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Abstract

Neural implicit fields have been a de facto standard in

novel view synthesis. Recently, there exist some methods

exploring fusing multiple modalities within a single field,

aiming to share implicit features from different modalities

to enhance reconstruction performance. However, these

modalities often exhibit misaligned behaviors: optimizing

for one modality, such as LiDAR, can adversely affect an-

other, like camera performance, and vice versa. In this

work, we conduct comprehensive analyses on the multi-

modal implicit field of LiDAR-camera joint synthesis, re-

vealing the underlying issue lies in the misalignment of

different sensors. Furthermore, we introduce AlignMiF, a

geometrically aligned multimodal implicit field with two

proposed modules: Geometry-Aware Alignment (GAA) and

Shared Geometry Initialization (SGI). These modules effec-

tively align the coarse geometry across different modalities,

significantly enhancing the fusion process between LiDAR

and camera data. Through extensive experiments across

various datasets and scenes, we demonstrate the effective-

ness of our approach in facilitating better interaction be-

tween LiDAR and camera modalities within a unified neu-

ral field. Specifically, our proposed AlignMiF, achieves

remarkable improvement over recent implicit fusion meth-

ods (+2.01 and +3.11 image PSNR on the KITTI-360 and

Waymo datasets) and consistently surpasses single modality

performance (13.8% and 14.2% reduction in LiDAR Cham-

fer Distance on the respective datasets). Code release:

https://github.com/tangtaogo/alignmif.

1. Introduction

Synthesizing novel views has recently seen significant
progress due to Neural Radiance Field (NeRF) [26], which
models a 3D scene as a continuous function and leverages

†Co-corresponding author.
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Figure 1. The misalignment issue in multimodal implicit field.

For implicit neural fusion, there is a trade-off between the modal-
ities due to the misalignment, making it challenging to improve
both modalities simultaneously. Conversely, our method addresses
the misalignment issue and achieves boosted multimodal perfor-
mance. The metrics are PSNR and Chamfer Distance (C-D).

differentiable rendering, resulting in a de facto standard to
render novel views. Notably, the recent NeRF methods have
shown impressive performance on downstream tasks such
as autonomous diving [43, 50, 52, 53]. In such practical
scenarios, both images and LiDAR sensors are typically uti-
lized. Currently, researchers extend the NeRF formulation
for novel LiDAR view synthesis [15, 42, 60], which treat
the oriented LiDAR laser beams as a set of rays and render
3D points and intensities in a similar fashion as RGB.

However, the exploration of multimodal learning in
NeRF is still in its early stages. There are initial attempts,
such as UniSim [55] and NeRF-LiDAR [60], to incorpo-
rate multimodal inputs through implicit fusion, i.e., sharing
the implicit features in one single field, aiming to lever-
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age the complementary information from different modal-
ities to enhance NeRF’s capabilities. Accordingly, the in-
tegration of multiple input modalities is expected to boost
model performance, but our results show that the naive
multimodal NeRF, which relies on direct implicit fusion,
does not outperform its unimodal counterpart. As illus-
trated in Fig. 1, it is challenging to improve both modalities
simultaneously. Intuitively, for NeRF optimization, incor-
porating more information is expected to lead to better re-
sults [7, 18, 32, 44, 59], which is not fully realized in current
multimodal fields when fusing LiDAR and camera modali-
ties. These observations highlight the need for ongoing re-
search and advancements in multimodal learning in NeRF.

In this study, we perform comprehensive analyses of
multimodal NeRF that integrates LiDAR and camera sen-
sors for joint synthesis. Our preliminary experiments, con-
ducted on real-world datasets such as KITTI-360 [23] and
Waymo [38], reveal that different modalities often contra-
dict each other. However, such conflicts are not observed in
the synthetic AIODrive dataset [49]. These findings lead us
to speculate that the underlying issue lies in the misalign-
ment of different modalities, e.g., spatial misalignment and
temporal misalignment. When modalities are not properly
aligned, the implicit fusion of conflicting information can
hinder network optimization, resulting in suboptimal out-
comes for both modalities. To further investigate and vali-
date this misalignment issue, we conducted extensive analy-
ses, including the examination and visualization of raw sen-
sor inputs, hash grid features, and the density values from
the geometry network. Moreover, we conducted experimen-
tal analyses on various network architecture designs to val-
idate our findings. These investigations provide valuable
insights into the misalignment issue and its implications on
the performance of the unified multimodal NeRF.

To tackle the challenge of misalignment in multimodal
NeRF, we propose a twofold solution, called AlignMiF, to
align the consistent coarse geometry across different modal-
ities while keeping their individual detail characteristics.
Firstly, we decompose the hash encoding to allow each
modality to concentrate on its own information. We then
apply an alignment constraint at the coarse geometry levels,
facilitating mutual enhancement and cooperation between
modalities, referred to as the Geometry-Aware Alignment
(GAA) module. Secondly, we utilize the hash grid features
from a pre-trained field as a share initialization of the ge-
ometry, referred to as the Shared Geometry Initialization
(SGI) module. This shared initialization further enhances
the alignment process, allowing each modality to capture its
respective details upon it. Both GAA and SGI aim to align
the coarse geometry while preserving their unique details.

Through comprehensive experiments conducted on mul-
tiple datasets and scenes, we validate the effectiveness of
our approach in boosting the interaction between LiDAR

and camera modalities within a unified framework. Our
proposed modules, GAA and SGI, contribute to improved
alignment and fusion, leading to enhanced performance and
more accurate synthesis of novel views. Specifically, as
a result, our AlignMiF achieves remarkable improvement
over the implicit fusion (e.g., +2.01 and +3.11 PSNR on
KITTI-360 and Waymo datasets) and consistently outper-
forms the single modality (e.g., 13.8% and 14.2% reduction
in LiDAR Chamfer Distance on the respective datasets).

Overall, our contributions are as follows:
• We perform comprehensive analyses of multimodal learn-

ing in NeRF, identifying the modality misalignment issue.
• We propose AlignMiF, with GAA and SGI modules, to

address the misalignment issue by aligning the consistent
coarse geometry of different modalities while preserving
their unique details.

• We demonstrate the effectiveness of our method quanti-
tatively and qualitatively through extensive experiments
conducted on multiple datasets and scenes.

2. Related Work

2.1. NeRF for Novel View Synthesis

Neural Radiance Fields (NeRF) [26] have revolutionized
the long-standing novel view synthesis. Many NeRF vari-
ants have been proposed, focusing on aspects such as ac-
celeration [5, 27, 56], anti-aliasing [2, 3, 13], managing ca-
sual camera trajectories [25, 45], and generalization capa-
bilities [16, 57]. There also emerges research leveraging
depth information for view synthesis [7, 28, 32, 44]. In par-
allel, great progress has been made in NeRF applications for
handling complex and large-scale environments such as ur-
ban outdoor scenes [20, 24, 31, 40, 43, 50, 52–54]. Concur-
rently, researchers extend the NeRF formulation for novel
LiDAR view synthesis [14, 15, 42, 60, 63], which treat the
oriented LiDAR laser beams in a similar manner to camera
rays. Given the recent advancements for novel view syn-
thesis in different modalities, in this work, we dig into the
investigation of the unified multimodal NeRF framework.

2.2. Multimodal Learning in NeRF

Recent works have also explored multi-task learning in
NeRF, which involves synthesizing panoptic or semantic
labels alongside RGB views [10, 62, 64]. However, the
exploration of multimodal learning in NeRF is still in its
early stages. Some current works have attempted to in-
corporate multimodal inputs, such as NeRF-LiDAR [60],
which leverages images, semantic labels, and LiDAR data
to generate LiDAR points and corresponding labels. An-
other work, StreetSurf [11], utilizes LiDAR as supervision
for street view multi-view reconstruction and can also gen-
erate 3D points. UniSim [55], on the other hand, is a neural
sensor simulator that takes multi-sensor inputs into a shared
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implicit field, and simulates LiDAR and camera data at new
viewpoints. These preliminary efforts primarily focus on
simple implicit fusion, i.e., directly sharing the implicit fea-
tures of different modalities in a single field. However, we
actually find that modalities in this multimodal NeRF often
contradict each other and cannot outperform its unimodal
counterpart. Our work delves deeper into exploring the in-
tricate interactions between multimodalities and proposes a
geometry-aligned multimodal implicit field.

3. Problem Analysis

3.1. Preliminaries

NeRF [26] models a scene as a continuous volumetric field.
Given a 3D location x and a viewing direction ✓ as input,
NeRF learns an implicit function f that predicts the volume
density � and color c as (�, c) = f(x,✓). Specifically,
given rays r originated from camera origin o in direction
d, i.e., r(t) = o + td, the corresponding pixel color is ap-
proximated by the numerical quadrature of the color ci and
density �i of samples along the ray: Ĉ(r) =

PN
i=1 Ti

�
1 �

exp(��i�i)
�
ci, where Ti = exp(�

Pi�1
j=1 �j�j) and �i is

the distance between adjacent samples.
More recent works [15, 42, 60] extend the traditional

NeRF to LiDAR sensor, treating the oriented LiDAR laser
beams as a set of rays. Slightly abusing the notation, let
r(t) = o + td be a ray casted from the LiDAR sen-
sor, where o denotes the LiDAR center, and d represents
the normalized direction vector of the corresponding beam.
Then the depth measurement D̂(r) can be approximated by
calculating the expectation of the samples along the ray:
D̂(r) =

PN
i=1 Ti

�
1� exp(��i�i)

�
ti. The view-dependent

features of LiDAR, including the intensities and ray-drop
probabilities, can be rendered similarly to RGB color.

3.2. Multimodal Learning in NeRF

Building on the NeRF formulations for different sensors
mentioned above, there have been preliminary works, such
as UniSim [55] and NeRF-LiDAR [60], integrating these
into a unified multimodal NeRF framework. These methods
directly share implicit features across different modalities,
and the optimization targets can be combined as:

Ltotal = �lLLiDAR(rl) + �cLcamera(rc), (1)

where rl 2 Rl and rc 2 Rc are the sensor training rays, and
� are weight coefficients to balance each term. However,
current efforts only primarily focus on simple implicit fu-
sion, and the multimodal NeRF has not been fully exploited.

3.3. The Misalignment Issue

Multimodal learning helps to comprehensively understand
the world, by integrating different senses. Accordingly,

Table 1. The misalignment issue. When directly implicit fusing
the multiple modalities cannot outperform their unimodal counter-
parts simultaneously in real-world datasets. While this challenge
is not present in the synthetic dataset. Here, w denotes the weight
ratio between the two modalities, w� = �c/�l.

Method w�
RGB Metric LiDAR Metric

PSNR" SSIM" C-D# F-score"

KITTI-360 (real-world)

i-NGP [27] – 24.45 0.787 – –
LiDAR-NeRF [42] – – – 0.088 0.920

UniSim-SF [55]
0.1 23.54 (-) 0.759 0.087 (+) 0.929
0.5 24.38 (-) 0.792 0.100 (-) 0.920
2.0 24.80 (+) 0.809 0.124 (-) 0.900

Waymo (real-world)

i-NGP [27] – 28.20 0.830 – –
LiDAR-NeRF [42] – – – 0.179 0.885

UniSim-SF [55]
0.5 26.41 (-) 0.789 0.172 (+) 0.891
1.0 27.12 (-) 0.805 0.181 (-) 0.885
5.0 28.33 (+) 0.830 0.227 (-) 0.840

AIODrive (synthetic)

i-NGP [27] – 34.43 0.893 – –
LiDAR-NeRF [42] – – – 0.178 0.873

UniSim-SF [55]
0.1 34.25 (-) 0.901 0.138 (+) 0.921
1.0 34.53 (+) 0.904 0.153 (+) 0.915
5.0 34.64 (+) 0.905 0.191 (-) 0.914

multiple input modalities are expected to boost model per-
formance. However, our findings suggest that the current
multimodal NeRF cannot surpass its uni-modal counterpart
in terms of performance. As shown in Tab. 1, regardless
of how we adjust the weights of the two modalities, we
find that it is challenging to improve both modalities si-
multaneously (more tuning results are shown in Fig. 10
of the appendix). Indeed, similar challenges have also
been observed in other multimodal research areas. Pre-
vious researchers claimed that different modalities exhibit
inconsistent representations and tend to converge at dif-
ferent rates, leading to uncoordinated convergence prob-
lems [30, 39, 46]. However, these theories are not appli-
cable to our scenario, as our representation is a unified field
that reflects the real world. Intuitively, for NeRF optimiza-
tion, it is expected that having more information would lead
to better results [7, 18, 28, 32, 59]. We further conducted
experiments on the synthetic dataset, AIODrive [49], which
was collected from CARLA Simulator [8]. As shown in the
bottom block of Tab. 1, we can observe that mutual boosting
between the two modalities could be achieved on the perfect
synthetic data. Based on these observations, we speculate
that the underlying issue lies in the misalignment of modal-
ities. When two modalities are not properly aligned, the im-
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plicit fusion of conflicting information causes the network
to struggle to determine the correct optimization direction,
resulting in suboptimal results for both.

(a)

(b) (c)

Figure 2. Analysis of misalignment from raw sensor inputs. (a)
Original image, (b) Image with projected points from associate Li-
DAR frame, (c) LiDAR points of all scene frames. As highlighted
in the red box, the observations obtained from LiDAR and camera
sensors for the same pole are distinct (zoom-in for better views).

To further investigate the misalignment issue, we be-
gin with the raw modality inputs. As illustrated in Fig. 2,
both the camera and LiDAR sensors essentially represent
the same overall scene, yet they exhibit variances in cap-
turing finer details. For example, when scanning the same
lamp post, the pole obtained from LiDAR appears to have
larger diameter compared to the one captured by the RGB
camera. In fact, the perceptual characteristics of these sen-
sors are inherently different. LiDAR lacks semantic percep-
tion of objects and provides rougher boundaries, while the
camera lacks distance perception. Moreover, even without
considering calibration errors between multiple sensors, in-
herent systematic errors exist in each sensor [48, 58], e.g.,
the different operating frequency and trigger mechanism of
camera, LiDAR, GPS, and IMU. Consequently, it becomes
challenging to align all details across the two modalities,
resulting in ambiguous conflicts within one unified field.

Next, we investigate the learned hash gird features of dif-
ferent modalities. The multi-resolution hash encoding in-
troduced by iNGP [27] is expressive and efficient, which is
a common practice in current works [11, 42, 55]. In Fig. 3,
we visualize the learned hash features on the x-y plane. It
is apparent that the learned geometry from LiDAR is well
represented, and the shape of the hash features aligns with
the scene. Then, both modalities primarily focus on their
respective field of view (FOV), with the camera capturing
the top-left part due to its front-facing orientation. Notably,
even in the overlap area of the FOV, the highlighted fea-
ture regions of interest differ, indicating conflicting ambi-
guity between the two modalities. Consequently, when uti-
lizing the simple implicit fusion, i.e., directly sharing the
implicit features of different modalities, the model becomes
confused by the misaligned modalities, resulting in disorga-
nized hash features (bottom row in Fig. 3), ultimately yield-
ing suboptimal results for both.

Trajectory
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Figure 3. Analysis of misalignment from bird’s eye view hash

grid features. We show the first 4 levels of the hash features on
the x-y plane. The camera is front-facing along the trajectory and
brighter or more saturated colors represent higher feature values.

Furthermore, we present additional analysis and exper-
iments in Fig. 5 and Tab. 4. These findings both provide
valuable evidence to support our claims and contribute to a
deeper understanding of the misalignment issue.

4. AlignMiF

In this section, we introduce our multimodal implicit field,
AlignMiF, with two proposed geometrical alignment mod-
ules, aiming to mitigate the misalignment problem and en-
hance performance across both modalities.

4.1. Geometry-Aware Alignment

To alleviate the misalignment issue between the two modal-
ities, we first decompose the hash encoding, allowing each
modality to focus on its own information; while subse-
quently, we need to enhance information interactions be-
tween modalities. Inspired by Neuralangelo [21] and HR-
Neus [22], we acknowledge that different levels of hash en-
coding correspond to different levels of fine-grained geom-
etry information. Specifically, the lower-indexed grid lev-
els contain the most information about the coarse geom-
etry, while the higher-level grids primarily contain infor-
mation about high-frequency details. As observed in our
earlier analysis, the misalignment primarily occurs at the
detailed levels, while both modalities share the same un-
derlying coarse scene geometry of the real world. Build-
ing upon this observation, we further propose a Geometry-
Aware Alignment (GAA), which specifically aligns the two
modalities at the coarse geometry levels, facilitating mutual
enhancement and cooperation between them.

Specifically, we denote the multi-resolution hash encod-
ing with total L levels and a feature dimension of d as �.
Given a query point x, the 3D feature grid at each level is
first trilinearly interpolated and then concatenated together
to form the final feature vector: �(x) = F1F2 . . . FL 2
RL⇥d, where Fl 2 Rd represents the interpolated feature at
level l. Then as previous works [21, 22], we expand the def-
inition of � to take in an additional parameter � that helps
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qualitative analysis of our propose GAA.

zero out the higher-level resolution feature grid:

�(x,�) = F 0
1F

0
2 . . . F

0
L, where F 0

l = wl(�)Fl,

wl(�) =
1� cos(⇡ · clamp(� � l + 1, 0, 1))

2
(2)

Intuitively, grid layer Fl will be fully activated if l  � and
all other higher grid layers will be zeroed out. Note that all
grid layers are available when � is not provided. We denote
the two decomposed hash encoding as �lidar and �camera,
and then our GAA can be formulated as:

 GAA(x,�) =

(
F(�lidar(x), �camera(x,�)) x ⇠ rl
F(�lidar(x,�), �camera(x)) x ⇠ rc

,

(3)
where F denotes the fusion module for the alignment, e.g.,
concatenation or attention mechanism. Shortly, our GAA
combines the hash features of the current modality with the
aligned coarse level hash features from another modality
and the illustration is on Fig. 4.

In Fig. 5, we visualize the learned density values from
the geometry MLP for sampled points along the ray. In
(a), the density values, reflecting the geometry, learned by

the LiDAR and camera are very inconsistent, which corre-
spond to the previously obtained hash features in Fig. 3. In
(b), when employing the implicit fusion, the learned densi-
ties can be confounded by misalignment between the two
modalities, resulting in erroneous geometry. Conversely, in
(c) and (d), our method achieves a more robust and compre-
hensive geometry representation that incorporates informa-
tion from both modalities. Specifically, the GAA module
aligns the coarse level of geometry, i.e., the consistent den-
sities, as shown in (c), while both modalities capture their
respective finer details as in (d), which demonstrates the ef-
fectiveness of our method.

4.2. Shared Geometry Initialization

In the visualizations of the hash features and density val-
ues shown in Fig. 3 and Fig. 5, it is evident that the learned
geometry from the camera can be inaccurate. This obser-
vation also conformed with the shape-radiance ambiguity
discussed in previous works [7, 28, 44]. Although we pro-
pose a geometry-aware alignment module to enhance the
camera’s geometry using LiDAR information, the learn-
ing and alignment process still remain implicit. To address
this, we propose utilizing the hash grids from a pre-trained
field with rough geometry, e.g., the trained LiDAR field, as
a shared geometry initialization for both modalities. Pre-
vious works [4, 55] have also suggested using LiDAR to
constrain the volume grids. However, considering the dif-
ferent FOV and the varying details of LiDAR and camera
data as analyzed earlier, we additionally learn the hash fea-
tures of both modalities after the initialized hash encoder,
rather than relying only on LiDAR. Then we directly add
hash features from the initial encoding to each modality as
the shared geometry information. Specifically, we denote
the shared initialized hash grid as �init, and the proposed
Shared Geometry Initialization (SGI) can be formulated as:

�SGI(x) =

(
�init(x) + �lidar(x) x ⇠ rl
�init(x) + �camera(x) x ⇠ rc

. (4)
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As shown in Fig. 6, after applying our SGI module, we ob-
serve remarkable improvements in the hash features of both
LiDAR and camera encoding, compared with Fig. 3. Espe-
cially, the camera’s hash features exactly focus on the rel-
evant regions of the scene geometry. These observations
demonstrate the effectiveness of our proposed module.

C
am
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a 

Li
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R 

Level 1 Level 2 Level 3 Level 4The Whole Scene 

Trajectory

Figure 6. Qualitative analysis of our propose SGI module.

In summary, our SGI leverages the initialization from a
pre-trained field as the shared coarse geometry while still
allowing the learning of hash features from both modalities
to capture their respective details. This aligns with the GAA
module, and both of them align coarse geometry while pre-
serving modalities’ unique characteristics.

4.3. AlignMiF Formulation

Overall, as illustrated in Fig. 4, combining the proposed two
simple yet effective modules, we summarize the formula-
tion of our AlignMiF as follows:

 SGI
GAA(x,�) =  GAA(x,�; �SGI)

=

(
F(�lidar(x)), �camera(x,�)) x ⇠ rl
F(�lidar(x,�), �camera(x)) x ⇠ rc

, (5)

where �SGI(x,�) = �init(x) + �(x,�).

5. Experiment

5.1. Experimental Setting

Datasets. We conducted experiments on three datasets:
one synthetic dataset, AIODrive [49], and two challeng-
ing real-world datasets, KITTI-360 [23] and Waymo Open
Dataset [38]. These datasets were collected using RGB
cameras and LiDAR sensors.
Evaluation metrics. For novel image view synthesis,
following the previous methods [26, 27], our evaluations
are based on three widely-used metrics, i.e., peak signal-
to-noise ratio (PSNR), structural similarity index measure
(SSIM) [47], and the learned perceptual image patch sim-
ilarity (LPIPS) [61]. For novel LiDAR view synthesis, as
works [15, 42], we report the Chamfer Distance (C-D) be-
tween the rendered and original LiDAR point clouds and
the F-Score with a threshold of 5cm. The novel intensity
image is evaluated using mean absolute error (MAE).

Baselines. For the uni-modal model, we consider the popu-
lar i-NGP [27] for novel image view synthesis and the con-
current LiDAR-NeRF [42] for novel LiDAR view synthe-
sis. For multimodal evaluation, we use UniSim [55] as the
main baseline. Since this work focuses on investigating the
relationship between multimodalities, we specifically re-
implement its implicit fusion component and also did not
consider dynamic foreground. To distinguish it from the
original UniSim, we refer to it as UniSim-Static-Implicit
Fusion, abbreviated as UniSim-SF. Details of dataset se-
quences and splits and implementation details are provided
in supplementary materials.

5.2. Main Results

Results on KITTI-360 and Waymo dataset. In Tab. 2, we
present the evaluation results on the KITTI-360 and Waymo
datasets. As mentioned in Sec. 3.3, the UniSim-SF model
fails to achieve simultaneous improvements in multimodal
performance, and there is a trade-off between the modal-
ities. To ensure a fair comparison, we carefully fine-tuned
the parameters to ensure that the LiDAR or camera modality
in UniSim-SF surpassed its corresponding single-modality
counterpart by a small margin, preventing either modality
from being significantly worse. Compared with the care-
fully tuned UniSim-SF model and the corresponding single-
modality models, our AlignMiF achieves superior results by
clear margins. Specifically, our method achieves remark-
able improvement over UniSim-SF by +2.01 and +3.11 im-
age PSNR on KITTI-360 and Waymo datasets respectively,
and outperforms the single-modality models overall, as evi-
denced by the 13.8% and 14.2% reduction in LiDAR Cham-
fer Distance respectively. With two proposed alignment
modules, our method facilitates better fusion of different
modalities, resulting in more accurate understanding of the
scene and improved results.

Furthermore, we provide qualitative results in Fig. 7,
which clearly demonstrate the mutual benefits of our Align-
MiF. As highlighted with the boxes, the LiDAR modality
significantly enhances the learning of image and depth qual-
ity in the camera, while the semantic information from RGB
aids the LiDAR in better converging to object boundaries.
Please refer to our supplementary materials for all scene re-
sults and more visualization results.

Results compared with StreetSurf. In Tab. 3, we specif-
ically compare the PSNR metric with StreetSurf [11] as it
does not learn LiDAR intensity and ray-drop. It is worth
noting that StreetSurf produces lower image results with
the implicit LiDAR-camera fusion compared to the single-
camera modality. This further emphasizes the misalignment
issue across different representations and methods. In con-
trast, our method successfully improves the performance of
both modalities and achieves state-of-the-art results.
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Table 2. Novel view synthesis on KITTI-360 dataset and Waymo dataset. AlignMiF outperforms the baselines in all metrics.

Method M
KITTI-360 Dataset Waymo Dataset

RGB Metric LiDAR Metric RGB Metric LiDAR Metric
PSNR" SSIM" LPIPS# C-D# F-score" MAE# PSNR" SSIM" LPIPS# C-D# F-score" MAE#

i-NGP [27] C 24.61 0.808 0.181 – – – 28.82 0.831 0.380 – – –
LiDAR-NeRF [42] L – – – 0.094 0.916 0.122 – – – 0.197 0.871 0.040
UniSim-SF [55]M LC 23.30 (-) 0.758 0.268 0.090 (+) 0.924 0.097 26.67 (-) 0.788 0.417 0.186 (+) 0.878 0.039
UniSim-SF [55]O LC 24.94 (+) 0.812 0.184 0.114 (-) 0.906 0.095 28.98 (+) 0.833 0.374 0.355 (-) 0.786 0.045
AlignMiF (ours) LC 25.31 (+) 0.826 0.164 0.081 (+) 0.928 0.099 29.78 (+) 0.845 0.339 0.169 (+) 0.885 0.038
M, L, C denotes modality, LiDAR, camera respectively. M and O represent tuning parameters towards LiDAR and camera modality respectively.

Table 3. Comparison with StreetSurf on Waymo dataset.

Sequence StreetSurf [11] AlignMiF

C LC C LC

seg1137922... 28.33 27.64 29.26 30.16
seg1067626... 29.01 27.68 29.52 30.27
seg1776195... 26.71 25.35 28.20 29.22
seg1172406... 28.50 27.86 28.30 29.47

Average 28.14 27.13 (-) 28.82 29.78 (+)

L, C denotes LiDAR, camera respectively and the metric is PSNR".

Figure 7. Qualitative results on KITTI-360 dataset. Our method
achieves mutual boosting between both modalities (zoom-in for
the best of views).

5.3. Ablation Study

Analysis of the misalignment from the network design.

During the early stages of exploring the multimodal prob-
lem, we conducted various experiments on the network ar-
chitecture. We attempted to enhance the network’s capacity
by increasing the hash encoding resolution and feature di-
mensions, as well as adjusting the depth and width of the
MLP network and increasing training iterations to handle
multimodal inputs. However, these attempts did not yield
significant improvements, as the underlying issue was not
identified. Subsequently, we delved into the network struc-
ture design, as illustrated in Fig. 8 and the results are present
on Tab. 4. In Fig. 8 (a), we decomposed the geometry

Table 4. Analysis of misalignment from the network design.

Method RGB Metric LiDAR Metric

PSNR" SSIM" C-D# F-score"

Single Modality 24.45 0.787 0.088 0.920

Decompose Geometry-net 24.43 0.784 0.084 0.929
Decompose Densities 24.56 0.788 0.084 0.929
+ Hard Constraint 24.85 0.806 0.089 0.926
Decompose Hash-encoder 24.42 0.793 0.087 0.931
+ Hard Constraint 24.53 0.793 0.084 0.929

Hash Encoder

…

…

Hash Encoder

Hash Encoder

Hash Encoder

…

…

(a) (b)

(c) (d)

Geometry 
MLP

Geometry 
MLP

Geometry 
MLP

Geometry 
MLP

Geometry 
MLP

Geometry 
MLP

Figure 8. Different designs of the network architecture. (a) De-
compose geometry net, (b) Decompose densities, (c) Decompose
hash encoder, (d) Decompose geometry net with hard constraint.

MLP and surprisingly found that separating the geometry
MLP resulted in almost no interference between the two
modalities. However, this separation also meant that they
did not mutually enhance each other. To further investigate
the issue with the geometry net, in Fig. 8 (b), we designed
a shared geometry MLP but allowed the network to sepa-
rately output two density values for each modality. We ob-
served that this approach also enabled independent learning
for both modalities, leading us to identify the issue as the
misalignment in the density values, or more specifically, ge-
ometry misalignment. Having identified the problem as the
geometry misalignment, we proceeded to decompose the
source hash decoding as Fig. 8 (c), and once again observed
that the two modalities did not affect each other. Further-
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Table 5. Ablation study for the proposed components.

Method RGB Metric LiDAR Metric

PSNR" SSIM" C-D# F-score"

Single Modality 24.45 0.787 0.088 0.920

SGI

Load LiDAR Encoder 24.34 0.784 0.096 0.920
+ Fix LiDAR Encoder 18.60 0.537 0.120 0.904
Detach RGB Density 12.41 0.597 0.098 0.916

GAA

Addition 24.47 0.808 0.081 0.929
Attention 24.48 0.791 0.089 0.929
Concatenation 24.64 0.810 0.079 0.930
Share Coarse-Geo 24.45 0.794 0.087 0.930

AlignMiF

w/ SGI 24.70 (+) 0.806 0.079 (+) 0.930
w/ GAA 24.64 (+) 0.810 0.079 (+) 0.930
AlignMiF 25.20 (+) 0.816 0.077 (+) 0.932

more, building upon the (b) and (c), we also tried to incorpo-
rate an alignment technique similar to the NeRF distillation
work [9]. Specifically, we directly aligned the density val-
ues of the two separate networks as Fig. 8 (d). Although this
hard constraint demonstrated some improvement in the out-
comes, it remained a forced alignment and failed to address
the underlying conflict. Consequently, the performance im-
provement was limited as in Tab. 4. Through these efforts
in model network structure design, we not only verified the
geometry misalignment issue but also inspired the design of
our AlignMiF, which involves decomposing hash encoding
and aligning coarse geometry.
Ablations on the proposed modules of AlignMiF. In
Tab. 5, we conduct an ablation study to analyze the effects
of the proposed components. Specifically, we observe that
both the GAA and SGI modules improve the multimodal
performance, which aligns with the qualitative analysis pre-
sented earlier in Fig. 5 and Fig. 6. Moreover, combining the
two modules leads to further improvements, indicating that
they effectively alleviate the misalignment issue.

We also provide an investigation of the design of these
modules. For SGI, we explored different initialization
strategies. One straightforward approach was to directly
load a pre-trained LiDAR encoder as the initialization for
geometry, referred to as Load LiDAR Encoder. However,
this approach did not yield better results due to misalign-
ment issues. Then we considered fixing the pre-trained ge-
ometry, i.e., Fix LiDAR Encoder, to mitigate the interfer-
ence caused by noisy camera geometry, and only the MLPs
were trained, similar to the training process in CLONeR [4].
Nevertheless, we got unfavorable results as the two modali-
ties had different FOVs, resulting in the training being effec-

tive only in the pre-trained LiDAR FOV as shown in Fig. 12
of the appendix. Moreover, the analyzed misalignment de-
picted in Fig. 2 also contributes to obstacles. Additionally,
we also attempted to detach the gradient of density from the
camera modality to avoid geometry conflicts, which is sim-
ilar to gradients blocking in Panoptic-Lifting [36], but the
FOV mismatch and misalignment issue persisted. Hence,
none of these designs proved as effective as our proposed
SGI, which provides shared initial coarse geometry while
allowing the learning of hash features from both modalities
to capture their respective details.

For GAA, we explored different fusion strategies for
alignment, including addition, concatenation, and attention
mechanisms. We adopted the efficient attention structure
from ER-NeRF [19]. Improvements can be observed with
each fusion approach, and we ultimately selected concate-
nation as it’s the most effective. Moreover, further explo-
ration of more powerful fusion modules for alignment re-
mains a promising research direction. Additionally, it’s
also considered to share the coarse geometry in GAA rather
than aligning, however, the results obtained are not satis-
factory. As also observed by Panoptic-Lifting [36], despite
the underlying scene geometry being the same, features re-
quired for different modalities and representations might be
slightly different, e.g., the LiDAR intensity and image color.
Thus, similar to other works [33, 37], we employ a separate
grid encoder for each specific modality.

6. Conclusion

In this paper, we thoroughly investigated and validated the
misalignment issue in multimodal NeRF through various
analyses, such as the examination and visualization of raw
sensor inputs, hash features, and density values, as well as
experiments on various network architectures. Futhermore,
we propose AlignMiF, with two simple yet effective mod-
ules, Geometry-Aware Alignment (GAA) and Shared Ge-
ometry Initialization (SGI), to address the misalignment is-
sue by aligning the consistent coarse geometry of different
modalities while preserving their unique details. We con-
duct extensive experiments on multiple datasets and scenes
and demonstrate the effectiveness of our proposed method
in improving multimodal fusion and alignment within a uni-
fied NeRF framework. We hope that our work can inspire
future research in the field of multimodal NeRF.
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