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Abstract

Quantization is of significance for compressing the over-
parameterized deep neural models and deploying them on
resource-limited devices. Fixed-precision quantization suf-
fers from performance drop due to the limited numerical
representation ability. Conversely, mixed-precision quan-
tization (MPQ) is advocated to compress the model ef-
fectively by allocating heterogeneous bit-width for layers.
MPQ is typically organized into a searching-retraining two-
stage process. Previous works only focus on determining
the optimal bit-width configuration in the first stage effi-
ciently, while ignoring the considerable time costs in the
second stage and thus hindering deployment efficiency sig-
nificantly. In this paper, we devise a one-shot training-
searching paradigm for mixed-precision model compres-
sion. Specifically, in the first stage, all potential bit-width
configurations are coupled and thus optimized simultane-
ously within a set of shared weights. However, our ob-
servations reveal a previously unseen and severe bit-width
interference phenomenon among highly coupled weights
during optimization, leading to considerable performance
degradation under a high compression ratio. To tackle
this problem, we first design a bit-width scheduler to dy-
namically freeze the most turbulent bit-width of layers dur-
ing training, to ensure the rest bit-widths converged prop-
erly. Then, taking inspiration from information theory, we
present an information distortion mitigation technique to
align the behaviour of the bad-performing bit-widths to the
well-performing ones. In the second stage, an inference-
only greedy search scheme is devised to evaluate the good-
ness of configurations without introducing any additional
training costs. Extensive experiments on three representa-
tive models and three datasets demonstrate the effective-
ness of the proposed method. Code can be available on
https://github.com/1hunters/retraining-free-quantization.

1. Introduction
Recent years have witnessed the tremendous achievements
made by deep network-driven applications, ranging from

*Equal contributions. †Corresponding authors. Z. Wang is also with TBSI.

classification [19, 22, 42], object detection [40, 41, 46], and
segmentation [5, 20]. However, the huge number of pa-
rameters in these deep models poses intractable challenges
for both training [4, 24, 32] and inference [16, 39]. To
enable efficient deep learning on inference, several tech-
niques are proposed, including pruning [31, 33], quantiza-
tion [12, 47, 67], and neural architecture search [21, 50].

Ultra-low bit-width neural network quantization [12, 53,
67] is an appealing model compression technique to sim-
plify the hardware complexity and improve the runtime effi-
ciency of over-parameterized deep models. However, under
severely limited numerical representation capabilities, per-
forming such compression across the whole neural network
usually incurs an unacceptable performance drop. Mixed-
precision quantization (MPQ) [3, 15, 23, 47, 57], by allo-
cating unequally bit-width for weight and activation tensors
of each layer, can largely avoid accuracy degradation while
maintaining the proper model size and runtime overhead
(e.g. on-device latency). The underlying principle of MPQ
is that layers contribute very differently to the final accuracy
[3, 47, 57], so the compression algorithm should apply het-
erogeneous precision rather than a uniform one across the
whole network. Besides, hardware starts to support mixed-
precision computation [6, 57] in these years, which further
pushes the study for mixed-precision compression.

Recently, MPQ has been extensively studied from sev-
eral perspectives, e.g. through reinforcement learning [11,
57], differentiable methods [3, 60], and proxy-based ap-
proaches [6, 9]. They all try to solve one challenge, that
says, how to find the optimal bit-width configuration for
each layer, in an exponentially large O(n2L) space, where
n is the number of bit-width candidates and L is the num-
ber of layers in the deep network. To this end, they or-
ganize a searching-then-retraining pipeline, in which the
first stage aims to finish the bit-width allocation as fast as
possible, and naturally becomes the focus of the research.
Nevertheless, previous works tend to ignore the importance
of the second stage, which in fact consumes considerable
time cost for retraining the model to fit the obtained bit-
width configurations (a.k.a, the policy). To recover the per-
formance, LIMPQ [47] needs about 200 GPU-hours to re-
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train a single ResNet18 policy. This impedes the real-world
quantized mixed-precision model deployment—we might
not have much time to retrain every policies for all devices.

Instead, we consider a new paradigm termed as training-
then-searching, repositioning the resource-intensive train-
ing process to the forefront of the mixed-precision quantiza-
tion pipeline. The initial stage focuses on the development
of a weight-sharing quantization model, where all possible
bit-width configurations are concurrently optimized within
unified network of weights to fulfill extensive search re-
quirements. Importantly, this weight-sharing model under-
goes a singular training session and, notably, requires no
subsequent retraining following the search. Subsequently,
in the second stage, we present an inference-only search
employing a bidirectional greedy scheme to judiciously de-
termine the optimal bit-width for each layer.

The primary focus of this paper lies in the train-
ing of a high-quality weight-sharing quantization model,
which highly relies on ingenious weight-coupling learning
method with heterogeneous bit-widths. We identify a dis-
tinctive phenomenon inherent in weight-sharing quantiza-
tion—referred to as the bit-width interference problem. This
problem arises from the highly shared weights between bit-
widths, the same weight could be quantized to very different
discrete values for various bit-widths, so significantly super-
imposed quantization noise of various bit-widths leads to
daunting optimization challenges, as we will discuss later.
We illustrate the bit-width interference problem in Fig. 1,
one can see that even the introduction of a single addi-
tional bit-width can cause the shared weight to frequently
traverse quantization bound, resulting in training instability
and large gradient variance.

To understand and circumvent the issue of weight-
sharing quantization, we conduct a detailed analysis of the
bit-width interference problem (Sec. 3.2). Building upon
this understanding, we introduce a bit-width scheduler de-
signed to freeze the bit-widths that contribute to weight
interference, ensuring proper convergence for the remain-
ing bit-widths. Furthermore, during dynamic training, we
observe an information distortion phenomenon associated
with the unfrozen bit-widths. To mitigate this distortion,
we propose to align the behavior of poorly performing
bit-widths with their well-performing counterparts. Exten-
sive experiments demonstrate that these two complemen-
tary techniques not only unravel the intricacies of the bit-
width interference problem but also provide meaningful
performance improvements of weight-sharing quantization
models. To summarize, our contributions are as follows:
• We identify and analyze the bit-width interference prob-

lem in weight-sharing quantization models, revealing its
impact on optimization challenges, training stability, and
convergence.

• To train the weight-sharing quantization model, we first

design a novel bit-width scheduler that freezes interfering
bit-widths during training, ensuring proper convergence
and addressing instability caused by the introduction of
additional bit-widths.

• We also propose a strategy inspired by information the-
ory to align poorly performing bit-widths with their well-
performing counterparts, mitigating information distor-
tion during dynamic training and enhancing the overall
performance.

• Extensive experiments on three representative models and
three benchmarks demonstrate the effectiveness of pro-
posed method. For example, under an average 4-bit con-
straint, our method leads on ResNet with a top accu-
racy of 71.0% at only 31.6G BitOPs and no retraining
cost, compared to the second-best at 70.8% accuracy with
higher 33.7G operations and 90 epochs of retraining.

2. Related Work

2.1. Neural Network Quantization

In this paper, we only consider the context in quantization-
aware training, as it can achieve higher compression ratio
than post-training quantization [25, 34]. Quantization can
be generally categorized into two classes: fixed-precision
quantization and mixed-precision quantization.
Fixed-Precision Quantization. Fixed-precision quantiza-
tion involves assigning a uniform bit-width to all layers.
Specifically, methods such as Dorefa [67] and PACT [7]
employ a low-precision representation for weights and ac-
tivations during forward propagation. They leverage the
Straight-Through Estimation (STE) technique [1] to esti-
mate the gradient of the piece-wise quantization function
for backward propagation. LSQ [12] scales the weight and
activation distributions by introducing learnable step-size
scale factors for quantization functions.
Mixed-Precision Quantization. Mixed-Precision Quan-
tization (MPQ) delves into the intricate aspects of low-
precision quantization by recognizing the inherent variabil-
ity in redundancy across different layers of the deep model.
By allocating smaller bit-widths to layers with high redun-
dancy, MPQ optimizes model complexity without causing
a significant performance decline. The challenge, how-
ever, lies in determining the most suitable bit-width for each
layer, considering that the bit-width selection is a discrete
process, and the potential combinations of bit-width and
layer (referred to as “policy”) grow exponentially.

Strategies such as HAQ [57] and ReleQ [11] leverage re-
inforcement learning (RL) techniques to derive a bit-width
allocator. SPOS [14], EdMIPS [3], BP-NAS [65], GMPQ
[60] and SEAM [49] adopt differential neural architec-
ture search (NAS) methods to learn the bit-width. How-
ever, these methods require to both search-from-scratch
and train-from-scratch for the models when changing the
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Figure 1. (a) 2D regression of single 4-bits quantization, (b) 2D regression of 4-bits quantization with an additional 2-bits (i.e., weight-
sharing quantization), and (c) the L2-normalized gradients of these two regressions. Compared with Fig. 1(a), the weight in Fig. 1(b) is
more unstable due to the bit-width interference. Notably, the gradient of 4-bits also has a larger variance under weight-sharing.
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Figure 2. Distance between full-precision latent weights and quan-
tized weights on MobileNetV2 of a point-wise conv layer. Left:
4-bits. Right: 6-bits.

search constraints. Unlike learning the optimal MPQ pol-
icy, HAWQ [9, 10] and MPQCO [6] use the Hessian infor-
mation as the quantization sensitivity metrics to assist bit-
width assignment. LIMPQ [47] proposes to learn the layer-
wise importance within a single quantization-aware training
cycle.

2.2. Deep Learning with Weight-Sharing

Weight-sharing is an effective and practical technique to
reuse weight to deal with joint task learning or avoid the
need to store multiple copies of weights. Generally speak-
ing, there have been two relevant topics to weight-sharing
with this work, covering neural architecture search (NAS)
and dynamic neural network.
Neural Architecture Search. NAS [21, 45, 69] aims
to automatically discover the well-performing topology
of deep neural network in a vast search space, which
composes of various operators (e.g. convolutional layers
with different kernel-size or channels). To improve the
search efficiency, recent works [14, 38, 50] both adopt
the idea of weight-sharing to stuff the candidates into a
shared and large meta-topology (a.k.a. the super-network).
Weight-sharing allows to train directly the meta-topology
and derive a sub-topology from the meta-topology to eval-

uate. This significantly shortens the evaluation time of the
goodness for a given topology [30, 38]. Although certain
MPQ research [3, 60] leverages this NAS-style searching
process, they still pay significant time for retraining.

Dynamic Neural Network. Unlike conventional neural
networks which are architecturally fixed during inference,
dynamic neural networks [18] enable dynamic computa-
tional paths on demand according to various input sam-
ples or running environments. For example, runtime chan-
nel pruning [29, 59] dynamically activates channels of lay-
ers and layer skipping [43, 56, 58] adjusts depths of layers
for different input images. To support the adaptive infer-
ence, the weight-sharing idea is applied to avoid substantial
copies of weights. Therefore, they can both achieve a better
accuracy-efficiency trade-off compared to their static coun-
terparts. These have also been several works of dynamic
bit-width neural networks [2, 26, 48, 62]. However, they ei-
ther provide only the fixed-precision quantization that sup-
ports very limited bit-width configurations or have to drop
the ultra-low bit-widths (e.g. 2 bits, 3bits, etc.) to guarantee
the training convergence but lose the chance for achieving
high compression ratio.

3. Methodology
3.1. Preliminary

Quantization. The uniform quantization function under b
bits in quantization-aware training (QAT) maps the input
full-precision activations and weights to the homologous
quantized values [0, 2b − 1] and [−2b−1, 2b−1 − 1]. The
quantization functions Qb(·) that quantize the input values
x to quantized values x̂ can be expressed as follows:

x̂ = Qb(x; γ) = ⌊clip(
x

γ
,Nmin,Nmax)⌉ × γb,

∂⌊x⌉
∂x

≜ 1,

(1)
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Table 1. Accuracy of the weight-sharing quantization with/without
low bit-width for MobileNetv2 (@80 epochs).

Top-1 Acc. (%) w/ 2bits

( ↓ sampling probability)
Top-1 Acc. (%) w/o 2bits

6 bit 69.2 70.4

4 bit 68.1 69.1

where ⌊·⌉ is the rounding-to-nearest function, and γ is the
scale factor. The Straight-Through Estimation (STE) is
used to pass the gradients for back-propagation. The clip
function ensures that the input values fall into the range
[Nmin,Nmax] [12, 67]. For ReLU activations, Nmin = 0
and Nmax = 2b − 1. For weights, Nmin = −2b−1 and
Nmax = 2b−1 − 1. γb is the learnable scalar parameter
used to adjust the quantization mappings, called the step-
size scale factor. For a network, each layer has two distinct
scale factors in the weights and activations quantizer.
Weight-Sharing for Mixed-Precision Quantization. We
consider a model f(·) = fWL−1

◦ ... ◦ fW0
(·) with L

layers, and each layer has N bit-width choices. Let
W := {Wl}L−1

l=0 be the set of flattened weight tensors
of these L layers. Therefore, the corresponding search
space A with N2L mixed-precision quantization policies
{(b(w)

l , b
(a))
l }L−1

l=0 share the same latent weights W. To
track the time-prohibitive training costs of traversing the
whole search space, Monte-Carlo sampling is used to ap-
proximate the expectation term [47, 48, 66]. The overall
optimization objective is formulated as follows

argmin
W

ES∼A

[
L(f(x;S, w(S)), y)

]
≈ argmin

W

1

K

K∑
Sk∼U(A)

[
L(f(x;Sk, Ŵ(Sk)), y)

]
,

(2)

where Ŵ(Sk) is the quantized weights of k-th sampled pol-
icy Sk derived from the latent weights W. This weight-
sharing of layer l is achieved by

Ŵ(Sk) := {Ŵ(Sk)
l }L−1

l=0 , where Ŵ(Sk)
l = Q

b
(k)
l,w

∈Sk
(Wl; γ)

(3)
according to Eq. (1), where b

(k)
l,w ∈ Sk is the bit-width of

weight of l-th layer in the policy Sk.

3.2. Interference in Highly Coupled Weight-sharing

While training is possible, there still many challenges exist
in weight-sharing in practice. For example, ABN [48] ob-
serves a large accuracy gap between the lower bit-widths
and higher bit-widths. These works simply bypass this
problem and remove the ultra-low bit-width until the train-
ing becomes stable, however, doing so does not achieve
high compression ratios.

Here, we discuss the bit-width interference caused by
highly coupled latent weights W. Suppose we have K = 2
sampled policies {S0, S1} at training step t in Eq. (2),
and the bit-width of weight is sampled differently, namely
Ŵ(S0) ̸= Ŵ(S1). ∀b(0)l,w ∈ S0,∀b

(1)
l,w ∈ S1 : b

(0)
l,w < b

(1)
l,w.

Assumption 3.1 (Non-uniform Bit-width Convergence).
Quantized weights Ŵ(S1)

l = Q
b
(1)
l,w∈S1

(Wl; γ) of bit-width

bk at step t is nearly converged while the Ŵ(S0)
l =

Q
b
(0)
l,w∈S0

(Wl; γ) is not converged properly. The smaller and

not fully converged bit-width in S0 will pose negative impact
to the larger but well converged bit-width in S1.

The situation in Assump. 3.1 is observed in weight-
sharing network when the learning capacity gap between
sub-networks is large enough [48, 66]. To further analyze
the impact of S0, we can approximates the loss perturbation
with the second-order Taylor expansion:

∆L =
N∑

n=1

ℓ(f(Ŵ(S1) +∆W, xn), yn)−
N∑

n=1

ℓ(f(Ŵ(S1), xn), yn)

≈ ∇Ŵ(S1)ℓ(Ŵ(S1))∆W +∆WT∇2
Ŵ(S1)ℓ(Ŵ(S1))∆W,

(4)
where ℓ(·) is the cross-entropy loss function, ∆W :=

{∆W(S1)
l }L−1

l=0 is the quantization noise introduced by pol-
icy S1 to policy S0 on each layer. It is noteworthy that the
lower the bit-width, the larger the quantization noise intro-
duced [23, 26, 68], caused by the large rounding and clip-
ping error under very limited available discrete values, e.g.
quantization error for 2 bits is roughly 5× for 3 bits. There-
fore, putting small bit-width (e.g. 2bit) into the weight-
sharing will lead to large loss perturbation ∆L and disturb
the overall performance eventually (see Tab. 1). Accord-
ingly, one can draw such conclusions in Eq. (4): (i) remov-
ing the low bit-width is the simplest way to erase the effects
of quantization noise but loses the chance to compress the
model with high compression ratio and (ii) one can track the
loss perturbation through ∆W to iteratively freeze the most
unstable bit-width, which motivates our method described
later in Sec. 3.3.

To illustrate the bit-width interference in weight-sharing
quantization, we use a 2D regression quantization experi-
ment depicted in Fig. 1. Our optimization objective mini-
mizes the empirical risk [8, 35]:

argmin
w

Ex∼N (0,1)

[
∥xw∗ − xQb(w, γ)∥22

]
, (5)

where w∗ represents the target weight and x is sampled from
a normal distribution. In Fig. 1(a), the single-bit optimiza-
tion showcases relatively stable quantized weights, occa-
sionally crossing the quantization boundary due to gradient
approximation of STE [1]. Comparatively, weight-sharing
quantization exhibits more instability and the weight moves
closer to the quantization bound more frequently (Fig. 1(b)),
even with higher variance in gradients as in Fig. 1(c).
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This interference extends beyond toy regression to mod-
ern neural networks, shown in Fig. 2 and Tab. 1. Further-
more, Fig. 2 demonstrates the distance between quantized
weights of 6 and 4 bits in one training epoch. Removing the
smallest bit-width (2 bits) notably stabilizes the higher bit-
width curve. However, introducing extra small bit-widths
induces significant random oscillations, signifying height-
ened model training instability.

3.3. Dynamic Bit-width Schedule

Eq. (4) reveals the decomposition of overall quantization
noise ∆W into layer-specific perturbation components, of-
fering a metric to identify unstable layers. Therefore, dy-
namically freezing the bit-width causing weight interference
ensures proper convergence for remaining bit-widths dur-
ing training. However, direct use of Eq. (4) poses compu-
tational challenges, particularly in calculating the Hessian
and quantization noise terms, prompting us to devise an al-
ternative method.

We approximate layer perturbations by focusing on
rounding errors due to their significant impact on overall
performance [17, 35]. Rounding errors portray the distance
between full-precision weights and their discrete quantiza-
tion levels, and reach maximums when at the midpoint be-
tween two quantization levels (i.e., the quantization bound
in Fig. 1) because the possible quantization levels change.
In other words, the closer to the quantization bounds, the
more unstable the weights are, and therefore the unstable
weights are more vulnerable to the weight-sharing. There-
fore, tracking the round errors provide effective proxies for
constructing our bit-width scheduler. For clarity, we first
definite the Bit-width Representation Set (BRS) as follows:

Definition 3.1 (Bit-width Representation Set). For bit-
width b under uniform weight quantization, the bit-width
representation set Φb := γ × {−2b−1, ..., 0, ..., 2b−1 − 1},
representing 2b decomposed values of discrete quantization
levels according to Eq. (1).

The midpoints between two adjacent elements in a BRS
are quantization bounds, where they have a uniform dis-
tance γ. Given a pre-defined weight bit-width candidates
B(w), we can accumulate bit-specific unstable weights
for BRS of each bit-width of each layer’s shared weights
Wl. Therefore, we calculate the unstable weight criterion
∆̂Wunstable by

∆̂Wunstable ≜ {∆̂Wunstable
l }L−1

l=0 ,where

∆̂Wunstable
l =

∑
b∈B(w)

1

2b
1

∥Wl∥0
·

∑
qb∈Φb

∑
wl,∗∈Wl

1|wl,∗|≤γ×( 1−ϵ
2 +

qb
γ )

,

(6)
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Figure 3. Output density at 2bit and 6bits. Small bit-width shows
noteworthy information distortion.

where ϵ ∈ [0, 1] is to control the range of weights we care
about. After that, we choose the frozen layer set Ω with a
Top-K selector from the weight criterion,

Ω← TopKToFreeze(∆̂Wunstable;K), (7)

and the smallest bit-width of selected layers in Ω will be
temporarily frozen periodically. In practice, we use a cosine
scheduler to gradually decrease the value of K to guarantee
that more unstable low bits will be frozen early to improve
the convergence of more high bits.

3.4. Optimization during Dynamic Training

Information Distortion Mitigation. While freezing the
bit-width of layers, we observe the outputs of the remaining
small bit-widths of layers still exhibit a information distor-
tion compared to their high precision counterparts, as shown
in Fig. 3. Inspired by the information bottleneck principle
[51, 52, 63], we expect if the smallest bit-width is sampled
of a layer l, its outputs OS

l can preserve the information
of its large counterparts OH

l . However, directly optimizing
this mutual information term I(OS

l ;OH
l ) is infeasible, so

we consider a feature alignment loss function to optimize
their rectified Euclidean distance as follows:

E
[
∥max{Q,

OS − µ(OS)√
σ(OS) + ζ

ηOS + ξOS}−

max{Q,
OH − µ(OH)√
σ(OH) + ζ

ηOH + ξOH}∥
]
,

(8)

where ζ is a small constant to avoid Divide-by-Zero errors,
η and ξ are the learnable parameters for adapting the fea-
tures, µ(·) and σ(·) return the channel-wise mean and vari-
ance of input. Eq. (8) not only scales the features for better
optimization but uses a max operator to avoid needless ac-
tivations. See Fig. 4 for visualization with proposed Infor-
mation Distortion Mitigation technique.
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Fairness Weight Regularization. Low-bit weights are ac-
tually subsets of high-bit weights, when a layer is sampled
with different bit-width, low-bit weights will receive addi-
tional updates from high-bit weights. In other words, low-
bit weights are subjected to very aggressive weight regu-
larization, which exacerbates their underfitting issues [66].
To ensure regularization fairness, we disable weight regu-
larization for weights of current smallest bit-width during
training.

3.5. Bidirectional Greedy Search

To find the optimal quantization policy S∗, the existing
MPQ methods can be formulated to a bi-level optimization
problem [47]. In this paper, our well-trained weight-sharing
model can serve as a good performance indicator to perform
inference-only searching [55, 66]. This simplified proce-
dure motivates us to devise a bidirectional greedy search
scheme to determine the per-layer bit-width efficiently.

Consider a mixed-precision quantization policy, S(t),
implemented at step t, with L being the total number of lay-
ers. To evolve this policy to S(t+1), rather than concurrently
adjusting the bit-width of most layers (e.g., employing re-
inforcement learning), a step-by-step approach is taken.
Specifically, the bit-width of a single layer is adjusted at a
time, either increasing or decreasing by a single bit-width to
create a provisional policy, S(t)i , where i ∈ {0, ..., 2L− 1}.
This method yields a search space of complexityO(2L) for
each iteration. During each iteration, the permanent policy
S(t+1) is chosen in a greedy manner between these 2L poli-
cies, considering the trade-off between accuracy and effi-
ciency, denoted as Ji = L̄val(Ŵ(S(t)

i ))+λ∗BitOps(S(t)i )
for each layer:

S(t+1) ← argmin
i

[Θ] ,

Θ ≜ {Ji|Ji = L̄val(Ŵ(S(t)
i )) + λ ∗ BitOps(S(t)i )}2L−1

i=0 ,
(9)

where L̄ and BitOps are the min-max normalization loss
and BitOPs to ensure their values fall into the interval
[0, 1], and λ is the hyper-parameter to control the trade-
off, respectively. By this means, the solution S∗ is reached
when the BitOPs is satisfied at final step T , i.e., S∗ ←
S(T ), if BitOps(S(T )) ≤ C.

4. Experiments

In this section, we conduct experiments on three lightweight
models (i.e., ResNet18, MobileNetv2, and EfficientNetLite-
B0) and three datasets (i.e., ImageNet, Pets, and CI-
FAR100). Please refer to the Supplementary Materials for
more detailed experimental setups.

Table 2. Accuracy and efficiency results for ResNet. “Top-1 Acc.”
represents the Top-1 accuracy of the quantized model and full-
precision model. “MP” means mixed-precision quantization. “Re-
train Cost” denotes the epochs required to retrain the MPQ policy.
“*”: reproduces through the vanilla ResNet architecture [19]. The
best results are bolded in each metric, the second best results are
underlined.

Method
Bit-width

(W/A)
Top-1 Acc.

(%) ↑
BitOPs
(G) ↓

Retrain Cost
(Epoch) ↓

Baseline 32 / 32 70.5 - -
PACT [7] 3 / 3 68.1 23.0 -
LSQ∗ [12] 3 / 3 69.4 23.0 90
EWGS [28] 3 / 3 69.7 23.0 100

EdMIPS [12] 3MP / 3MP 68.2 - 40
GMPQ∗ [60] 3MP / 3MP 68.6 22.8 40
DNAS [61] 3MP / 3MP 68.7 24.3 120

FracBits [64] 3MP / 3MP 69.4 22.9 150
LIMPQ [47] 3MP / 3MP 69.7 23.0 90
SEAM [49] 3MP / 3MP 70.0 23.0 90

Ours 2MP / 3MP 67.7 17.3 0
Ours 3MP / 3MP 70.2 23.3 0

PACT [7] 4 / 4 69.2 35.0 -
LSQ∗ [12] 4 / 4 70.5 35.0 90
EWGS [28] 4 / 4 70.6 35.0 100
MPQCO [6] 4MP / 4MP 69.8 - 30
DNAS [13] 4MP / 4MP 70.6 35.1 120

FracBits [64] 4MP / 4MP 70.6 34.7 150
LIMPQ [47] 4MP / 4MP 70.8 35.0 90
SEAM [49] 4MP / 4MP 70.8 33.7 90

Ours 4MP / 4MP 71.0 31.6 0

4.1. ImageNet Classification

ResNet. PACT demonstrates accuracy with 3-bits for both
weights and activations, achieving 68.1%. LSQ reaches
69.4% accuracy but requires 90 retraining epochs. Ed-
MIPS and GMPQ employ MPQ (3MP / 3MP) for 68.2%
and 68.6% accuracy but still require considerable retraining
costs. DNAS and FracBits adopt longer retraining epochs
and yield better accuracy.

When increasing the bit-width to 4-bits, PACT achieves
69.2% accuracy with 35.0G BitOPs, while LSQ reaches
70.5% accuracy. DNAS and FracBits demonstrate a 4-
bits MPQ with slightly different results, while LIMPQ and
SEAM both achieve the highest accuracy but still need
90 retraining epochs. Notably, our method with vary-
ing bit-width configurations (2MP/3MP, 3MP/3MP, and
4MP/4MP). The 4MP/4MP configuration achieves the
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Table 3. Accuracy and efficiency results for MobileNetV2. †:
QBitOPT uses channel-wise quantization to retain performance.

Method
Bit-width

(W/A)

Top-1 Acc.

(%) ↑

BitOPs

(G) ↓

Retrain Cost

(Epoch) ↓

Baseline 32 / 32 72.6 - -

LSQ [12] 3 / 3 65.2 3.4 90

QBR [17] 3 / 3 67.4 3.4 90

HMQ [15] 2MP / 4MP 64.5 - 50

QBitOPT† [37] 3MP / 3MP 65.7 - 30

NIPQ [44] 3MP / 3MP 62.3 - 43

Ours 3MP / 3MP 67.8 3.6 0

LSQ [12] 4 / 4 69.5 5.4 90

EWGS [28] 4 / 4 70.3 5.4 100

AdaBits [26] 4 / 4 70.4 5.4 0

QBR [17] 4 / 4 70.4 5.4 90

MPDNN [53] 3.75MP / 4MP 69.8 - 50

QBitOPT† [37] 4MP / 4MP 69.7 - 30

NIPQ [44] 4MP / 4MP 69.2 - 43

BayesianBits [54] 4MP / 4MP 69.0 5.9 40

GMPQ [17] ∼ 4MP / 4MP 70.4 7.4 40

HAQ [57] 6MP / 4MP 69.5 8.3 30

Ours 4MP / 4MP 70.7 5.5 0

highest accuracy in the table at 71.0%, with competitive
BitOPs (31.6G) and no retraining cost.
MobileNetV2. QBR demonstrates a competitive Top-
1 accuracy of 67.4% with 3/3 bit-width and 3G
BitOPs. QBitOPT adopts a performance-friendly channel-
wise quantization and achieves 65.7% accuracy in the
3MP/3MP configuration and requires retraining split into
15 + 15 epochs [37], suggesting a more complex process. In
the 4/4 bit-width category, QBR stands out with 70.4% ac-
curacy and 5.4G BitOPs, demonstrating efficiency. GMPQ
delivers 70.4% accuracy but requires 40 retraining epochs.
HAQ achieves 69.5% accuracy but incurs higher BitOPs
(8.3G) and demands 30 retraining epochs.

With 3MP/3MP bit-width, our method reaches 67.8% ac-
curacy with 3.6G BitOPs and no retraining. Moreover, in
the 4MP/4MP configuration, it excels with a Top-1 accuracy
of 70.7% and competitive BitOPs (5.5G), all while elimi-
nating retraining costs.

EfficientNet. LSQ achieves 69.7% accuracy with 4.2G
BitOPs and requires 90 retraining epochs. In contrast,
our 3MP/3MP method attains 70.4% accuracy with 4.5G
BitOPs but eliminates the need for retraining, showcas-
ing improved accuracy at a lower cost. QBitOPT achieves
70.0% accuracy under 3MP/3MP with 30 epochs for re-

Table 4. Accuracy and efficiency results for EfficientNetLite-B0.
†: QBitOPT uses channel-wise quantization to retain performance.

Method
Bit-width

(W/A)

Top-1 Acc.

(%) ↑

BitOPs

(G) ↓

Retrain Cost

(Epoch) ↓

Baseline 32 / 32 75.4 - -

LSQ [12] 3 / 3 69.7 4.2 90

NIPQ [44] 3MP / 3MP 66.5 - 43

QBitOPT† [37] 3MP / 3MP 70.0 - 30

MPQDNN [53] 3MP / 3MP 68.8 - 50

Ours 3MP / 3MP 70.4 4.5 0

LSQ [12] 4 / 4 72.3 6.8 90

NIPQ [44] 4MP / 4MP 72.3 - 43

QBitOPT† [37] 4MP / 4MP 73.3 - 30

Ours 4MP / 4MP 73.2 6.9 0

Table 5. Accuracy and efficiency results for ResNet with knowl-
edge distillation.

Method
Bit-width

(W/A)

Top-1 Acc.

(%) ↑

BitOPs

(G) ↓

Retrain Cost

(Epoch) ↓

Baseline 32 / 32 70.5 - -

GMPQ [60] 3MP / 3MP 69.5 22.8 90

SEAM [49] 3MP / 3MP 70.7 23.0 90

EQNet [62] 3MP / 3MP 69.8 - 0
SDQ [23] 3MP / 3 70.2 25.1 90

Ours 3MP / 3MP 70.9 23.9 0

NIPQ [44] 4MP / 4MP 71.2 34.2 40

SDQ [23] 4MP / 3 71.7 33.4 90

Ours 4MP / 4MP 71.6 31.6 0

training. Our method at the same setting achieves 70.4% ac-
curacy without any retraining, highlighting superior perfor-
mance without complex retraining. While LSQ and NIPQ
achieve 72.3% accuracy at 4/4 bit-width, they demand 90
retraining epochs. Our 4MP/4MP method surpasses both,
achieving 73.2% accuracy with 6.9G BitOPs and no retrain-
ing. Our method consistently achieves comparable or supe-
rior accuracy with no retraining costs, demonstrating effi-
cacy and simplicity in EfficientNet quantization.

4.2. Ablation Study

Efficientness with KD. In comparison to the existing
methods in Tab. 5 when knowledge distillation (KD) is
enabled with a ResNet101 teacher model, our method
exhibits compelling advantages. GMPQ achieves a re-
spectable 69.5% accuracy with 3MP bit-width but requires
90 retraining epochs. Our method surpasses it significantly,
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Table 6. Effectiveness of proposed dynamic bit-width schedule
scheme and information distortion mitigation (IDM) training tech-
nique. To save costs, we train the weight-sharing model 80 epochs.

Dynamic Bit Schedule IDM Training 4 Bit Top-1 Acc. (%)

✗ ✗ 68.3

✓ ✗ 69.1 (+0.8%)

✓ ✓ 69.5 (+1.2%)

achieving a 70.9% accuracy without retraining. Similarly,
SEAM marginally improves accuracy to 70.7%, but our
method still outperforms with 70.9% accuracy and no
retraining costs. EQNet stands out with zero retraining
epochs but falls significantly short of our method in
accuracy (69.8%). SDQ shows varied performance, but our
method consistently outperforms it, particularly with 3MP

/ 3MP and 4MP / 4MP bit-width configurations, achieving
higher accuracy and requiring no retraining compared to
SDQ’s 90 retraining epochs.

Effectiveness of Proposed Techniques. Tab. 6 investigates
the impact of a dynamic bit-width schedule and our infor-
mation distortion mitigation (IDM) training technique on
the weight-sharing model. It presents three experimental
scenarios: without both dynamic bit scheduling and IDM
training resulting in 68.3% Top-1 accuracy, dynamic bit
scheduling alone with an improvement to 69.1%, and the
combination of both techniques achieving the highest Top-
1 accuracy of 69.5%. The results suggest that both dynamic
bit scheduling and IDM training contribute positively to
the model’s performance, and their combination yields the
most significant improvement. Moreover, our IDM training
technique significantly mitigates information distortion, as
shown in Fig. 4.

4.3. Transfer Learning

We transfer the quantized weights for downstream bench-
marks to verify the generalization ability of the proposed
method. We directly use the pretrained checkpoints on Im-
ageNet and then finetune the classifiers. As shown in Tab. 7,
our method achieves the same accuracy as a full-precision
model at 4-bits with smaller model complexity, which fur-
ther confirms the superiority of the proposed method.

5. Conclusion
In this paper, we introduce a novel one-shot training-
searching paradigm for mixed-precision model compres-
sion. More specifically, traditional approaches focus on
bit-width configurations but overlook significant retraining
costs. We identified and addressed bit-width interference
issues by introducing a dynamic scheduler and an infor-
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Figure 4. Output density at 2bit and 6bits with our IDM train-
ing. Compared with Fig. 3, information distortion of the small
bit-widths is significantly mitigated.

Table 7. Performance of transfer learning using the pretrained
weights on ImageNet.

Model
Bit-width

(W/A)

CIFAR100 [27]

Top-1 Acc. (%)

Pets [36]

Top-1 Acc. (%)

ResNet18

32 / 32 79.4 88.9

4MP / 4MP 79.5 (+0.1%) 88.7 (-0.2%)

3MP / 3MP 78.7 (-0.7%) 87.9 (-2.0%)

MobileNetV2

32 / 32 78.9 86.0

4MP / 4MP 79.0 (+0.1%) 86.1 (+0.1%)

3MP / 3MP 78.2 (-1.7%) 84.1 (-1.9%)

mation distortion mitigation technique. Together with an
inference-only greedy search scheme, our method can sig-
nificantly reduce the costs of mixed-precision quantization.
Experiments on three commonly used benchmarks across
various network architectures validate the effectiveness and
efficiency of the proposed method in compressing mod-
els. Overall, our method offers a promising solution for
deploying compressed models without compromising per-
formance on resource-limited devices.
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