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Abstract

Source-Free Domain Adaptation (SFDA) aims to adapt
a source model for a target domain, with only access to
unlabeled target training data and the source model pre-
trained on a supervised source domain. Relying on pseudo
labeling and/or auxiliary supervision, conventional meth-
ods are inevitably error-prone. To mitigate this limitation,
in this work we for the first time explore the potentials of
off-the-shelf vision-language (ViL) multimodal models (e.g.,
CLIP) with rich whilst heterogeneous knowledge. We find
that directly applying the ViL model to the target domain in a
zero-shot fashion is unsatisfactory, as it is not specialized for
this particular task but largely generic. To make it task spe-
cific, we propose a novel Distilling multImodal Foundation
mOdel (DIFO) approach. Specifically, DIFO alternates
between two steps during adaptation: (i) Customizing the
ViL model by maximizing the mutual information with the
target model in a prompt learning manner, (ii) Distilling
the knowledge of this customized ViL model to the target
model. For more fine-grained and reliable distillation, we
further introduce two effective regularization terms, namely
most-likely category encouragement and predictive consis-
tency. Extensive experiments show that DIFO significantly
outperforms the state-of-the-art alternatives. Code is here.

1. Introduction

Unsupervised Domain Adaptation (UDA) relies on both well-
annotated source data and unannotated target data. However,
due to heightened safety and privacy concerns, accessing
source data freely has become difficult [18, 23]. In response,
Source-Free Domain Adaptation (SFDA) has gained atten-
tion as a more practical solution, aiming to transfer a pre-
trained source model to the target domain using only unla-
beled target data.
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Figure 1. We expand beyond traditional SFDA methods that rely
solely on a pretrained source model and unlabeled target data.
Instead, we innovate by exploring off-the-shelf multimodal founda-
tion models, such as CLIP, in an unsupervised manner (marked by
the box with blue background).

Due to the absence of source samples, traditional distribu-
tion matching approaches are no longer viable [7, 14]. The
predominant alternative is self-supervised learning, which
generates or mines auxiliary information to facilitate un-
supervised adaptation. Two main approaches exist: con-
structing a pseudo source domain to leverage established
UDA methods such as adversarial learning [16, 41] or do-
main shift minimization based on distribution measure-
ment [5, 15, 37] and mining extra supervision from the
source model [11, 18, 40] or target data [34, 42, 43]. In the
presence of domain distribution shift, applying the source
model to the target domain introduces inevitable errors in
pseudo-labeling or auxiliary supervision, thereby limiting
adaptation performance.

To address identified limitations, we pioneer the explo-
ration of off-the-shelf multimodal foundation models, such
as the vision-language (ViL) model CLIP [24], transcend-
ing the constraints of both the source model and target
data knowledge. However, direct application of the ViL
model proves unsatisfactory, lacking specialization for spe-
cific tasks. To overcome this, we propose a novel task-
specific distillation approach named Distilling multImodal
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Foundation mOdel (DIFO). Initially, we customize the ViL
model through unsupervised prompt learning for imposing
task-specific information. Subsequently, we distil the knowl-
edge from this customized ViL model to the target model,
with joint supervision through two designed regularization
terms: (1) most-likely category encouragement for coarse-
grained distillation and (2) predictive consistency for fine-
grained distillation.

Our contributions are summarized as follows. (1) Pi-
oneering the use of generic but heterogeneous knowledge
sources (e.g., the off-the-shelf ViL model) for the SFDA
problem, transcending the limited knowledge boundary of a
pretrained source model and unlabeled target data. (2) De-
velopment of the novel DIFO approach to effectively distill
useful task-specific knowledge from the general-purpose
ViL model. (3) Extensive evaluation on standard bench-
marks, demonstrating the significant superiority of our DIFO
over previous state-of-the-art alternatives under conventional
closed-set settings, as well as more challenging partial-set
and open-set settings.

2. Related Work
Source-free domain adaptation. Existing SFDA ap-
proaches fall into three distinct categories. The first explic-
itly aligns the pseudo source domain with the target domain,
treating SFDA as a specialized case of unsupervised domain
adaptation. This alignment is achieved by constructing the
pseudo source domain through a generative model [21, 38]
or by splitting the target domain based on prior source hy-
potheses [6].

The second group extracts cross-domain factors from
the source domain and transfers them in successive model
adaptation for aligning feature distributions across the two
domains. For example, [31] establishes a mapping relation-
ship from a sample and its exemplar Support Vector Machine
(SVM) (an individual classifier) on the source domain to en-
sure individual classification on the target domain. Some ap-
proaches leverage pre-trained source models to generate aux-
iliary factors, such as multi-hypothesis [18], prototypes [36],
source distribution estimation [5], or hard samples [20] to
aid in feature alignment.

The third group incorporates auxiliary information refined
from the unlabeled target domain. In addition to widely used
pseudo-labels [3, 24], geometry information, such as intrin-
sic neighborhood structure [33] and target data manifold [34],
has also been exploited.

Despite continual advancements, these methods are lim-
ited by the knowledge derived solely from the pretrained
source model and unlabeled target data. We break this limi-
tation by tapping into the rich knowledge encoded in off-the-
shelf multimodal foundation models.
Large multimodal model. Multimodal vision-language
(ViL) models, such as CLIP [28] and ALIGN [13], have

shown promise across various mono-modal and multimodal
tasks by capturing modality-invariant features. Approaches
in this domain can be broadly categorized into two lines.

The first line focuses on enhancing ViL model perfor-
mance. For instance, in [8, 46], prompt learning opti-
mizes the text encoder through the use of tailored, learnable
prompts designed for specific scenarios. Other efforts aim to
improve data efficiency by repurposing noisy data [1].

The second line utilizes ViL models as external knowl-
edge to enhance downstream tasks, as demonstrated in this
paper. Previous work in knowledge transfer primarily falls
into two frameworks. For the first scheme, where the ViL
model is directly applied to the target task in a zero-shot
fashion [22], domain generality is leveraged without task-
specific refinement. The second scheme does not focus on
source model adaptation. Instead, it fine-tunes the ViL model
to the target domain through prompt or adaptor learning with
an amount of manal labels [4].

A relevant method to our DIFO is the UDA method
DAPL [8]. Although both adopt CLIP, they differ signif-
icantly in problem setting and methodology. DAPL employs
CLIP to learn domain-specific prompts, aiming to disen-
tangle domain and category information in CLIP’s visual
features. In contrast, DIFO aligns target features to a progres-
sively customized vision-language latent space in a memory-
aware fashion. Importantly, DAPL requires labeled source
data, making it inapplicable in SFDA.

3. Methodology

Problem statement. In the context of two distinct yet inter-
related domains—namely, the labeled source domain and the
unlabeled target domain—both characterized by the same
set of C categories, the following notation is employed. The
source samples and their corresponding labels are repre-
sented as Xs and Ys respectively. Similarly, the target sam-
ples and their true labels are denoted as Xt= {xi}ni=1 and
Yt={yi}ni=1, where n signifies the number of samples.

We aim to learn a target model θt :Xt→Yt. This involves
utilizing (1) a pre-trained source model θs :Xs→Ys, (2) un-
labeled target data, and (3) a Visual-Language (ViL) model
denoted as θv .
Overview. As depicted in Fig. 2, the proposed DIFO frame-
work alternates between two distinct steps to customize and
distill the off-the-shelf ViL knowledge.

In the first step, we engage in prompt learning on the
ViL model for the purpose of task-specific customization.
This serves to mitigate the guidance error within the ViL
model. In particular, we adopt a mutual information-based
alignment approach. This approach is characterized by its
richness in context and interaction between the target model
and the ViL model, as opposed to placing blind trust in either
model alone as conventional methods.
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Figure 2. Overview of our DIFO: The process involves two alternating steps. First, we perform (a) task-specific customization of a ViL model
through task-specific prompt learning (LTSC). This is achieved under soft predictive guidance using mutual information maximization.
Second, we undertake (b) memory-aware knowledge adaptation, incorporating two regularizations: most-likely category encouragement
(LMCE) predicted by our dynamic memory-aware predictor, along with the tupical predictive consistency (LPC). These regularizations are
designed to facilitate a coarse-to-fine adaptation.

In the second step, knowledge adaptation takes place
within a unique constraint that encourages the identification
of the most probable category labels in the logit space, while
concurrently maintaining the typical predictive consistency.
The most likely category labels are determined by a care-
fully designed memory-aware predictor, which dynamically
integrates knowledge from both the target model and the ViL
model in a cumulative fashion.

3.1. Task-Specific ViL Model Customization

We adopt the prompt learning framework for ViL model cus-
tomization, with all the parameters of the ViL model frozen
throughout. The only learnable part in customization is the
prompts each assigned for a specific class. To optimize these
prompts, we need a useful supervision. In SFDA, however,
it is challenging to customize such a domain-generic ViL
model towards to the target domain, at the absence of a well-
trained target domain model. This is because, none of them
can reasonably make predictions. That means there is no
clearly good supervision signals available.

To address this challenge, we propose to explore the wis-
dom of the crowd by leveraging their predictive interaction
as the supervision. Formally, we denote the predictions by
the target model and the ViL model as θt (xi) and θv (xi), re-
spectively, given an unlabeled target sample xk. We conduct
the customization by maximizing the mutual information of
their predictions as:

LTSC = −min
v

Exi∈Xt
I (θt (xi) , θv (xi,v)) (1)

where v is the prompt context to be learned and the function
I(·, ·) measures the mutual information [12].

This alignment design differs significantly from the con-
ventional adoption of the Kullback–Leibler (KL) divergence.
First of all, the mutual information is a lower optimization
bound than KL divergence, facilitating deeper alignment (see
Theorem 1 with the proof provided in Supplementary).

Theorem 1 Given two random variables X , Y . Their mu-
tual information I (X,Y ) and KL divergence DKL (X||Y )
satisfy the unequal relationship as follows.

−I (X,Y ) ≤ DKL (X,Y ) . (2)

Crucially, the KL divergence exhibits an inherent bias
towards a specific prediction, making it less suitable for
our context where none of the predictions holds a sig-
nificant advantage. On the contrary, mutual information
considers the joint distribution or correlation between the
two predictions. This distinction arises from their respec-
tive definitions: −I (X,Y ) = −H (X) + H (X|Y ) and
DKL (X,Y ) = −H (X) +H (X : Y ), where

H (X | Y ) = −
∑

p(x,y) log p(x|y)

H (X : Y ) = −
∑

p(x) log p(y).
(3)

The conditional entropy component H (X|Y ) of mutual
information explicitly captures the joint distributions, a fea-
ture absent in KL divergence. Empirically, we also confirm
the significance of incorporating this joint distribution-based
interaction between the two predictions during the customiza-
tion of the ViL model (see ablation study in Tab.6 and task-
specific knowledge adaptation analysis in Section 4.3).

3.2. Memory-Aware Knowledge Adaptation

As previously mentioned, even with customization for the
target domain, the ViL model may not be fully adapted due to
no robust target model available in prior. This limitation hin-
ders effective knowledge adaptation at this stage. To address
this issue, we propose the incorporation of a specialized
memory-aware predictor to provide additional learning guid-
ance – most-likely category encouragement, complementing
the conventional predictive consistency constraint.
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Most-likely category encouragement. The rationale behind
incorporating this learning constraint is to harness the collec-
tive knowledge of both the target model and the ViL model
in order to enhance the discernment of probable category
labels for each sample. Given the sluggish nature of this
search process, it has been devised to function as a form of
learning regularization. An illustration of this regularization
process is presented in Fig. 3. Specifically, it is realized
through two distinct steps as detailed below.

(I) Memory-aware predictor. We initiate the process
by generating pseudo-labels that represent the most likely
category distribution, utilizing historical information stored
in a prediction bank. The prediction bank archives two types
of historical data for all samples in the target domain: (1)
predictions from the target model denoted by {pi}ni=1 and
(2) predictions from the ViL model denoted by {p′

i}ni=1.
Throughout the adaptation process, the predictions from

the target model are updated iteratively. At the end of each
training iteration, the newly predicted labels for the training
batch from the target model replace their counterparts in the
prediction bank. In contrast, predictions from the ViL model
are updated collectively in an epoch-wise manner, triggering
updates every M iterations. This mixed-update strategy is
designed to strike a balance between maintaining the stability
of the customized ViL model’s guidance and capturing the
task-specific dynamics inherent in the adaptation process.

Based on the provided prediction bank, the creation of
a pseudo-label for the most probable category involves a
historical prediction fusion process as:

p̄i = ω pi + (1− ω) p′
i. (4)

Here, the weight ω, drawn from an Exponential distribution
with parameter λ, is a crucial factor. This fusion introduces
dynamic bias rectification (represented by pi) based on the
guidance from the customized ViL model (p′

i). The role of pi

is to provide adjustments, leading us to adopt an asymmetric
random weighting approach represented by ω.

(II) Category attention calibration. Subsequently, we for-
mulate a regularization technique employing pseudo-labels
acquired through category attention calibration. Specifically,
we begin by identifying the top-N most probable categories
using p̄i. The indices of these identified categories are de-
noted by Mi = {mk}Nk=1. With Mi, the target model’s
logit of a target domain sample xi, denoted as li, is segre-
gated into positive and negative category groups. We define
this regularization as:

LMCE = min
θt

Exi∈Xt
log

exp (ai/τ)∑
j ̸=Mi

exp (bi · li,j/τ)

ai =

N∏
k=1

li,mk
, bi =

N∑
k=1

li,mk

(5)
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Figure 3. Illustration of most-likely category encouragement. In
contrast to the conventional approach that assigns equal importance
to all categories (depicted by the gray line), our approach (rep-
resented by the black line) introduces additional supervision by
incorporating extra knowledge about the two most likely categories.

where li,a denotes the a-th element of li and τ is the temper-
ature parameter.

In Eq. (5), we note that the product operation with ai in
the numerator amplifies penalties for the probability decrease
on the most likely categories compared to the sum form.
Similarly, the sum with bi in the denominator serves as an
increasing weighting parameter to enhance suppression of
values at other locations. Moreover, ai is more sensitive to
changes than bi due to ∂ai

∂mk
∝ O(nN−1) and ∂bi

∂mk
∝ O(1).

By combining the use of ai and bi, we globally impose a
calibration effect on the elements corresponding to the most
likely categories within the logit li. Essentially, attention is
introduced to these potential categories, as illustrated in the
box with a yellow background in Fig. 3.

Predictive Consistency. For the purpose of knowledge
adaptation, we incorporate the conventional predictive con-
sistency loss as:

LPC = min
θt

[−Exi∈XtI (θt (xi) , θv (xi,v∗)) + αLB ] , (6)

where θt(xi) represents the target prediction, θv(xi,v)
denotes the ViL prediction, and v is the prompt context
learned during the initial phase of task-specific customiza-
tion. The function I(·, ·) corresponds to the mutual infor-
mation function. The parameter α serves as a trade-off
parameter, and the category balance term LB = KL( q̄| | 1

C
)

aligns with previous approaches [35, 42], preventing solu-
tion collapse by ensuring the empirical label distribution q̄
matches the uniform distribution 1

C
. For the reasons elab-

orated in Section 3.1, we employ mutual information
for alignment.

3.3. Model training

To systematically distill and leverage task-specific knowl-
edge from the ViL model, we adopt an epoch-wise training
approach for DIFO. The training process is divided into T
epochs, each comprising two stages aligned with the two
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Algorithm 1 Training of DIFO
Input: Pre-trained source model θs, target model θt, ViL
model θv , unlabelled target domain Xt, learnable prompt
context v, #epoch T , #iteration per epoch M .
Output: The adapted target model θt.
Procedure:

1: Initialisation: Set θt = θs and v=’a photo of a [CLS].’
2: for t = 1:T do
3: Update ViL predictions in the prediction bank.
4: =========== Step1 ===========
5: for m = 1:M do
6: Sample a batch from Xt;
7: Forward prompt v and this batch X b

t through θv;
8: Forward this batch data through θt;
9: Customize θv by optimizing LTSC (Eq. (1)) and

obtain task-specific prompt context v∗.
10: end for
11: =========== Step2 ===========
12: for m = 1:M do
13: Sample a batch from Xt;
14: Forward the v∗ and this batch through θv;
15: Forward this batch data through θt;
16: Discover most-likely category (Eq. (4));
17: Update model θt by optimizing LMKA (Eq. (7)).
18: Update target predictions in the prediction bank.
19: end for
20: Set v = v∗.
21: end for
22: return Adapted model θt.

steps in the DIFO framework (Fig. 2). During the first stage,
training is governed by the objective LTSC, and in the subse-
quent second stage, the objective function transitions to

LMKA = LPC + βLMCE, (7)

where β is a trade-off parameter. We summarize the whole
training procedure of DIFO in Algorithm 1.

4. Experiments
Datasets. We evaluate four standard benchmarks: Office-
31 [29], Office-Home [39], VisDA [26] and DomainNet-
126 [27]. Among them, Office-31 is a small-scaled
dataset; Office-Home is a medium-scale dataset; VisDA and
DomainNet-126 are both large-scale dataset. The details of
the four datasets are provided in Supplementary.

Competitor. We compare DIFO with 18 existing top-
performing methods into three groups. (1) The first group
contains Source (the source model’s results), CLIP [28]
and Source+CLIP where Source+CLIP directly average
the results of the source model and CLIP. (2) The sec-
ond group includes three state-of-the-art UDA methods

Table 1. Closed-set SFDA on Office-31 (%)

Method Venue A→D A→W D→A D→W W→A W→D Avg.

Source – 79.1 76.6 59.9 95.5 61.4 98.8 78.6

SHOT [24] ICML20 93.7 91.1 74.2 98.2 74.6 100. 88.6
NRC [42] NIPS21 96.0 90.8 75.3 99.0 75.0 100. 89.4
GKD [32] IROS21 94.6 91.6 75.1 98.7 75.1 100. 89.2
HCL [11] NIPS21 94.7 92.5 75.9 98.2 77.7 100. 89.8
AaD [43] NIPS22 96.4 92.1 75.0 99.1 76.5 100. 89.9
AdaCon [2] CVPR22 87.7 83.1 73.7 91.3 77.6 72.8 81.0
CoWA [19] ICML22 94.4 95.2 76.2 98.5 77.6 99.8 90.3
SCLM [34] NN22 95.8 90.0 75.5 98.9 75.5 99.8 89.4
ELR [44] ICLR23 93.8 93.3 76.2 98.0 76.9 100. 89.6
PLUE [25] CVPR23 89.2 88.4 72.8 97.1 69.6 97.9 85.8
TPDS [35] IJCV23 97.1 94.5 75.7 98.7 75.5 99.8 90.2
DIFO-C-RN – 93.6 92.1 78.5 95.7 78.8 97.0 89.3
DIFO-C-B32 – 97.2 95.5 83.0 97.2 83.2 98.8 92.5

DAPL [8], PADCLIP [17] and ADCLIP [30] that are
also multimodal guiding-based. (3) The third group com-
prises 13 current state-of-the-art SFDA models: SHOT [24],
NRC [42], GKD [32], HCL [11], AaD [43], AdaCon [2],
CoWA [19], SCLM [34], ELR [44], PLUE [25], TPDS [35]
and CRS [45].

For comprehensive comparisons, we implement DIFO in
two variants: (1) DIFO-C-RN (weak version) and (2) DIFO-
C-B32 (strong version). The key distinction lies in the back-
bone of the CLIP image-encoder. Specifically, for DIFO-
C-RN, ResNet101 [10] is employed on the VisDA dataset,
while ResNet50 [10] is used on the other three datasets. On
the other hand, DIFO-C-B32 adopts ViT-B/32 [9] as the
backbone across all datasets.

SFDA settings. We consider three distinct settings: the
conventional closed-set SFDA setting, the partial-set and the
open-set SFDA settings. The experiment implementation
details are provided in Supplementary.

4.1. Comparison Results

Comparison on Closed-set SFDA setting. The compar-
isons of the four evaluation datasets are listed in Tab. 1∼3.
DIFO-C-B32 surpasses the previous best method CoWA (on
Office-31), TPDS (on Office-Home) and PLUE (on VisDA)
and GKD (on DomainNet-126) by 2.2%, 9.6% 2.0% and
11.3% in average accuracy respectively. Specifically, DIFO-
C-B32 obtains the best results on 4 out of 6 tasks on Office-31
while surpassing previous methods on all tasks of the other
three datasets. As for DIFO-C-RN, besides Office-31, it
obtains the second-best results and beat the previous best
methods by 5.9%, 0.5% and 8.0% on Office-Home, VisDA
and DomainNet-126 in average accuracy. The comparison
of DIFO-C-RN shows that our method can still perform well
despite using a weaker CLIP. Based on a strong CLIP (see
results of DIFO-C-B32), our method’s performance can im-
prove further as we expected. All of the results indicate
that the DIFO can boost the cross-domain performance in
closed-set SFDA setting.
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Table 2. Closed-set SFDA on Office-Home and VisDA (%). SF and M means source-free and multimodal, respectively; the full results on
VisDA are in Supplementary.

Method Venue SF M Office-Home VisDA
Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg. Sy→Re

Source – – - 43.7 67.0 73.9 49.9 60.1 62.5 51.7 40.9 72.6 64.2 46.3 78.1 59.2 49.2

DAPL-RN [8] TNNLS23 ✗ ✓ 54.1 84.3 84.8 74.4 83.7 85.0 74.5 54.6 84.8 75.2 54.7 83.8 74.5 86.9
PADCLIP-RN [17] ICCV23 ✗ ✓ 57.5 84.0 83.8 77.8 85.5 84.7 76.3 59.2 85.4 78.1 60.2 86.7 76.6 88.5
ADCLIP-RN [30] ICCVW23 ✗ ✓ 55.4 85.2 85.6 76.1 85.8 86.2 76.7 56.1 85.4 76.8 56.1 85.5 75.9 87.7

SHOT [24] ICML20 ✓ ✗ 56.7 77.9 80.6 68.0 78.0 79.4 67.9 54.5 82.3 74.2 58.6 84.5 71.9 82.7
NRC [42] NIPS21 ✓ ✗ 57.7 80.3 82.0 68.1 79.8 78.6 65.3 56.4 83.0 71.0 58.6 85.6 72.2 85.9
GKD [32] IROS21 ✓ ✗ 56.5 78.2 81.8 68.7 78.9 79.1 67.6 54.8 82.6 74.4 58.5 84.8 72.2 83.0
AaD [43] NIPS22 ✓ ✗ 59.3 79.3 82.1 68.9 79.8 79.5 67.2 57.4 83.1 72.1 58.5 85.4 72.7 88.0
AdaCon [2] CVPR22 ✓ ✗ 47.2 75.1 75.5 60.7 73.3 73.2 60.2 45.2 76.6 65.6 48.3 79.1 65.0 86.8
CoWA [19] ICML22 ✓ ✗ 56.9 78.4 81.0 69.1 80.0 79.9 67.7 57.2 82.4 72.8 60.5 84.5 72.5 86.9
SCLM [34] NN22 ✓ ✗ 58.2 80.3 81.5 69.3 79.0 80.7 69.0 56.8 82.7 74.7 60.6 85.0 73.0 85.3
ELR [44] ICLR23 ✓ ✗ 58.4 78.7 81.5 69.2 79.5 79.3 66.3 58.0 82.6 73.4 59.8 85.1 72.6 85.8
PLUE [25] CVPR23 ✓ ✗ 49.1 73.5 78.2 62.9 73.5 74.5 62.2 48.3 78.6 68.6 51.8 81.5 66.9 88.3
TPDS [35] IJCV23 ✓ ✗ 59.3 80.3 82.1 70.6 79.4 80.9 69.8 56.8 82.1 74.5 61.2 85.3 73.5 87.6
DIFO-C-RN – ✓ ✓ 62.6 87.5 87.1 79.5 87.9 87.4 78.3 63.4 88.1 80.0 63.3 87.7 79.4 88.8
DIFO-C-B32 – ✓ ✓ 70.6 90.6 88.8 82.5 90.6 88.8 80.9 70.1 88.9 83.4 70.5 91.2 83.1 90.3

Table 3. Closed-set SFDA on DomainNet-126 (%). SF and M means source-free and multimodal, respectively.

Method Venue SF M C→P C→R C→S P→C P→R P→S R→C R→P R→S S→C S→P S→R Avg.

Source – – – 44.6 59.8 47.5 53.3 75.3 46.2 55.3 62.7 46.4 55.1 50.7 59.5 54.7

DAPL-RN [8] TNNLS23 ✗ ✓ 72.4 87.6 65.9 72.7 87.6 65.6 73.2 72.4 66.2 73.8 72.9 87.8 74.8
ADCLIP-RN [30] ICCVW23 ✗ ✓ 71.7 88.1 66.0 73.2 86.9 65.2 73.6 73.0 68.4 72.3 74.2 89.3 75.2

SHOT [24] ICML20 ✓ ✗ 63.5 78.2 59.5 67.9 81.3 61.7 67.7 67.6 57.8 70.2 64.0 78.0 68.1
GKD [32] IROS21 ✓ ✗ 61.4 77.4 60.3 69.6 81.4 63.2 68.3 68.4 59.5 71.5 65.2 77.6 68.7
NRC [42] NIPS21 ✓ ✗ 62.6 77.1 58.3 62.9 81.3 60.7 64.7 69.4 58.7 69.4 65.8 78.7 67.5
AdaCon [2] CVPR22 ✓ ✗ 60.8 74.8 55.9 62.2 78.3 58.2 63.1 68.1 55.6 67.1 66.0 75.4 65.4
CoWA [19] ICML22 ✓ ✗ 64.6 80.6 60.6 66.2 79.8 60.8 69.0 67.2 60.0 69.0 65.8 79.9 68.6
PLUE [25] CVPR23 ✓ ✗ 59.8 74.0 56.0 61.6 78.5 57.9 61.6 65.9 53.8 67.5 64.3 76.0 64.7
TPDS [35] IJCV23 ✓ ✗ 62.9 77.1 59.8 65.6 79.0 61.5 66.4 67.0 58.2 68.6 64.3 75.3 67.1
DIFO-C-RN – ✓ ✓ 73.8 89.0 69.4 74.0 88.7 70.1 74.8 74.6 69.6 74.7 74.3 88.0 76.7
DIFO-C-B32 – ✓ ✓ 76.6 87.2 74.9 80.0 87.4 75.6 80.8 77.3 75.5 80.5 76.7 87.3 80.0

Table 4. Results (%) of CLIP and Source+CLIP on the four evaluation datasets. The backbone of CLIP image-encoder in CLP-C-RN and
CLP-C-B32 are the same as DIFO-C-RN and DIFO-C-B32, respectively. The full results are provided in Supplementary.

Method Venue Office-31 Office-Home VisDA DomainNet-126
→A →D →W →Avg. →Ar →Cl →Pr →Rw →Avg. Sy→Re →C →P →R →S →Avg.

CLIP-RN [28] ICML21 73.1 73.9 67.0 71.4 72.5 51.9 81.5 82.5 72.1 83.7 67.9 70.2 87.1 65.4 72.7
Source+CLIP-RN – 76.3 90.4 84.0 83.6 75.4 57.4 84.4 85.7 75.7 82.0 71.8 71.4 87.3 66.5 74.3
DIFO-C-RN – 78.6 95.3 93.9 89.3 79.3 63.1 87.7 87.5 79.4 88.8 74.5 74.2 88.5 69.7 76.7

CLIP-B32 [28] ICML21 76.0 82.7 80.6 79.8 74.6 59.8 84.3 85.5 76.1 82.9 74.7 73.5 85.7 71.2 76.3
Source+CLIP-B32 – 78.5 93.0 89.6 87.0 78.9 62.5 86.1 87.7 78.8 82.0 76.8 73.7 86.0 70.8 76.8
DIFO-C-B32 – 83.1 98.0 96.4 92.5 82.3 70.4 90.8 88.8 83.1 90.3 80.4 76.9 87.3 75.3 80.0

Comparison to CLIP based prediction results. The orig-
inal CLIP model can conduct general image classification.
We carry out a quantitative comparison between DIFO’s
adaptation performance and CLIP’s performance on the four
datasets, averaging the adaptation results of DIFO grouped
by the target domain name.

As presented in the bottom of Tab. 4, DIFO-C-B32 outper-
forms CLIP-B32 on all tasks. On average accuracy, DIFO-
C-B32 increases the performance by 12.7%, 7.0%, 7.4% and
3.7% in Office-31, Office-Home, VisDA and DomainNet-
126, respectively. Regarding the weak version, as reported
in the top, DIFO-C-RN maintains similar advantages with
the increase of 17.9%, 7.3%, 5.1% and 4.0%. The result
shows that the domain generality of the original CLIP model

cannot fully excel to the target domain, and task-specific
customization is needed.

Interestingly, compared with CLIP-B32, except for
VisDA with a tiny gap of 0.9%, Source+CLIP-B32 averagely
improve by 7.2% at most on the other datasets. Meanwhile,
Source+CLIP-B32 is beaten by DIFO-C-B32 with an in-
crease of 3.2% at least. In the group of DIFO-C-RN, we
have the same observation. These results imply that directly
weighting the source model and CLIP is an intuitive knowl-
edge adaptation scheme, but it is hard to perform adaptation
deeply. Considering Source+CLIP is an average version, we
conduct a comprehensive comparison with the weighting
strategy where the weighting coefficient of CLIP prediction
varies from 0.0 to 1.0. Here, we conduct this experiment
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Figure 4. The performance of the scheme directly weighting the
source model and CLIP-B32. All results are normalized by corre-
sponding DIFO-C-B32 accuracies for a clear view.

based on more challenging CLIP-B32 due to its large per-
formance gap with Source (see the first row in Tab.1∼3).
For a clear view, all weighted accuracies are normalized
by the corresponding DIFO-C-B32 accuracies, respectively.
As shown in Fig. 4, no result can exceed the value of 1.0.
This indicates that weighting the source model and CLIP
in a zero-shot manner cannot obtain desirable task-specific
fusion, and a carefully designed distilling is necessary.

Comparison on Partial-set and Open-set SFDA settings.
These are the variations of traditional Closed-set SFDA set-
ting, following the same as SHOT [24] (the detailed set-
ting introduction is provided in Supplementary). As
reported in Tab. 5, compared with previous best method
CoWA (Partial-set) and CRS (Open-set), our DIFO-C-B32
improves by 2.4% and 2.7%, respectively.

4.2. Model Analysis

Feature distribution visualization. Taking task Ar→Cl
in Office-Home as a toy experiment, we visualize feature
distribution using t-SNE tool. Meanwhile, we choose 5
comparisons, including the source model (termed Source),
CLIP-B32’s zero shot (termed CLIP), SHOT, TPDS and
Oracle (trained on domain Cl with the real labels). As shown
at the top of Fig. 5, from Souce to DIFO-C-B32, category
aliasing gradually relieves. Compared with Oracle, DIFO-C-
B32 has the most similar distribution shape. To verify this
point, we also give the 3D Density chart results arranged at
the bottom of Fig. 5. These results confirm the effectiveness
of our DIFO-C-B32 in terms of Feature distribution.

Ablataion study. We evaluate the (1) effect of LTSC, LMCE

and LPC, (2) effect of optimization of mutual information,
(3) effect of task-specific customization and (4) effect of
historical prediction fusion.

For this first issue, we conduct a progressive experiment
to isolate the loss’s effects. The top four rows of Tab. 6 list
the ablation study results. For convenience comparison, the
baseline (the first row) is the source model results. When sin-
gle LTSP or LMCE works, the accuracy largely increases on
the three datasets with an improvement of about 20% in av-
erage accuracy compared with the baseline. As both of them

Table 5. Partial-set SFDA and Open-set SFDA on Office-Home
(%). The full results are provided in Supplementary.

Partial-set SFDA Venue Avg. Open-set SFDA Venue Avg.

Source – 62.8 Source – 46.6

SHOT [24] ICML20 79.3 SHOT [24] ICML20 72.8
HCL [11] NIPS21 79.6 HCL [11] NIPS21 72.6
CoWA [19] ICML22 83.2 CoWA [19] ICML22 73.2
AaD [43] NIPS22 79.7 AaD [43] NIPS22 71.8
CRS [45] CVPR23 80.6 CRS [45] CVPR23 73.2
DIFO-C-B32 – 85.6 DIFO-C-B32 – 75.9

Table 6. Classification results of ablation study (%) on Office-31
Office-Home and VisDA.

LTSC LMCE LPC Office-31 Office-Home VisDA Avg.

✗ ✗ ✗ 78.6 59.2 49.2 62.3
✓ ✗ ✗ 82.4 77.4 84.4 81.4
✗ ✓ ✗ 82.1 76.5 88.6 82.4
✓ ✓ ✗ 87.0 80.0 88.3 85.1
✓ ✓ ✓ 92.5 83.1 90.3 88.6

DIFO-C-B32 w/ KL 90.4 81.5 89.0 87.0
DIFO-C-B32 w/ CLIP 90.7 81.1 88.8 86.8
DIFO-C-B32 w/o p′

i 89.8 73.5 87.0 83.4
DIFO-C-B32 w/o pi 88.9 82.2 88.9 86.7

are adopted, the accuracy evident increase (3.7% in average,
the fourth row) on the top of the case of only LTSC and
further enhanced by adopting of item LPC (3.5% in average,
the fifth row). The results indicate: (1) all objective com-
ponents positively affect the final performance, (2) LMCE,
LPC is crucial due to providing a new soft supervision for
coarse-to-fine adaptation.

For the second and third issues, we propose two varia-
tion methods of DIFO-C-B32 to evaluate the effect. One
is DIFO-C-B32 w/ KL where the mutual information maxi-
mization loss in LTSC, LPC are replace by KL divergence
loss. The other one is DIFO-C-B32 w/ CLIP where the
prompt learning-based customization for CLIP is cancelled,
and the inputted prompt is set to the fixed template of ”a
photo of a [CLS].” during the entire adaptation. As presented
in the last two rows in Tab. 6, DIFO-C-B32 (the fifth row)
beats DIFO-C-B32 w/ KL and DIFO-C-B32 w/ CLIP with
average improvement of 1.6% at least, respectively confirm-
ing the effect of adopting mutual information optimization
and task-specific customization. As for the fourth issue, its
effect is verified by the performance decreases (3.4% in av-
erage at most) in the variation methods (the last two rows),
which remove p′

i and pi from the fusion respectively.

4.3. Task-Specific Knowledge Adaptation Analysis

In this part, we give a feature space shift analysis using
the measure of MMD (maximum mean discrepancy) dis-
tance [47] to verify whether the proposed method ensures a
task-specific knowledge adaptation.

In this experiment, we first train a domain-invariant Ora-
cle model over all Office-Home data with real labels, and use
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Figure 5. Feature distribution visualization comparison on transfer task Ar→Cl in Office-Home. Oracle is trained on target domain Cl using
the ground-truth labels. Different colors stand for different categories. Top: t-SNE feature distribution over 65 categories. Bottom: The
corresponding 3D density charts. For easy view, the first 10 categories were used in this plot.
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Figure 6. The evolving dynamics of MMD distance during adaption
of Ar→Cl in Office-Home. Left and Right present the varying
curves of MMD distance and accuracy, respectively

the logits to express the ideal task-specific space O. After
that, an analysis is conducted on the transfer task Ar→Cl.
During this adaptation, there are T (epoch number) inter-
mediate target models and customized CLIP models. We
feedforward the target data through each intermediate model
and take the logits as a space. Thus, we obtain T inter-
mediate target feature spaces {Uk}Tk=1 and T intermediate
customized CLIP feature spaces {V}Tk=1. Within this con-
text, these intermediate spaces can depict the task-specific
distillation to O. In practice, the CLIP image encoder’s
backbone is set to ViT-B/32.

In the left of Fig. 6, we give the MMD distance change
curve of {Uk}Tk=1 (in red, termed TGT) and {V}Tk=1 (in
blue, termed CUS-CLIP), taking O as the original space.
It is seen that at early epochs (1∼4), TGT and CUS-CLIP
sharply decrease and then maintain a gradual decrease in the
following epochs. Meanwhile, this change is consistent with
the accuracy varying shown in the right of Fig. 6.

These results indicate that our DIFO encourages task-
specific knowledge adaptation due to converging the ideal

task-specific space. Besides, we observe two details. First,
after epoch 1, CUS-CLIP’s distance reduces by 2.2, which
is 58.6 time of TGT’s decrease of 0.038. This is because
CLIP represents a heterogeneous space of vision-language,
much different from the vision space O. Furthermore, the
large distance decrease confirms the effect of customization.
Second, the synchronized distance reductions of CUS-CLIP
and TGT indicate the interaction between the target model
and CLIP is a crucial design for task-specific distillation.

5. Conclusion
We present an innovative approach, referred to as DIFO,
designed to tackle the SFDA problem. To the best of our
knowledge, this marks the initial endeavor to address SFDA
by leveraging a pretrained ViL foundation model, departing
from previous approaches that predominantly concentrated
on self-mining auxiliary information. DIFO is featured with
alternating between customization of the ViL model and
the transfer of task-specific knowledge from the customized
ViL model. We introduce two pivotal designs: a mutual
information-based alignment for ViL customization and a
most-likely category encouragement for more precise adapta-
tion of task-specific knowledge. Our method’s effectiveness
is validated by state-of-the-art experimental results across
four challenging datasets.
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