity, detailed in Sec. 3.2. In addition, we find the previously
proposed sampling strategy [5, 23] unable to focus on the
water medium and the objects simultaneously, and tailor
a progressive sampling strategy for underwater scenes in
Sec. 3.3.

Moreover, Eq. (2) focuses solely on moving objects, ne-
glecting the challenges posed by unstable illumination that
varies across different viewpoints. The varying illumination
only changes the exposure locally, but does not alter the lo-
cation or actual color of objects. Eq. (2) is thus not sufficient
since illumination can change in static areas too. Model-
ing both the changing illumination and moving objects with
dynamic branch is under-constrained To effectively disen-
tangle the multiple dynamics under water, in Sec. 3.4 we
propose an illumination branch fI : (x,d, t) → λ to model
the locally varying illumination, where t ∈ [0, 1] is the cap-
turing time step of the image.

3.2. Modeling distance-dependent visibility

As the first challenge comes from the absorbing property of
water, we address this issue by considering water as semi-
transparent that should be considered during volume ren-
dering. Then, Eq. (1) can be rephrased as follows:

T(t) = exp

(
−
∫ t

tn

(σw(s) + σobj(s))ds

)
, (3)

where the subscripts of “w” and “obj” denote the water and
the objects, respectively. Then, to better model the absorb-
ing effects caused by water, we build a mapping correlation
between σw and the RGB channel during rendering as fol-
lows:

C =

∫ tf

tn

T(t)⊙ (σobj + σw)⊙ c̄ dt, (4)
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Figure 2. The structure of the proposed method. MLP-S is designed to learn the density and color (σsta, csta) of the static branch fsta, by
taking the hash embedding [25] of position x as input. MLP-D, or the dynamic branch fdyn, conditioned on the features of the positions
along with the time step t, aims to model the density and color of the dynamic scene, (σdyn, cdyn) for dynamic objects. MLP-I stands
for the illumination field fI, which reconstruct the unstable illumination λ, dependent on time and the spherical harmonics encoding [31]
of viewing direction d. The tone mapper ψ(·) and water parameters (σw, cw) are also optimized when participating in the process of
converting network outputs to non-linear colors, and when rendering water effects.

where c̄ is the alpha-composite of cw and cobj, using σw and
σobj as weights, and ⊙ stands for element-wise multiplica-
tion. Note that σw is considered as a density triplet of RGB
channels, namely the water has different transmittance in
different wavelengths.

The density triplet is in accordance with radiative trans-
fer function [8], a physical model used to describe light
propagation process, and it can also explain the physics-
based model in previous works [1, 2, 7] focusing on image
restoration that has the form of

C ≈ J · e−βD·z +B∞ · (1− e−βB ·z), (5)

where C is the observed color of an underwater surface
point, J is the actual color of the clear scene, βD and βB are
the coefficients for attenuation and backscatter, dependent
on wavelength, z is the depth of the surface point, and B∞

is the backscatter color at infinity caused by water. Note
that Eq. (5) is only an approximation form, as image-based
methods do not have 3D representation of the scene. By set-
ting the wavelength-dependent βD = σw, our formulation
can reach the exact formulation of underwater scenes.

For tractable computation, the rendering process in
Eq. (3) is calculated from summing over the intervals of
[si, si+1], where tn = s0 < s1 < · · · < sN = tf . As
discussed before, in the proposed method we further break
down the object part into static and dynamic. The rendered
color is calculated as

Ĉ(r) =
N∑
i=1

Ti ⊙ (1− e−σsta,i−σdyn,i−σw)⊙ c̄i, (6)

where σi and ci is the assumed constant density and color
in the interval of [si, si+1], and Ti = exp(−

∑
j<i δj(σw+

σdyn,i + σsta,i)) denotes the transmittance of the three chan-
nels, with δj = sj+1−sj referring to the sampling interval.
c̄i is the weighted non-linear color of c̃sta,i, c̃dyn,i, and c̃w,i

in the proposed network, formulated as

c̄i = βsta,ic̃sta,i + βdyn,ic̃dyn,i + βw,i ⊙ c̃w,i. (7)

To allow for a cleaner separation between different ob-
jects in the same position, we empirically design the weight
function that emphasizes the component with more density,
enabling a faster optimization, given by

β{sta,dyn,w},i =
1

2
sin

(
π · {σsta,i, σdyn,i,σw}
σsta,i + σdyn,i + σw

− π

2

)
+

1

2
.

(8)
Note that the outputs of the fsta and fdyn are not fed into
Eq. (7) directly, which will be explained in Sec. 3.4.

To encourage the network to learn the correct density of
sparse objects in the water medium, we design a loss func-
tion that penalizes the ambiguity of objects along the ray,
given by

Lentropy = −
N∑
i=1

wi log(wi+ϵ) ·clip(rv−k0, n0, n1), (9)

where wi is the weight of the i-th sampled segment along
the ray. rv is the visible reciprocal ratio, equivalent to the
number of training views divided by the number of views
where the segment is visible. Note that being “visible” only
means that the position falls in the frustum of the i-th view.
k0 is the threshold of visible reciprocal ratio, and “clip”
is simply the clipping function, with n0 and n1 being the
lower and upper bounds of the penalty. ϵ is a small constant
to avoid numerical instability.

3.3. Mixed progressive sampling strategy

Though previous works have evolved from importance sam-
pling [23] to sparse voxel grid [18], or even learning-based
sampling [4, 5], the underlying rationale is still placing
more importance on those sampling points that contribute
more, to improve fidelity. However, the influence of wa-
ter cannot be neglected like NeRF above the surface of
the water. To address the unique issue, We introduce a
mixed progressive sampling strategy. For each ray r, we
initially take Nm uniform samples to approximate the wa-
ter medium’s properties. This is complemented by Ns sam-
ples, denoted as {ti · δk}Ns

i=1, strategically chosen based on
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a multi-resolution density grid to represent objects within
the scene. These samples adhere to the constraint that their
densities on the static branch should exceed a predefined
threshold τ :

σsta(o(r) + ti · δk · d(r)) > τ, (10)

where k indicates the progressive sampling level, and δk
is the dynamic sampling interval—adjusted as optimization
progresses. The variable ti, chosen from the set of natural
numbers N, refers to the i-th segment along the ray, with
ti < ti+1 ensuring an orderly progression.

This strategy, integrating uniform and progressive sam-
pling, allows for the simultaneous optimization of the water
medium, illumination, and static elements within the scene.
To model the dynamic objects, the estimated ray termina-
tion depth D(r) from the static scene analysis is utilized.
This estimation aids in delineating the boundary for sam-
pling positions, ensuring that dynamic objects are only con-
sidered if they precede the static scene in the ray. We uni-
formly sample Nd points within the range of [tn, D(r)+ ϵ],
focusing the optimization process on these points for the dy-
namic branch. During this phase, the parameters of the illu-
mination branch, static branch, and water remain unaltered,
ensuring a focused optimization on dynamic elements.

3.4. Illumination fields and tone mapper

The unstable illumination underwater poses another unique
challenge. As the illumination changes the appearance of
both dynamic and static objects, it cannot be only modeled
by the dynamic branch as in Eq. (4). As pointed out by
Zhang et al. [37], most underwater objects do not change
their appearances across different viewpoints. By setting
the illumination as a shared factor, attributing the difference
in appearance to illumination, a more robust reconstruction
of the scene is achieved. We build an illumination field fI :
(x,d, t) → λ to model the unstable illumination, where λ
is the value of exposure to be imposed on the static branch
and the dynamic branch.

However, simply multiplying λ by the output color of
fsta and fdyn is not appropriate to adjust exposure, since the
color c used in Eq. (1) is in non-linear color space, which
does not scales by naive multiplication. Therefore, we pro-
pose to operate on linear color space, taking advantage of
its scaling properties [24]. The raw output color in the pro-
posed design, namely csta, cdyn, and cw, should thus be in
linear color space.

To convert the linear color to non-linear color as the cam-
era does, a tone mapper network ψ(·) is optimized simulta-
neously, which could derive the non-linear color c̃{sta,dyn,w}.
To optimize robustly and to avoid the multiplication from
exploding gradients, we draw inspiration from HDR imag-
ing in computational photography, where log radiance is
used so that the multiplication becomes addition, namely

(a) CORAL (b) TURTLE (c) COMPOSITE (d) SARDINE

(e) CURAÇAO (f) REDSEA (g) PANAMA (h) JAPANESE

Figure 3. Samples of the 4 monocular videos in the proposed
dataset on the top row, along with samples of the 4 image sequence
in SeaThru dataset [15].

changing the naive formulation of ψ̃(E ⊙ c) = c̃ into

ψ̃ ◦ exp(log(E) + log(c)) = c̃, (11)

where ◦ denotes the composition operator of functions.
Taken one step further, we propose to use the log color

c{sta,dyn,w} ∈ (−∞,+∞) as the output of the network to
adjust the exposure via addition instead of multiplication.
The log color is then converted to non-linear color by

ψ(λ+ c{sta,dyn,w}) = c̃{sta,dyn,w}, (12)

where ψ = (ψ̃ ◦ exp) replaces the hypothetical tone-
mapping function in Eq. (11).

We use a shared tone mapper and illumination network
for both the static branch, the dynamic branch and the water
medium parameters, since the illumination field is expected
to have a global effect at any given position. Besides, the
output of illumination fields, λ > 0, is shared across RGB
channels, so that the color is not altered but only scaled by
the illumination field.

4. Experiments
We evaluate the proposed method on various underwater
monocular videos gathered from the web, and show sim-
ulated results of scene editing. The experiment setting and
details are introduced in Sec. 4.1. We then evaluate the pro-
posed method on quantitative novel view synthesis task and
qualitative evaluation, shown in Sec. 4.2, compared with
other state-of-the-art methods, including a user study. We
then conduct an ablation study in Sec. 4.3 to validate the
components of the proposed design.

4.1. Implementation details
Datasets. The proposed dataset is collected from in-the-
wild captured clips from the Internet, consisting of 4
monocular videos. Image samples are provided in Fig. 3.

We also conduct tests in the underwater scenes pro-
posed in SeaThru-NeRF [15], to verify the efficacy of the
proposed method. The SeaThru Dataset is composed of
sparsely captured images, and has few temporal connec-
tions between adjacent frames in the dataset.
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Network architecture. The network structure is illus-
trated in Fig. 2. “MLP-S” and “MLP-I” are both MLPs
composed of 2 hidden layers of fully-connected layers with
ReLU activation function, while 4 layers for “MLP-D”. In
addition, ψ(·) is a simple MLP with 1 hidden layer, and
(σw, cw) stand for the learnable water parameters.

Training details. Experiments are conducted on a single
NVIDIA GeForce RTX 3090 GPU. Training the proposed
method takes 45 minutes, and rendering a novel view result
with a resolution of 1920×1080 takes less than 30 seconds.
The Adam optimizer is applied, with β1 = 0.9, β2 = 0.999
and a learning rate of 0.005 with a cosine scheduler. We
use a pre-trained optical flow-based method [34] to generate
a motion mask for each image, following the practice of
DynamicNeRF [11]. The hyperparameters are set to k0 =
3, n0 = 0.1, n1 = 5.

To locate and reconstruct the static components and
sparse moving objects separately, we propose to train the
static branch and dynamic branch in a two-stage manner. In
the first stage, we jointly optimize fI, fsta, ψ, and the wa-
ter medium parameters (σw, cw), by minimizing the sum of
reconstruction loss and entropy loss, as defined in Eqs. (2)
and (9) respectively, on static region Msta only. The opti-
mization in the second stage is performed on the moving
objects with the mask Mdyn, as the static region has already
been optimized in unmasked regions.

To effectively supervise the training of the dynamic
branch, we propose to use optical flow [34] to estimate the
motion mask of Msta and Mdyn. By focusing on these areas
in a time variant way, our model is able to accurately cap-
ture and reconstruct the motion and changes in the scene.
This step is crucial for refining the dynamic branch, ensur-
ing that it becomes adept at processing motion-related data.

4.2. Evaluation
Baselines. Similar to the proposed method, SeaThru-
NeRF [15] also focus on the reconstruction of underwater
scenes, albeit not considering illumination changes and dy-
namic contents. Note that WaterNeRF [29] only works on
raw underwater images and is thus excluded in the com-
parison. Meanwhile, some competent generic NeRF recon-
struction methods are taken into account, namely Instant-
NGP [25] and MIP-360 [5]. Besides, we also compare with
DynamicNeRF [11], which is designed for scenes contain-
ing dynamic contents above the surface of the water.

For a fair comparison, a modified version of the proposed
architecture is taken into consideration. We use “Proposed-
T” to refer to the architecture modified to be time-invariant,
to compare with SeaThru-NeRF [15] in the static setting.
Specifically, we remove fdyn entirely, and only condition
the illumination field fI on position and viewing direction.
By removing the condition on time, and comparing it with
methods designed for static scenes, the proposed formula-

tion can be better validated.

Novel view synthesis. In this part, the proposed methods
are tested on the 10% of images that are closest to the aver-
age position in the camera trajectory, instead of periodically
selecting images for testing. We first compare the baselines
and the “Proposed-T” method on the dataset of Seathru-
NeRF [15]. As shown in Tab. 1, even a simplified version
of the proposed method, “Proposed-T”, achieves outstand-
ing quantitative performance on all the scenes, under the
metrics of PSNR, SSIM [32], and LPIPS [36]. This shows
our method’s ability to model the underwater structure, in-
dicating that the proposed method effectively captures the
underlying physical model under water. As shown in Fig. 4,
the baseline methods are compared with “Proposed-T” on
scenes in the SeaThru [15] dataset. Overall, “Proposed-
T” method shows better fidelity, more intricate details, and
less floater artifacts compared with other methods, which
demonstrates the robustness of our approach across various
underwater environments.

The proposed method is also tested on the pro-
posed dataset, compared with Instant-NGP [25], SeaThru-
NeRF [15], and DynamicNeRF [11]. As shown in Tab. 2,
the proposed method achieves outstanding performance on
these challenging scenes.

User study. We perform a user study to further validate
our approach. Users are shown with sets of results rendered
by the proposed method, SeaThru-NeRF [15], and Instant-
NGP [25] in random order, each round 3 images from differ-
ent perspectives, along with a ground truth reference view.
They are asked to rate the three pairs of images in terms
of realism, fidelity, and consistency from 0 to 5. With 122
users participating in the study and 2440 sets of compar-
isons collected, the preferences of the users are shown in
Tab. 3. Clearly the proposed method is consistently favored
by users, for not only generating realistic novel view syn-
thesis results with high fidelity, but also free from floater
artifact.

4.3. Ablation Study

A set of modified architectures are tested to justify the
combined design. In addition to (1) removing all time-
dependent network components as “Proposed-T” discussed
before, we also consider the following variants: (2)
“Proposed-Ip”: removing the illumination field and tone
mapper, using only the static branch and dynamic branch;
(3) “Proposed-I”: removing the illumination field, but keep-
ing the tone mapper network along with the static and dy-
namic branch; (4) “Proposed-SIp”: using only the dynamic
branch to model the scenes. Since we remove the static
branch in this setting, there is no constraint on the illumina-
tion field, and it is thus also removed.

From the results shown in Fig. 5(a), the removal of time-
dependent network components in “Proposed-T” results in
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Table 1. Quantitative evaluation results on Seathru dataset [15]. ↑ (↓) indicates larger (smaller) values are better. Bold font indicates the
best results, while underlined number indicates the second best. The names of the scenes are listed in the first column.

PSNR(↑)/SSIM(↑)/LPIPS(↓) MIP-360 [5] Instant-NGP [25] SeaThru-NeRF [15] Proposed-T

CURAÇAO 28.23/.6834/.5713 27.66/.6840/.6057 29.27/.7413/.4430 30.03/.8277/.2380
REDSEA 19.55/.5097/.5198 20.85/.5187/.6229 22.48/.6446/.3903 22.70/.6240/.3475
PANAMA 18.32/.5559/.5951 21.85/.6039/.5949 23.70/.6644/.4034 23.75/.6866/.2633
JAPANESE 19.62/.6243/.4920 23.19/.7259/.4587 25.93/.8216/.2818 25.81/.8533/.1825

(a) MIP-360 [5] (b) Instant-NGP [25] (c) SeaThru-NeRF [15] (d) Proposed-T

Figure 4. Qualitative comparisons on the SeaThru dataset [15]. 3 novel view synthesis results are shown for the scene of REDSEA and
PANAMA respectively, with each scene corresponding to a detailed local patch shown below the case. For more results, please refer to the
supplementary material.

pure static representation of scenes, resulting in an averaged
illumination and blurred effect of moving objects. Without
illumination field,“Proposed-I” and “Proposed-Ip” lack the
ability to model unstable illumination, leading to the dis-
torted appearance in Figs. 5(b) and 5(c). Results rendered
by “Proposed-SIp” show less high frequency details and
more floater artifacts in Fig. 5(d), due to the lack of static
components for constraint. Our complete model achieves

the best visual results, showing both the moving tropical
fish and the intricate textures of the corals in Fig. 5(e).

Note that we have considered removing the tone mapper
only (“Proposed-p”), and try using the naive formulation in
Sec. 3.4 to optimize the unstable illumination, but the net-
work suffers from exploding gradient problem, and cannot
be optimized properly. This phenomenon also justifies our
approach to operate in the logarithmic space.
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Table 2. Quantitative evaluation results on the proposed dataset.

PSNR(↑)/SSIM(↑)/LPIPS(↓) Instant-NGP [25] SeaThru-NeRF [15] DynamicNeRF [11] Proposed

CORAL 20.87/.4386/.7309 23.89/.6485/.4054 17.77/.5422/.8260 26.17/.8282/.1573
TURTLE 26.42/.8744/.2254 27.06/.8818/.1917 23.31/.8370/.4260 28.10/.8997/.2166

COMPOSITE 22.81/.5966/.5715 16.21/.4055/.8287 16.27/.7389/.4760 25.09/.7990/.2386
SARDINE 21.73/.6485/.4674 21.37/.5778/.6064 19.70/.6761/.6900 21.58/.7226/.4541

Table 3. The average user rating result of the proposed method,
SeaThru-NeRF [15], and Instant-NGP [25]. The proposed model
achieve the highest popularity in terms of realism, fidelity, and
multi-view consistency (MVC).

Method Realism Fidelity MVC

Instant-NGP [25] 3.13 3.64 3.92
SeaThru-NeRF [15] 3.56 2.29 1.71

Proposed 4.46 4.77 4.29

(a) Proposed-T (b) Proposed-Ip (c) Proposed-I

(d) Proposed-SIp (e) Proposed (f) Ground Truth

Figure 5. Comparison of removing different components during
training in the proposed method, demonstrated in COMPOSITE.

Figure 6. The first row demonstrates a novel view of the proposed
method in CURAÇAO, REDSEA, and PANAMA. The second row
displays the same view, but only with the water drained. For visu-
alization, the shown images in CURAÇAO are multiplied by 2.

To verify the efficacy of the water medium parameters in
the model, we also try removing it from the final rendering
process, and obtain a realistic effect of drained underwa-
ter scene, as shown in the second row of Fig. 6. We also
validate the pipeline by substituting the static branch with
pre-trained NeRF model above the surface of the water, and
create an immersive feeling of being in an underwater city,
as shown in Fig. 7.

Figure 7. The effects of environment transferring on the LLFF
dataset [22]. Displayed are two sets of comparisons, each pair fea-
turing the original dataset (left) and its counterpart with simulated
water effects (right).

5. Conclusions
This paper extends Neural Radiance Fields (NeRF) to rep-
resent underwater environments, addressing three dynamic
factors which bring difficulty in underwater scene represen-
tation, namely distance-dependent visibility, unstable illu-
mination, and dynamic objects. Our approach effectively
simulates underwater scattering effects and optimizes wa-
ter medium parameters alongside scene objects. The in-
novative illumination field and tone mapper module ac-
curately capture dynamic lighting conditions underwater.
Our two-stage reconstruction scheme robustly reconstructs
static scenes, while also helping the accurate rendering of
dynamic objects.

Our method outperforms existing models in both quanti-
tative and qualitative evaluations of underwater scene mod-
eling. It also enables editing possibilities for underwater
scenes, such as removing water effects or transferring them
to environments above the surface of the water, which can
be used in film making, and virtual reality.
Limitations. Despite the promising performance of the
proposed method, several limitations are still to be ad-
dressed in our future study. The fluidity of water is not
taken into consideration. Water flows slowly enough to
be neglected of its motion in the proposed dataset, while
our model may not provide high-quality results when cur-
rent becomes rapid. Moreover, the attenuation caused by
water makes objects and visual features afar less recogniz-
able, bringing instability to the camera poses estimated by
structure-from-motion [28] methods.
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