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Abstract

Vision-based perception for autonomous driving re-
quires an explicit modeling of a 3D space, where 2D latent
representations are mapped and subsequent 3D operators
are applied. However, operating on dense latent spaces
introduces a cubic time and space complexity, which lim-
its scalability in terms of perception range or spatial res-
olution. Existing approaches compress the dense repre-
sentation using projections like Bird’s Eye View (BEV) or
Tri-Perspective View (TPV). Although efficient, these pro-
jections result in information loss, especially for tasks like
semantic occupancy prediction. To address this, we pro-
pose SparseOcc, an efficient occupancy network inspired by
sparse point cloud processing. It utilizes a lossless sparse
latent representation with three key innovations. Firstly, a
3D sparse diffuser performs latent completion using spa-
tially decomposed 3D sparse convolutional kernels. Sec-
ondly, a feature pyramid and sparse interpolation enhance
scales with information from others. Finally, the trans-
former head is redesigned as a sparse variant. SparseOcc
achieves a remarkable 74.9% reduction on FLOPs over the
dense baseline. Interestingly, it also improves accuracy,
from 12.8% to 14.1% mIOU, which in part can be attributed
to the sparse representation’s ability to avoid hallucinations
on empty voxels.

1. Introduction

Accurate perception of the surrounding environment is cru-
cial for autonomous driving systems [11, 14]. In recent
years, vision-based 3D perception algorithms have gained
significant attention and advancement due to their cost-
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Figure 1. (a) Vision-based perception methods for autonomous
driving typically first extract image features by a 2D latent encoder
and then map them to 3D using view transformation. (b) For the
3D latent space, existing methods mostly employ the dense, BEV,
or TPV representation, while we rethink the possibility of using
sparse representation to achieve superior efficiency and accuracy.

effectiveness. The typical workflow involves employing
a 2D encoder to extract latent representations from im-
ages. A view transformation method, such as lift-splat-
shoot (LSS) [25], is then applied to lift the perspective 2D
latent features to a 3D voxel space, utilizing predicted depth
information. This 3D scene representation serves as the
foundation for deriving geometry and semantic information
to describe the driving environment, supporting various 3D
perception tasks including object detection [15, 17, 40, 43],
semantic segmentation [11, 30, 36], and semantic occu-
pancy prediction [13, 33, 34]. In this study, we specifi-
cally focus on the challenging task of semantic occupancy
prediction [31–34], which entails predicting both static and
dynamic elements within the scene.

Several alternatives are available for representing 3D
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spatial latent information. The dense representation [33] is
the most straightforward approach, storing features in con-
tinuous memory and enabling direct application of dense
3D operations like convolutions. However, this represen-
tation is redundant and inefficient, as approximately 67%
of the considered 3D space is empty1. Bird Eye’s View
(BEV) [12, 19, 22] has gained popularity as a recent preva-
lent representation. It involves projecting the 3D space onto
a BEV plane, significantly reducing computational costs by
leveraging efficient 2D building blocks in a BEV encoder.
However, this projection introduces the loss of geometry in-
formation, thereby limiting the fine-grained capacity of the
BEV representation to comprehend the 3D scene structure.
A Tri-Perspective View (TPV) [13] representation is pro-
posed to mitigate the information loss, but it still suffers
from degraded perception accuracy.

In this paper, we seek a latent representation that encodes
the 3D scene structure in a lossless manner while minimiz-
ing computational costs. Drawing inspiration from the simi-
larities between sparse 3D vision features and point clouds,
we rethink the feasibility of employing a pure sparse rep-
resentation for the 3D latent space, a common practice in
point cloud processing [7]. Specifically, we utilize the coor-
dinate (COO) format to store sparse tensors and introduce a
series of sparse building blocks tailored for the sparse rep-
resentation. Our proposed method, SparseOcc, is an occu-
pancy network where all 3D layers operate on sparse ten-
sors. The key designs of SparseOcc are as follows:
• Sparse Latent Diffuser: This component enables the

propagation of non-empty features to adjacent empty re-
gions, facilitating scene completion. To ensure efficiency,
a 3D diffusion kernel is spatially decomposed into a com-
bination of three orthogonal convolutional kernels.

• Sparse Feature Pyramid: We build a feature pyramid
that incorporates sparse interpolation operations to en-
hance scales with information from other scales. This
pyramid design expands the reception fields, reducing
the need for excessive diffusers within each scale, which
helps preserve sparsity.

• Sparse Transformer Head: The final component of
SparseOcc is a 3D sparse transformer head responsible
for generating semantic occupancy predictions. By seg-
menting only occupied voxels rather than the entire 3D
volume, we achieve a remarkable reduction in computa-
tional costs.
Based on the sparse latent representation, SparseOcc

achieves a significant reduction in computation overhead.
In the nuScenes-Occupancy benchmark [33], it reduces the
FLOPs of existing approaches using dense or TPV rep-
resentations by 59.8% to 74.9%, and memory usage by
31.6% to 40.9%. Remarkably, the semantic occupancy

1We conduct statics using the ground-truth occupancy labels of the first
10 sequences in the SemanticKITTI dataset.

accuracy not only remains intact but improves, surpassing
the state-of-the-art C-CONet. Specifically, the semantic oc-
cupancy accuracy increases from 12.8% to 14.1% mIoU.
This improvement highlights the superiority of the sparse
representation over the dense one in terms of accuracy, as
it naturally avoids hallucinations on empty voxels. Con-
sidering the effectiveness and efficiency demonstrated by
SparseOcc, we propose that it can serve as a new baseline
for occupancy networks.

2. Related Work

2.1. 3D Scene Representation

3D Dense Representation. Representing the surround-
ing environment with spatial latent information is an indis-
pensable procedure for autonomous driving perception al-
gorithms. A straightforward solution is to split the scene
into voxels and describe the scene with 3D volume repre-
sentation where 3D operators are applied [4, 28, 33, 34, 41].
For example, OpenOccupancy [33] first uses a 2D encoder
to extract image features and further uses LSS to lift the fea-
tures to 3D space. Then, ResNet3D [9] and FPN3D [20] are
used to diffuse non-empty features to adjacent empty areas.
SurroudOcc [34] uses successive deformable cross attention
layers [45] to transform the multi-scale image features to
multi-scale 3D dense volume. However, these 3D operators
are often in cubic time and spatial time complexity, which
is not affordable in practice.
BEV Representation. The past several years have wit-
nessed the prosperous development of BEV representation
in tasks such as 3D object detection [8, 17, 19, 22], BEV
semantic segmentation [24, 26, 42], and instance predic-
tion [10]. They either forward project the image features
to 3D spaces with estimated depth, then compress the 3D
feature volume to BEV map, or update the BEV queries via
backward deformable attention. Despite efficiency, the ge-
ometry lossy projection results in the relatively coarse rep-
resentation of the 3D scene, hindering its generalization to
the fine-grained semantic occupancy prediction task.
TPV Representation. To make a trade-off between effi-
cacy and efficiency, TPV representation is proposed [13,
47]. It first constructs three cross-planes perpendicular to
each other to represent the 3D scene. Then, sets of queries
are initialized on these planes to aggregate features from
images and exchange features across views via the attention
mechanism. Then, they efficiently reconstruct each voxel
in the 3D space by summing its projected features on the
three planes for downstream tasks. Although the loss of ge-
ometry is mitigated, it is still hard to capture the complex
driving scene, leading to degraded performance.

In this paper, we rethink the 3D scene representation
from a sparse view and seek an effective but also efficient
method for semantic occupancy prediction.
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2.2. Scene Completion in Occupancy Prediction

Both LiDAR points and lifted 3D representation only cover
the initial intersection surface between the ray from the sen-
sor and objects. Hence, a few methods have been pro-
posed to diffuse non-empty features to surrounding empty
regions [18, 35]. These methods essentially are the same
as the 3D dense representation based ones since they also
stack 3D dense operators to diffuse features. In contrast, we
explore the potential of using a pure sparse representation
and propose a sparse latent diffuser for scene completion.
This approach rethinks the conventional method of feature
diffusion in 3D space, offering a more efficient way to fill
in the gaps in the scene representation.

3. Proposed Approach
3.1. Preliminary: Sparse Representation

Given a monocular image or a set of images I = {Ii}Nview
i=1

captured by surrounding cameras, the goal of vision-based
3D semantic occupancy prediction is to predict a se-
mantic label for every voxel in a predefined 3D volume
{0, 1, 2, ..., C}H×W×D, where H,W,D denotes the spatial
resolution, the class label 0 indicates empty voxel, C is the
number of semantic classes for non-empty voxels.

In the initial stage of our model, we follow the Lift-Splat-
Shoot (LSS) [25] framework. The images are first passed
through an image encoder, such as ResNet [9] augmented
with FPN [20], This encoder generates latent features on the
2D perspective plane. Subsequently, the 2D latent features
are lifted to the 3D space using predicted depth maps, result-
ing in dense cubic features denoted as V ∈ RH×W×D×C .
Notably, we observe that approximately 80% of the vox-
els in V are empty. This sparsity arises due to the nature
of LSS, where 2D features are cast through ray casting and
become sparser in distant regions.

We then convert the dense feature V to a sparse repre-
sentation by gathering non-empty voxels. The sparse tensor
is stored in a commonly used coordinate (COO) format:

V = {(pi = [xi, yi, zi] ∈ R3, fi ∈ RC)|i = 1, 2, ...N}.

In the above equation, N represents the number of non-
empty voxels, while pi and fi denote the coordinates and
features of the i-th voxel, respectively. All subsequent op-
erations are performed on this sparse representation, elim-
inating redundant computations on empty voxels. The fol-
lowing sections elaborate on the proposed sparse building
blocks, namely the sparse latent diffuser, feature pyramid,
and transformer head. An overview is shown in Fig. 2.

3.2. Sparse Latent Diffuser

The sparse representation V is derived through a ray cast-
ing manner, resulting in a predominantly sparse depiction

limited to the initial intersection face between a ray and an
object. Consequently, the majority of observations are in-
herently incomplete. Contrarily, the objective of an occu-
pancy network is to predict complete occupancy rather than
solely the visible parts. Traditional approaches address this
by incorporating 3D dense convolutions (such as 3D ResNet
and 3D FPN) or attention layers (such as deformable self-
attention) to diffuse non-empty features to adjacent empty
regions, thereby completing the scene. In this work, we
aim to design a sparse variant of the latent diffuser. How-
ever, a notable challenge arises as the objective of the dif-
fuser appears to conflict with the sparse design: By stacking
more completion blocks, the scene is better completed, but
the spatial sparsity also decreases, hindering efficiency. To
strike a balance between scene completion and sparsity, we
build our sparse latent diffuser with two key components:
A sparse completion block, which executes only necessary
latent diffusion; and a contextual aggregation block, which
aggregates valid features without engaging in completion.
Sparse Completion Block. We opt for the 3D sparse con-
volution implemented by [7] to build the sparse completion
block. A sparse convolution performs the computation in a
local window in which at least one non-empty voxel resides,
allowing the diffusion of features from non-empty voxels to
their neighbors. The range of diffusion can be expanded by
stacking multiple layers of sparse convolution. To maintain
the spatial sparsity, we only use one 3D convolution layer
in a sparse completion block.
Contextual Aggregation Block. After completion, we in-
troduce the contextual aggregation block to effectively uti-
lize geometry and semantic features from the local context.
For constructing this block, we choose sparse submanifold
convolution [7] over regular sparse convolution. Subman-
ifold convolution ensures that an output location is active
only if the corresponding input location is active, thereby
maintaining sparsity even when stacking multiple layers.
Kernel Decomposition. Foreground objects and back-
ground elements in driving scenes often exhibit specific
shape distributions. For instance, roadways and sidewalks
typically have a thin, flat shape located at the bottom of the
3D volume, making them amenable to completion through
convolutions in the horizontal direction. Conversely, struc-
tures like buildings or car-like objects have a rectangular
shape, necessitating feature diffusion in the vertical direc-
tion. To fully leverage these distinct shape distributions, we
decompose a conventional k× k× k kernel into orthogonal
kernels [46]. Specifically, for the sparse completion block,
we replace the sparse convolution with three consecutive
layers with k × k × 1, k × 1 × k, and 1 × k × k kernels,
respectively. For the contextual aggregation block, we fol-
low Cylinder3D [46] and replace a k × k × k submanifold
convolution with two parallel but asymmetrical branches of
decomposed layers. One branch consists of two consecu-
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Figure 2. Overview of the proposed approach. (a) Images captured by monocular or surrounding cameras are first passed to a 2D
encoder, yielding 2D latent features. Then the latent features are mapped to 3D using the predicted depth map following the LSS [25]. (b)
SparseOcc adopts a sparse representation for the latent space. Upon this representation, we introduce three key building blocks: a latent
diffuser that performs completion, a feature pyramid that enhances receptive filed, and a transformer head that predicts semantic occupancy.
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Figure 3. Two building blocks of the sparse latent diffuser. (a)
The sparse completion block diffuses non-empty features to empty
neighbors, and (b) The contextual aggregation block aggregates
geometry and semantic features without engaging in completion.

tive layers with 1 × k × k ad k × 1 × k kernels, and the
other branch with k × 1 × k ad 1 × k × k kernels. Note
that the complexity is reduced from O(k3) to O(3k2) or
O(4k2) after the decomposition. Though the actual cost is
not reduced when we use a small kernel with k = 3, the
expressive capacity of decomposed kernels outperforms a
single full kernel, thus we can still achieve efficiency im-
provements by stacking fewer layers.

3.3. Sparse Feature Pyramid

A straightforward approach to complete the scene is to stack
the proposed sparse diffuser multiple times, akin to SCP-

Net [35]. However, this necessitates a substantial number
of sparse diffusers to ensure an adequately large receptive
field, which is particularly important for recognizing large
objects like “truck” or static elements such as “road”. The
computation cost is obviously expensive. To address this
issue, we note that down-sample layers, implemented with
sparse convolution with a stride greater than one, not only
reduce the spatial resolution but also increase the relative
sparsity in the new scale. By building a multi-scale sparse
feature pyramid with down-sample layers, we are readily
to obtain a coarse-to-fine representation of the scene. This
ensures that querying any spatial location can be addressed
by at least one feature scale, simultaneously reducing com-
putation costs. Formally, we stack the sparse diffuser for
L times, each is followed by a down-sample layer, and the
feature pyramid is collected as {Vl}Ll=1. Additionally, the
spatial size along the height dimension of the last two scales
is too small, so we simply omit the D dimension. For the
completion blocks, the 3D convolution is replaced with a
2D version with 3 × 3 kernel. For the contextual aggrega-
tion block, we replace the asymmetrical branches with two
parallel 2D submanifold convolutions with 5× 5 kernels.
Sparse Voxel Decoder. Former methods [6, 41] uses
multi-scale deformable attention transformer (MSDefor-
mAttn) [44] in the pixel/voxel decoder responsible for ag-
gregating intra-scale and inter-scale features. Targeting for
saving GPU memory and time, we simplify this process by
using interpolation to fuse multi-scale sparse features out-
put by the 3D sparse encoder. Specifically, for a given scale
Vl from the feature pyramid, we augment it by fusing all
the other scales,

V̂l =
∑
j ̸=l

Wj · Interp(Vj ,Vl), 2 (1)
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where Wj is a learned weight for the j-th scale, and
Interp(X,Y) indicates linear interpolation from a sparse
tensor X to another Y.

Leveraging this lightweight feature fusion approach, the
feature pyramid is enriched with semantic information from
different scales. Moreover, the high-resolution features
benefit from additional completion provided by the low-
resolution features, as the denser low-resolution features re-
sist dilution by interpolation operators.

3.4. Sparse Transformer Head

We frame the semantic occupancy prediction as a 3D seg-
mentation problem and employ a transformer head, inspired
by the design of Mask2Former [6]. This head iteratively
updates a set of learnable queries through masked attention
and subsequently decodes these queries into 3D masks for
all semantic classes. However, a challenge arises due to the
need for dense binary masks to represent semantic classes.
Additionally, as we perform predictions in a 3D space [41],
the computational and memory costs associated with apply-
ing successive transformer decoder layers to dense masks
become impractical.

To overcome this challenge, we adapt the dense trans-
former head to a sparse variant. Specifically, we assert
that accurate segmentation is crucial for occupied voxels,
while non-occupied voxels need not be considered during
this phase. In the ensuing discussion, we outline several
steps to delineate the sparse transformer decoder.
Preprocessing and Notations. Given the sparse feature
pyramid V̂l, we first employ a linear binary classifier for
coarse segmentation. The binary classifier is trained to label
a voxel as empty if the semantic ground truth is 0 and non-
empty otherwise. We only preserve voxels that are clas-
sified as non-empty, resulting in a filtered, sparser tenser
V̂l = {(pi, fi)|i = 1, ..., Nl}, where we use Nl to denote
the number of remaining voxels for the l-th scale. Storing
variant features for the empty voxels is unnecessary, and in-
stead, we find it suffices to use only a single learnable token
pϕ to represent all the empty voxels.
Query Decoding. The former method [41] performs outer
product between queries Q ∈ RNq×C and 3D dense fea-
tures F ∈ RC×H×W×D to decode the queries to 3D mask
with shape (Nq, H,W,D), which has a time complexity of
O(NqHWDC). To facilitate inference speed, we only per-
form outer product between Q and pϕ ∪ {fi|(pi, fi) ∈ V̂l}
to obtain a series of occupied masks Mocc ∈ RNq×Nl and
a single mask Mϕ ∈ RNq×1 that represents empty voxels.
With the saved coordinates p of occupied voxels, we can
easily reconstruct the dense 3D mask M ∈ RQ×H×W×Z

from the predicted sparse tensor, using a scatter operation
that does not break the gradient flow. This way, the com-
plexity is reduced to O(NlNqC +HWZ) for mask predic-

tion and reconstruction. Note that

O(NlNqC +HWZ)

= O(HWZNqC(
Nl

HWZ
+

1

NqC
)) (2)

< O(HWZNqC),

because Nl/HWZ is rather smaller that 1 in our sparse
case. Moreover, the Nq queries are also input to a C-way
linear classifier to classify the corresponding 3D mask into
predefined C semantic categories.
Query Updating. Given the input L layers of multi-scale
sparse features, we iteratively alternate between query de-
coding and query updating in each transformer layer. With
the predicted 3D masks Ml−1 in the (l − 1)-th transformer
layer, we update the queries via

Ql = softmax
[
Ml−1 +WqQl−1(WkV̂l)

T
]
WvV̂l+Ql−1,

(3)
where Wq,Wk,Wv are linear layers, V̂l is the dense ver-
sion reconstrcuted from V̂l, and the attention mask Ml−1

at location (x, y, z) is obtained by

Ml−1(x, y, z) =

{
0 if σ

(
M

′

l−1(x, y, z)
)
≥ 0.5

−∞ otherwise
(4)

where σ is the sigmoid function, M
′

l−1 =
maxpooling(Ml−1) which resizes the 3D mask to the
same resolution of V̂l, similar to implementation in [41].

3.5. Objective Function

Considering the sparse transformer head formulates seman-
tic occupancy as a mask set prediction task [6, 41], bipar-
tite matching with Hungarian solver is used to assign binary
mask labels and corresponding semantic class labels to the
predicted masks. Based on the assignment, we calculate the
mask loss Lmask and classification loss Lcls. Additionally,
Ldepth is calculated between the predicted depth map and
ground-truth projected by point clouds, for supervision of
the LSS component. Moreover, the coarse binary classifi-
cation on non-empty voxels is also supervised by a segmen-
tation loss Lseg. Finally, the overall objective function is a
simple summation of these loss terms

L = Lmask + Lcls + Ldepth + Lseg. (5)

4. Experiments
4.1. Experimental Setup

Datasets. We evaluate our proposed SparseOcc on
nuScenes-Occupancy [33] and SemanticKITTI [2].
nuScenes-Occupancy [33] extends the famous large-scale
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MonoScene [4] C 18.4 6.9 7.1 3.9 9.3 7.2 5.6 3.0 5.9 4.4 4.9 4.2 14.9 6.3 7.9 7.4 10.0 7.6 - - -
TPVFormer [13] C 15.3 7.8 9.3 4.1 11.3 10.1 5.2 4.3 5.9 5.3 6.8 6.5 13.6 9.0 8.3 8.0 9.2 8.2 1132G 20G 0.57/0.73s
OpenOccupancy [33] C 19.3 10.3 9.9 6.8 11.2 11.5 6.3 8.4 8.6 4.3 4.2 9.9 22.0 15.8 14.1 13.5 7.3 10.2 1716G 19G 0.84/1.22s
C-CONet [33] C 20.1 12.8 13.2 8.1 15.4 17.2 6.3 11.2 10.0 8.3 4.7 12.1 31.4 18.8 18.7 16.3 4.8 8.2 1810G 21G 2.18/2.58s
SparseOcc (ours) C 21.8 14.1 16.1 9.3 15.1 18.6 7.3 9.4 11.2 9.4 7.2 13.0 31.8 21.7 20.7 18.8 6.1 10.6 455G 13G 0.19/0.25s

Table 1. Semantic occpancy prediction results on nuScenes-Occupancy [33] validation set. For accuracy evaluation, We report the
geometric metric IoU, semantic metric mIoU, and the IoU for each semantic class. For efficiency evaluation, we report the FLOPs, training
GPU memory, and 3D/overall inference latency. The C denotes camera and the bold numbers indicate the best results.
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LMSCNet* [27] C 28.61 6.70 40.68 18.22 4.38 0.00 10.31 18.33 0.00 0.00 0.00 0.00 13.66 0.02 20.54 0.00 0.00 0.00 1.21 0.00 0.00 -
3DSketch* [5] C 33.30 7.50 41.32 21.63 0.00 0.00 14.81 18.59 0.00 0.00 0.00 0.00 19.09 0.00 26.40 0.00 0.00 0.00 0.73 0.00 0.00 -
AICNet* [16] C 29.59 8.31 43.55 20.55 11.97 0.07 12.94 14.71 4.53 0.00 0.00 0.00 15.37 2.90 28.71 0.00 0.00 0.00 2.52 0.06 0.00 -
JS3C-Net* [37] C 38.98 10.31 50.49 23.74 11.94 0.07 15.03 24.65 4.41 0.00 0.00 6.15 18.11 4.33 26.86 0.67 0.27 0.00 3.94 3.77 1.45 -
MonoScene† [4] C 36.86 11.08 56.52 26.72 14.27 0.46 14.09 23.26 6.98 0.61 0.45 1.48 17.89 2.81 29.64 1.86 1.20 0.00 5.84 4.14 2.25 -
TPVFormer [13] C 35.61 11.36 56.50 25.87 20.60 0.85 13.88 23.81 8.08 0.36 0.05 4.35 16.92 2.26 30.38 0.51 0.89 0.00 5.94 3.14 1.52 946G
OccFormer [41] C 36.50 13.46 58.85 26.88 19.61 0.31 14.40 25.09 25.53 0.81 1.19 8.52 19.63 3.93 32.62 2.78 2.82 0.00 5.61 4.26 2.86 889G

SparseOcc C 36.48 13.12 59.59 29.68 20.44 0.47 15.41 24.03 18.07 0.78 0.89 8.94 18.89 3.46 31.06 3.68 0.62 0.00 6.73 3.89 2.60 393G

Table 2. Semantic scene completion results on SemanticKITTI [1] validation set. For accuracy evaluation, We report the geometric
metric IoU, semantic metric mIoU, and the IoU for each semantic class. For efficiency evaluation, we report the FLOPs. The C denotes
camera and the bold numbers indicate the best results. The methods with “*” are RGB-input variants reported by [4] for fair comparison.

autonomous driving datasets nuScenes [3] with 3D dense
semantic occupancy annotations on key frames for 1
“empty” class and 16 semantic classes using Augmenting
And Purifying pipeline. It covers 700 and 150 driving
scenes in the training and validation set of nuScenes.
The multi-view images and corresponding LiDAR
points are provided by the original nuScenes dataset.
SemanticKITTI [2] contains 22 sequences including
monocular images, LiDAR points, point cloud segmen-
tation labels and semantic scene completion annotations.
The sequence 08 is officially split for validation, sequences
00-10 (excluding 08) are used for training, and sequences
11-21 are the test set. It annotates each 3D voxel with 1
“empty” class or 19 semantic classes.
Evaluation Metric. We follow the common practice and
report the intersection over union (IoU) of occupied vox-
els regardless of their semantic labels to evaluate the recon-
structed geometry shape. The semantic mIoU of all seman-
tic classes is also reported to evaluate the semantic-aware
perception ability. For efficiency analysis, FLOPs is also
evaluated using the analysis tool provided by [22].
Implementation Details. For image encoder, we follow
the previous work [33, 41] for fair comparison and use Ef-
ficientNetB7 [29] and SecondFPN [39] on SemanticKITTI
and ResNet-50 [9] on nuScenes-Occupancy. The 2D to 3D
view transformation is implemented as the same as [33, 41].

And it generates a 3D feature volume of size 128×128×16
and 128×128×10 with 128 channels for SemanticKITTI
and nuScenes-Occupancy, which is converted to sparse rep-
resentation. We stack the sparse diffuser for L = 4 times,
each followed by a sparse convolution with stride 2 for
downsampling. The kernel size k of the orthogonal con-
volutions in sparse completion block and contextual aggre-
gation block is set to 3. The sparse voxel decoder projects
the multi-scale features to 192 channels and enhances them
via interpolation and summation. The sparse transformer
head consists of 9 layers for query updating and decoding
and the number of queries Nq is 100. Following [6, 41],
we sample 50176 points for supervision according to the
class frequency for fast training speed. During inference,
the predicted masks are upsampled 2× and 4× to the size
of ground-truth via trilinear interpolation for evaluation on
SemanticKITTI and nuScenes-Occupancy, respectively.
Optimization. AdamW [23] optimizer with an initial learn-
ing rate of 1e-4 and a weight decay of 0.01 is leveraged
during training. We train the model for 30 epochs on Se-
manticKITTI and 24 epochs on nuScenes-Occupancy with
a batch size of 8 on 8 v100 GPUs.

4.2. Benchmark Performance

In this part, we compare our SparseOcc with the published
state-of-the-art methods on nuScenes-Occupancy and Se-
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manticKITTI. The results of the former methods are directly
derived from their papers or code with their configurations.
NuScenes-Occupancy. As shown in Tab. 1, our SparseOcc
successfully outperforms the 3D dense representation based
C-CONet [33] by 1.7% geometry IoU and 1.3% semantic
mIoU. This accomplishment highlights SparseOcc’s effec-
tiveness. Besides, we can observe that the model FLOPs are
reduced by 74.9% relatively, which further justifies the effi-
ciency of our SparseOcc. More surprisingly, SparseOcc not
only produces a remarkable 80.8% improvement in mIoU
over TPVFormer [13] which uses efficient TPV view as
3D scene representation, but also reduces the FLOPs by
59.8%. We find that TPVFormer uses a relatively large
image backbone ResNet-101 [9], and the multi-layer im-
age cross-attention as well as cross-view attention between
dense TPV maps also impose lots of computational bur-
den. In contrast, our SparseOcc uses sparse operators in the
3D space, helping us achieve superior performance with a
lightweight implementation. Besides, SparseOcc exhibits a
noteworthy reduction in 3D inference latency, i.e., the time
for 3D feature processing.
SemanticKITTI. We quantitatively compare the proposed
SparseOcc with several previous works in Tab. 2. we can
see that SparseOcc achieves comparable performance with
OccFormer [41] and significantly better than other methods
in terms of semantic mIoU. Please note that different from
OccFormer which builds long-range and dynamic depen-
dency in the 3D space using Swin Transformer [21], the 3D
encoder of SparseOcc is built with spconv [7] only. Con-
sequently, the model FLOPs of SparseOcc is just 44.2% of
OccFormer [41] approximately.

4.3. Qualitative Evaluation

We visualize the 3D semantic occupancy prediction results
of several challenging scenes in nuScenes-Occupancy vali-
dation set in Fig. 4. As can be seen, compared with the 3D
dense counterpart C-CONet [33], our SparseOcc can bet-
ter complete the large area flat-like road (first row), capture
the complicated structure of vegetation (second row) and re-
construct car in the distance (third row). We can conclude
that benefiting from the proposed sparse latent diffuser and
learned sparse feature pyramid, our sparse occupancy trans-
former head can generate relatively accurate scene-level de-
scriptions in an efficient way.

4.4. Ablation Studies

Sparse Completion Blcok. As illustrated in Sec. 3.2, a 3D
diffusion kernel is spatially decomposed into a combination
of three orthogonal convolutional kernels in the sparse com-
pletion block. Tab. 3 ablates the type and number of dif-
fusion kernels. Surprisingly, we find that SparseOcc can
perform satisfactorily even if no sparse completion block
is applied. We think that it is because the decoder which

Conv Type Conv Num Kernel Size IoU mIoU

- 0 - 35.5 12.1

Regular
1

3×3×3
35.8 12.2

2 36.4 12.3
3 36.2 12.6

Decomposed
1 3×3×1 36.5 13.1
2 3×1×3 36.6 12.8
3 1×3×1 36.4 12.7

Table 3. Ablation on different designs of Sparse Completion Block
on SemanticKITTI val set.

Type IoU mIoU Memory FLOPs
FPN3D[20] 34.4 9.8 13.2G 307G

MSDeformAttn3D 36.7 13.3 19.8G 379G
Sparse Decoder 36.5 13.1 13.3G 279G

Table 4. Ablation on voxel decoder on SemanticKITTI val set.

Type IoU mIoU Memory FLOPs
Linear Head 36.8 11.8 9.8G 5.4G
Trans. Head 36.2 13.2 19.9G 19.0G

Sparse Trans. Head 36.5 13.1 13.3G 13.5G

Table 5. Ablation on segmentation head on SemanticKITTI val
set.

fuses sparse feature pyramid can also complete the scene to
some extent. Compared with regular 3×3×3 kernel, the de-
composed orthogonal achieves better scene completion and
segmentation results. Besides, stacking more convolution
blocks does not improve performance. Hence, we build our
sparse completion block with only a group of decomposed
orthogonal.
Sparse Feature Pyramid. As shown in Tab. 4, we ob-
serve that when the SparseOcc equipped with 6 layers of
multi-scale deformable attention (MSDeformAttn), it per-
forms better than the proposed sparse decoder. However,
when the layer number of MSDeformAttn decreases, the
IoU and mIoU both drop and lag behind the proposed sim-
ple sparse decoder. Moreover, the training GPU memory
and FLOPs of the MSDeformAttn3D are much higher than
the proposed interpolation and summation method. Com-
pared with FPN3D [20], our sparse voxel decoder is 2.1%
IoU and 3.3% mIoU higher with slightly more memory.
Sparse Transformer Head. We compare several differ-
ent prediction heads, including simple linear head, trans-
former head proposed in [41], and our sparse transformer
head in Tab. 5. As can be seen, the linear head achieves
the best geometry IoU of 36.8. We postulate it may be be-
cause the output of the linear head is supervised by an ex-
plicit geometry loss, i.e., a cross-entropy loss on occupied
and non-occupied voxels. On the contrary, the transformer
decoder formulates occupancy prediction as mask genera-
tion for each semantic class exclusively. Consequently, no
explicit supervision is or can be imposed on the occupied
voxels. SparseOcc uses a linear layer for coarse segmenta-
tion to filter out the non-occupied voxels and then proposes
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Multi-View Images C-CONet SparseOcc Ground-Truth

Missing 
Vegetation

Uncompleted 
Road

Missing
Car

Figure 4. Qualitative results of 3D semantic occupancy on nuScenes-Occupancy validation set. The input multi-view images are shown
on the leftmost and the occupancy predictions of C-CONet [33], our SparseOcc, and the ground-truth are then visualized sequentially.
Compared to 3D dense representation based C-CONet [38], our SparseOcc achieves better completion and segmentation as highlighted by
the red circles.

Method 2D Backbone Input Size IoU mIoU

C-CONet [33]
R-50 704× 256 16.6 8.6
R-50 1600× 900 19.3 10.3

R-101 1600× 900 20.2 11.4

SparseOcc R-50 704× 256 21.8 14.1
R-50 1600× 900 20.4 14.6

Table 6. Ablation on input size and 2D backbone on nuScenes-
Occupancy.

a sparse transformer head for mask prediction. Therefore,
it makes an appropriate trade-off between these two kinds
of occupancy heads and achieves satisfactory performance
with low training memory.
Input Image Size. A larger input image size has a larger
resolution of image features, thus having a larger feature
density in the 3D space, which further influences the per-
formance. From Tab. 6, we can observe that SparseOcc
still performs better than C-CONet, even though it is trained
using a smaller input size (704×256) and image backbone
(R-50), which further demonstrates the effectiveness of our
SparseOcc. Additionally, using a larger input image size
(1600×900) can improve mIoU for both C-CONet and the
proposed SparseOcc, thanks to the density increase of se-
mantic features. However, the IoU of SparseOcc drops
when using higher image resolution. We blame it on the
wrong hallucination on spatially empty voxels caused by
over-dense 3D sparse features. When inactivating the sparse

completion block in the last sparse latent diffuser layer, this
hallucination can be relieved.

5. Conclusion

In this paper, we explore the possibility of using pure
sparse representation for 3D scene description and present
SpaseOcc for 3D semantic occupancy prediction. Specif-
ically, a sparse latent diffuser with decomposed orthogo-
nal kernels is proposed to propagate the non-empty fea-
tures to their adjacent empty area. To efficiently complete
the scene, we stack layers of diffusers and downsampling
layers to generate a coarse-to-fine sparse feature pyramid,
which is further fused via simple interpolation and sum-
mation. In this way, the feature pyramid is enhanced by
multi-scale semantic information. Finally, we use a sparse
transformer head to query multi-scale sparse features and
generate semantic occupancy predictions. Without bells
and whistles, SparseOcc achieves state-of-the-art results on
nuScenes-Occupancy and comparable performance on Se-
manticKITTI, fully demonstrating its superior effectiveness
and efficiency.
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