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Abstract

Global translation estimation is a highly challenging
step in the global structure from motion (SfM) algorithm.
Many existing methods rely solely on relative translations,
leading to inaccuracies in low parallax scenes and degra-
dation under collinear camera motion. While recent ap-
proaches aim to address these issues by incorporating fea-
ture tracks into objective functions, they are often sensitive
to outliers. In this paper, we first revisit global transla-
tion estimation methods with feature tracks and categorize
them into explicit and implicit methods. Then, we highlight
the superiority of the objective function based on the cross-
product distance metric and propose a novel explicit global
translation estimation framework that integrates both rel-
ative translations and feature tracks as input. To enhance
the accuracy of input observations, we re-estimate relative
translations with the coplanarity constraint of the epipo-
lar plane and propose a simple yet effective strategy to se-
lect reliable feature tracks. Finally, we demonstrate the ef-
fectiveness of our approach through experiments on urban
image sequences and unordered Internet images, showcas-
ing its superior accuracy and robustness compared to many
state-of-the-art techniques.

1. Introduction
The accurate estimation of camera poses and the gen-

eration of scene point clouds from image collections are
fundamental tasks in the field of 3D vision, with broad ap-
plications in areas such as autonomous driving [7, 42, 43],
augmented reality [31, 39, 40], and Neural Radiance Fields
[33, 51, 55]. Generally, SfM stands out as a common and ef-
fective approach for achieving these objectives. It begins by
constructing a view graph [4, 5, 50], where nodes represent
cameras, and edges connect cameras that share a sufficient
number of feature matches. Subsequently, the camera poses
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are estimated, and the scene structure is triangulated.
The primary manner for camera pose estimation is incre-

mental, such as COLMAP [44]. This method commences
by carefully selecting an image pair to create an initial
model. Then, images containing a sufficient number of 2D-
3D correspondences are registered using the Perspective-n-
Point (PnP) algorithm [17, 18]. Finally, the scene struc-
ture and camera poses are jointly estimated through an iter-
ative process that includes triangulation, bundle adjustment
(BA) [41, 52], and PnP steps. While incremental methods
[44, 48, 49] exhibit exceptional precision and robustness
against outliers, they are susceptible to variations in the se-
quence of image registration, potentially leading to error ac-
cumulation and drift [25]. Additionally, the repetitive, non-
linear bundle adjustments significantly impede efficiency,
making them unsuitable for large-scale scenes.

To address these issues in incremental methods, global
approaches [8, 30, 32, 58] are proposed, where all cameras
are registered simultaneously by estimating global rotations
and translations from relative poses. Subsequently, scene
structure is triangulated and optimized through a single BA
refinement, leading to substantially improved efficiency and
uniform error distribution across all images. Specifically,
the global poses (Ri, ti) and relative poses (Rij , tij) of the
camera satisfy the following equations:

RjR
T
i = Rij ,

ti − tj
||ti − tj ||2

= RT
j tij = vij . (1)

The notation vij denotes relative translation in the global
coordinate system. For global rotation estimation, exist-
ing methods [9, 10, 22, 29] based on the Lie algebra struc-
ture have been well-studied. By contrast, relative transla-
tion estimation is sensitive to outliers [37, 47], low-parallax
feature matches [12, 30] and has scale uncertainty, which
makes global translation estimation harder. Approaches
that rely exclusively on relative translations are limited to
registering cameras within a parallel rigid graph [3, 38]
and encounter issues of degeneracy when cameras undergo
collinear motion. Even if the camera motion trajectory is
nearly collinear, slight perturbations in relative translations

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

20686



               

           

    

 

   

   

        

           

    

 

   

           

           

    

 

   

                

               

           

    

 

   

   

        

           

    

 

   

        

           

    

 

   

                             

Figure 1. Camera motion trajectories of part of the KITTI [19]
dataset, estimated by our HETA and several state-of-the-art meth-
ods, including LUD [38], CReTA [32], PGILP [30] and LiGT [8].

can lead to substantial changes in estimated camera posi-
tions, which makes it impossible to achieve accurate estima-
tions with solely relative translations. To address these chal-
lenges, some methods incorporate constraints from feature
tracks into their objective functions. Depending on whether
the corresponding 3D points of feature tracks are estimated
during optimization, these methods can be categorized as
either implicit or explicit. Most implicit methods estimate
camera baseline scales [14, 15, 26] or leverage camera-to-
point constraints from implicit 3D points [16, 30], which
are all sensitive to relative translation outliers. To address
this issue, LiGT [8] aims to construct constraints with solely
feature tracks. However, it lacks robustness as feature tracks
generally exhibit higher outlier ratios than relative transla-
tions. A typical explicit method, 1DSfM [54], which incor-
porates both camera-to-camera and camera-to-point con-
straints to estimate 3D points and camera positions, also
yields noisy solutions when dealing with feature track out-
liers. The failure of 1DSfM is primarily attributed to the
use of an inappropriate objective function and inaccurate
observations. In this study, we revisit these issues and in-
troduce a novel hybrid explicit translation averaging frame-
work named HETA. The term “hybrid” reflects the use of
both relative translations and feature tracks as inputs.

Our contributions span three key aspects: (1) We cat-
egorize global translation estimation methods with feature
tracks into explicit and implicit methods and revisit their
strengths and weaknesses. (2) We perform a comparative
analysis of two forms of linear objective functions and in-
troduce a novel hybrid explicit method to concurrently es-
timate cameras and points in a two-step process, involving
robust L1 norm optimization followed by unbiased L2 norm
optimization. (3) To improve the accuracy of relative trans-
lations, we re-estimate them with the coplanarity constraint
in epipolar geometry. To enhance the robustness of this re-
estimation, we analyze the impact of parallax angles and fil-
ter out unstable feature matches. Finally, we propose a sim-

ple yet effective method for selecting reliable feature tracks.
We validate our method through experiments on both the

sequential KITTI odometry benchmark [19] and the Inter-
net dataset 1DSfM [54]. As shown in Fig. 1, our approach
outperforms many state-of-the-art global SfM techniques.

2. Related Work
2.1. Global Rotation Estimation

Global translation estimation presumes the availability
of global rotation estimation, which is a well-studied prob-
lem. Govindu and Chatterjee [9, 10, 22] propose to estimate
global rotations in Lie algebraic structure. For a better ini-
tialization, Lee et al. [29] propose a hierarchical strategy
and Yang et al. [56] present an end-to-end scheme. In both
Zhang et al. [57] and Sidhartha et al. [45], the weights for
relative rotations are emphasized for more accurate results.

2.2. Global Translation Estimation

Without Feature Tracks. Govindu [21] proposes a least-
squared solution of global translation estimation and refines
the solution with iterative weights. Several works [27, 28,
35, 46] utilize L∞ norm-based quasi-convex optimization
to estimate camera translations. However, these methods
necessitate meticulous handling of outliers [38, 54]. Ozye-
sil et al. [38] use pairwise feature matches to estimate rel-
ative translations and propose a least unsquared deviations
(LUD) formulation to enhance the robustness. Goldstein et
al. [20] propose to minimize the projection of ti − tj on
the orthogonal complement of vij under L1 norm by the al-
ternating direction method of multipliers (ADMM) method.
Zhuang et al. [59] propose an angle-based formulation with
an iterative reweighted least square (IRLS) scheme to mit-
igate the impact of different camera baselines. Zhu et al.
[58] introduce a distributed framework to enhance the effi-
ciency in large-scale scenes. Manam et al. [32] propose an
iterative averaging scheme to filter outliers and refine rela-
tive translations with re-weighted feature correspondences.
With Feature Tracks. For explicit methods, camera trans-
lations and 3D points are estimated simultaneously. For ex-
ample, Crandall et al. [13] employ a discrete Markov Ran-
dom Field formulation to estimate cameras and 3D points.
Wilson et al. [54] propose to initially eliminate relative
translation outliers through multiple one-dimensional pro-
jections and subsequently integrate both relative transla-
tions and feature tracks into a non-convex objective func-
tion. For implicit methods, 3D points are not estimated but
are represented with feature rays. Then, the depths of fea-
ture points are used to impose constraints on the camera
translations. Cui et al. [15] estimate the camera baseline
scales based on a satellite graph, and then compute the cam-
era motions by similarity averaging. Similarly, based on the
adjacent triangles in feature tracks, Cui et al. [14] utilize the
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Figure 2. This figure shows a toy example of camera-to-camera
and camera-to-point constraints, where red points denote cameras
and blue point denotes a sample 3D point Pk. Red arrows rep-
resent the direction of feature rays. Cameras tl and tr have the
largest parallax angle in the corresponding feature track of Pk.

law of sines to estimate the scale of camera baselines. Cui et
al. [16] propose to represent 3D points with relative transla-
tions and feature rays based on the rotation trick [26]. Then
a linear constraint is derived for cameras seeing a common
scene point. However, in low parallax scenes, the repre-
sented 3D points are unstable and the relative translations
are error-prone. To enhance the stability of representation,
Liu et al. [30] propose to represent each 3D point with two
cameras featuring a sufficient parallax angle. Then, a linear
constraint is constructed between the represented 3D point
and the remaining cameras in each feature track. Cai et al.
[8] propose a linear global translation (LiGT) constraint,
where 3D points are represented solely with feature rays,
aiming to avoid the impact of errors in relative translations.

3. Explicit vs. Implicit
We revisit the explicit and implicit methods and conduct

a thorough analysis of their strengths and weaknesses.
Assuming light rays emitted from a 3D point Pk gen-

erate n projection feature points on n camera planes. For
a feature point, we denote its coordinate in the local nor-
malized camera coordinate system as XT

ki = (xki, yki, 1)
T ,

where k is the index of feature track or 3D point, i is the
index of camera. The relationship between 3D points and
cameras in the global camera coordinate system satisfies:

Pk − ti
||Pk − ti||2

= RT
i

Xki

||Xki||2
= fki. (2)

Here ti denotes camera position and fki denotes the nor-
malized feature ray from camera ti to 3D point Pk. From
Eq. (1) and Eq. (2), the mathematical expressions for the
camera-to-camera constraint and camera-to-point constraint
are equivalent. Therefore, the core idea of explicit methods
is to estimate 3D points using the same objective function
employed for estimating camera translations. Compared to
the error-prone relative translations in low parallax scenes,
feature rays, as raw information derived from images, nat-
urally exhibit higher precision. Hence, using feature rays
in explicit methods can theoretically deliver superior per-
formance compared to methods that rely solely on relative

translations. Implicit methods primarily constrain cameras
in two ways. One category of approaches [14, 15, 26] lever-
ages the depth consistency of feature points to compute the
camera baseline scales. An alternative category of meth-
ods [8, 16, 30] represents 3D points with feature tracks and
constrains cameras based on these 3D points and their cor-
responding feature rays. For the first type, we take [14]
as an example. As shown in Fig. 2, two adjacent triangles
{Pk − tl − tr} and {Pk − tl − ti} are constructed by con-
necting the 3D point to its visible cameras. According to
the sine theorem, the ratio of two camera baselines is:

||tl − tr||2
||tl − ti||2

=
sin θi · sinαlr

sin θr · sinαli
. (3)

However, this method is highly sensitive in low parallax
scenes. On one hand, the relative translation estimation is
inaccurate in low parallax scenes, leading to incorrect an-
gles such as θi and θr. On the other hand, the low parallax
angles, such as αli, in the denominator result in numerical
instability. This means that slight changes in parallax angles
lead to substantial changes in the computation of the ratios.
For the second type of implicit method, a linear constraint
is derived for cameras seeing a common scene point. How-
ever, the representation of 3D points in [16] and [30] still
relies on relative translations, whose errors are accumulated
into the represented 3D points. To handle these concerns,
Cai et al. [8] propose a LiGT constraint to linearly represent
the 3D point for each feature track only by feature rays in
two base cameras with the largest parallax angle. As shown
in Fig. 2, for a feature track with two base cameras tl, tr,
the depth of feature point in camera l is computed by:

||Pk − tl||2 =
||tl − tr||2 · sin θr

sinαlr
=

||fkr × (tl − tr)||2
||fkl × fkr||2

=
((fkl × fkr)× fkr) · (tl − tr)

||fkl × fkr||22
.

(4)
From Eq. (4), Pk is represented by tl, tr and feature rays:

Pk = tl +
fkl((fkl × fkr)× fkr)

T

||fkl × fkr||22
(tl − tr). (5)

Based on Eq. (2), camera-to-point constraints are estab-
lished between the implicit 3D point and the remaining vis-
ible cameras in the corresponding feature track, such as ti.

We compare these two kinds of methods in two key as-
pects. In terms of robustness, explicit methods typically
perform better than implicit methods, since the 3D point
for each feature track is optimized with all feature rays in
explicit methods, while the 3D point is represented only
with two feature rays from base cameras in implicit meth-
ods. In terms of efficiency, although implicit methods avoid
the optimization of additional variables, the newly intro-
duced camera-to-point constraints increase the connectiv-
ity of cameras, thereby disrupting the sparsity characteristic
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Figure 3. A toy example showing how angular errors in feature
rays affect the normal vector of epipolar plane.

of the optimization matrix compared to conventional global
translation averaging methods [32, 59]. As shown in our
experiments, the efficiency of the explicit methods is com-
parable to that of the implicit methods.

4. Our Hybrid Explicit Method
Incorporating constraints from feature tracks brings a lot

of benefits, but also yields a noisy solution [54] when there
are many outliers in the feature tracks. In contrast, relative
translations can offer more direct and stringent constraints
between cameras than feature rays. To enhance robustness
and efficiency, instead of just using the entire feature tracks
like [8, 30], we utilize the relative translations in the view
graph to directly constrain the relationship between cam-
eras and select more reliable feature tracks to constrain the
relationship between cameras and points.

A view track graph G = {V
⋃
P,Ev

⋃
Ep} is first con-

structed, where each node in V represents a camera, each
node in P represents a 3D point, each edge in Ev connects
pair of cameras in V and each edge in Ep represents a fea-
ture ray from the camera to the 3D point. Let C be the
camera-to-camera constraints and P be the camera-to-point
constraints. The objective function is formulated as:

min
V ;P

∑
Ev

ρ(||C||p) +
∑
Ep

ρ(||P||p), (6)

where p denotes the optimization norm and ρ(·) denotes the
robust estimator function. Considering robustness, there are
three primary tasks: (1) Enhancing the precision of relative
translations in low parallax scenes; (2) Selecting reliable
feature tracks; (3) Defining robust objective functions for
two types of constraints. We address each of these tasks
in the following subsections and present our complete opti-
mization framework at the end.

4.1. Relative Translation Re-estimation

In two-view epipolar geometry, the coplanarity con-
straint is defined as: Xkj · (tij × RijXki) = 0. Given
global camera rotations, this constraint is rewritten as:

(RT
i Xki ×RT

j Xkj) ·RT
j tij = 0

⇔ (fki × fkj) · vij = 0,
(7)

where vij is the same as defined in Eq. (1). The de-
tailed derivation of Eq. (7) is provided in our supplemen-
tal material. From Eq. (7), each relative translation can be

re-estimated using the normal vectors of epipolar planes,
which are calculated by fki × fkj . Due to inaccuracies in
both camera intrinsic parameters and global rotations, the
normal vectors estimated from the feature rays inevitably
exhibit some angular errors. The method presented in [38]
re-estimates relative translations with all normalized normal
vectors by minimizing the cosine angles between the rela-
tive translations and normal vectors, which are equivalent to
minimizing the sine values of the angular error in the normal
vectors. However, as the accuracy of the normal vectors is
also influenced by parallax angles, it is unreasonable to em-
ploy the same weight for each normal vector during the es-
timations. To investigate how angular errors in feature rays
affect the normal vectors across varying parallax angles, we
decompose them into components along both the normal di-
rection and the epipolar plane direction. Since errors along
the epipolar plane direction do not impact the direction of
the normal vector, for simplicity, we exclusively consider
errors along the normal direction. As shown in Fig. 3, two
feature rays fki,fkj triangulate a 3D point Pk with a par-
allax angle of α. A minor angular error θ occurring in fki

along the normal direction results in a deviation from fki to
f ′
ki. We mark a point A on f ′

ki and extend a perpendicular
line from point A to fki, intersecting it at point B. Sub-
sequently, we extend another perpendicular line from point
B to fkj , intersecting it at point C. As the angular error θ
is along the normal direction, line AB is perpendicular to
the plane {Pk −B−C}. Hence, line PkC is perpendicular
to plane {A − B − C}, which also means that the angle γ
between AC and BC, is equal to the angular error of the
normal vector. As the angle γ is expected to be small, sin γ
approximately equals tan γ. We have

sin γ ≈ tan γ =
||AB||
||BC||

=
||PkB|| · tan θ
||PkB|| · sinα

=
tan θ

sinα
. (8)

From Eq. (8), when θ is fixed, the angular error of the
normal vector sin γ and sinα exhibit an inverse relation-
ship. This implies that the larger the parallax angles, the
more accurate the normal vectors become. Therefore, in
contrast to the method in [38] where the normal vectors
fki × fkj are normalized, we maintain the reasonable
weight ||fki×fkj ||2 = sinα for each feature match during
the estimations. Then, an IRLS scheme [24] is leveraged to
estimate relative translations with the objective function:

min
vij

∑
k

ρ(||(fki × fkj) · vij ||2) s.t. ||vij ||2 = 1. (9)

The robust estimator function is defined as the Cauchy loss
function ρ(ε) = log(β2 + ε2), with the weight function
ϕ(ε) = β2

β2+ε2 , where ε denotes the residual for each ob-
servation and β is the loss width. Furthermore, when er-
rors in normal vectors become significantly large for low
parallax angles, estimating relative translations or verifying
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Figure 4. Residuals of two linear objection functions: ||sij×(si −
sj)||2 and ||si − sj − λijsij ||2 under different circumstances.

feature matches based on coplanarity consistency becomes
invalid. Therefore, prior to estimating relative translations,
we initially filter feature matches with parallax angles be-
low a predefined threshold, denoted as A.

4.2. Feature Tracks Selection

With the re-estimated relative translations, we filter out
feature matches that violate coplanarity or cheirality con-
straints [23] and construct feature tracks using the union-
find algorithm [34]. As numerous feature tracks may con-
tain a high ratio of feature ray outliers, only a selected sub-
set of feature tracks is employed to enhance both efficiency
and robustness. According to Eq. (8), the coplanarity con-
sistency of feature matches with larger parallax angles is
more reliable. Therefore, all feature tracks are sorted in
descending order based on their maximum parallax angles.
We then examine each feature track to determine whether
it can establish a connection between images that lack suf-
ficient coverage times. This process continues until the se-
lected subset of tracks covers all cameras at least N times.

4.3. Definition of Objective Function

Both camera-to-camera and camera-to-point constraints
can be represented as the formulation: si−sj = ||si−sj ||2·
sij , where si, sj represent cameras or points and sij repre-
sents a known normalized vector from sj to si, e.g. a fea-
ture ray or a relative translation. We compare two types of
linear objective functions, including the cross-product-form
||sij×(si − sj)||2 and the scale-form ||si − sj − λijsij ||2,
where λij is a scale variable. To remove scales and direc-
tions ambiguity, inequality constraints sij · (si − sj) ≥ 1
and λij ≥ 1 are respectively utilized for the cross-product-
form and the scale-form objective function.

Let sGij be the ground truth of sij . For most cases when
sij ·sGij ≥ 0, both inequality constraints define correct feasi-
ble regions. In the case of an optimal solution, as illustrated
in Fig. 4 (a), the magnitudes of residuals in both objective
functions are identical. Meanwhile, λij in the scale-form
equals sij ·(si−sj), representing the magnitude of the pro-
jection of si−sj on sij . Therefore, λij is a redundant vari-
able since it is entirely determined by the current si, sj and
known sij . Moreover, when scale variables exhibit a wide
range of variation, such as in cases with disparate lengths
of baselines or depths of feature rays, they often struggle
to converge to the optimum. This significantly impacts the

overall accuracy and efficiency of practical optimization.
When sij has a significant error resulting in sij ·sGij < 0,

λij in the scale-form equals the low bound 1 to minimize
penalization as shown in Fig. 4 (b). The inequality con-
straint for the cross-product-form offers an incorrect fea-
sible region, leading to a biased solution. However, with
our relative translation re-estimation, the accuracy of over-
all relative translations is improved. Moreover, the issue of
significant direction errors is well-solved in 1DSfM [54] by
multiple random 1-dimension projections, enabling the fil-
tration of most relative translations with significant errors.
Hence, the cross-product-form objective function is used in
our method for better convergence. A detailed comparison
between these two forms is conducted in the experiments.

4.4. Optimization Framework
To avoid redundant and incorrect constraints from fea-

ture rays, only the camera-to-camera inequality constraints
are utilized to remove the inherent positional and scale am-
biguity. The convex objective function is optimized under
the L1 norm for robustness, as demonstrated below:

min
ti,i∈V ;
Pk,k∈P

∑
ij∈Ev

||vij×(ti − tj)||1 +
∑

ki∈Ep

||fki×(Pk − ti)||1,

s.t.
∑
i∈V

ti = 0, vij · (ti − tj) ≥ 1, ∀ij ∈ Ev. (10)

However, as mentioned in [59], the solution of Eq. (10)
is biased for disparate scales of camera baselines and fea-
ture point depths and the non-convex angle-based objective
function needs a good initialization. Therefore, an unbiased
angle-based objective function is utilized to refine the solu-
tion of Eq. (10) with a robust IRLS scheme as below:

min
ti,Pk
k∈P ;
i∈V ;

∑
ij∈Ev

ρ(H(vij ,
ti − tj

||ti − tj ||2
)) +

∑
ki∈Ep

ρ(H(fij ,
Pk − ti

||Pk − ti||2
)),

s.t.
∑
i∈V

ti = 0, where H(sij , ŝij) =

{
||sij×ŝij ||2, sTij ŝij ≥ 0;

1, sTij ŝij < 0.

(11)
The robust estimator function ρ(·) is the same as defined in
Eq. (9). The entire framework of HETA is shown below:

Algorithm 1 Hybrid explicit translation averaging method
Input: Pairwise feature matches and global camera rotations.
Output: Camera positions ti, ∀i ∈ V ; 3D points Pi, ∀i ∈ P .
1: Filter out feature matches with low parallax angle;
2: Re-estimate relative translations with known rotations;(Sec. 4.1)
3: Remove image matches that do not align with relative translations;
4: Select feature tracks to build view track graph G; (Sec. 4.2)
5: Estimating camera translations and 3D points (Sec. 4.4)

5. Experiments
Our method is demonstrated through experiments on

both sequential dataset KITTI [19] and unordered dataset
1DSfM [54]. For the 1DSfM dataset, view graphs and
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Figure 5. This figure shows the cumulative distribution functions of the relative translation angle errors for KITTI-06, KITTI-09, 1DSfM-
PIC and 1DSfM-ROF (from left to right). The setting of ‘Normalized, A=0.0◦ ’ corresponds to the traditional method in [38].

Data LUD[38] CReTA-BATA [32] LiGT[8] PGILP[30] 1DSfM[54] HETA
Init BA Init BA Init BA Init BA Init BA L1 L2 BA

Name(N ) ẽ ē ẽ ē ẽ ē ẽ ē ẽ ē ẽ ē ẽ ē ẽ ē ẽ ē ẽ ē ẽ ē ẽ ē ẽ ē
00(9082) 29.8 49.3 26.9 51.7 16.9 35.9 14.4 35.5 85.6 2e2 85.0 2e2 7.4 14.6 7.0 14.1 1e2 1e2 1e2 1e2 3.0 7.7 2.6 7.6 2.4 7.3
01(2202) 93.8 1e2 76.0 2e2 70.1 2e2 55.4 9e2 55.4 9e2 41.5 1e3 53.8 1e2 35.6 1e2 4e2 2e3 4e2 7e2 29.6 1e2 32.9 1e2 36.1 1e2
02(9322) 22.5 26.5 20.9 26.1 18.2 23.5 16.9 22.4 2e2 2e2 1e2 2e2 30.1 43.1 29.0 43.1 2e2 2e2 2e2 2e2 4.5 5.7 4.2 6.3 4.6 6.5
03(1602) 9.5 14.3 5.8 21.9 7.5 17.4 5.7 15.5 23.1 78.9 22.1 75.0 5.8 30.3 5.7 28.9 1e2 1e2 1e2 1e2 0.2 0.4 0.2 0.4 0.1 0.3
04(542) 2.9 9.9 0.1 0.3 4.1 19.4 0.1 0.3 7.2 44.1 0.1 0.3 1.4 2.0 0.1 0.3 3.9 5e2 0.1 0.2 0.4 1.2 0.2 1.1 0.1 0.2
05(5522) 10.1 24.6 9.3 23.6 11.7 18.2 11.1 17.7 78.5 1e2 67.1 1e2 7.5 11.3 6.0 10.6 1e2 1e2 1e2 1e2 1.6 2.8 1.6 2.7 1.6 2.5
06(2202) 21.6 46.6 20.2 46.5 16.1 38.6 14.9 39.6 26.6 61.0 18.1 64.0 6.0 20.1 2.9 17.4 86.1 1e2 89.3 1e2 0.6 1.1 0.6 1.0 0.2 0.4
07(2202) 9.0 12.5 7.4 9.6 9.4 13.0 7.9 11.5 27.6 35.4 22.0 43.1 5.0 8.8 1.1 6.2 74.4 5e2 72.7 3e2 0.8 1.1 0.7 1.0 0.5 0.9
08(8142) 22.0 26.4 20.4 30.6 13.8 20.3 12.3 19.3 1e2 4e2 1e2 3e2 18.2 21.1 17.1 21.7 2e2 2e2 2e2 3e2 5.6 6.9 5.6 6.9 5.6 6.9
09(3182) 12.3 43.8 9.9 41.9 12.5 29.9 9.9 31.2 53.1 1e2 63.5 1e2 7.7 17.8 6.6 18.8 1e2 2e2 1e2 2e2 1.7 3.7 1.7 3.7 1.8 3.8
10(2402) 8.8 14.5 8.1 23.1 8.3 9.2 6.2 8.1 30.7 52.3 27.4 51.2 8.6 12.5 7.8 12.1 64.1 1e2 64.6 97.9 0.5 4.2 0.4 4.2 0.6 4.2

Table 1. Camera position accuracy before and after BA for different methods on the KITTI dataset. N represents the number of cameras
in the view graph, and ẽ and ē respectively denote the median and mean distance error in meters. The best results are shown in bold.

camera pose references were estimated by Bundler [48].
For a more accurate comparison, we employ the method
COLMAP [44] to re-estimate view graphs and camera
poses. To obtain the real scales for the reconstructions, we
utilize the similarity transform [53] and RANSAC [11] al-
gorithms to align the re-estimated camera poses with the
results presented in [48] and consider the transformed cam-
era poses as the new references. For the KITTI dataset, the
ground truth camera poses are released in [19] and the view
graphs are constructed by COLMAP, where similar image
pairs are searched via the retrieval method NetVlad [2].

The method of Chatterjee [9] is used to estimate global
camera rotations. To demonstrate the superiority of HETA,
we conduct a comparison with several methods which in-
clude implicit methods like LiGT [8] and PGILP [30], a
typical explicit method 1DSfM [54], as well as the methods
that rely exclusively on relative translations, like LUD [38]
and CReTA [32]. The methods LUD and 1DSfM are imple-
mented by Theia library [49], while CReTA and LiGT are
implemented by the authors respectively in MATLAB and
OpenMVG library [36]. A revised PGILP is implemented
by us, where implicit 3D points are represented based on
Eq. (5). In HETA, the ADMM [6] method is employed to
solve L1 norm optimization, and the Ceres solver [1] is used
for the BA. During the relative translation re-estimation, the
threshold A used for filtering feature matches is set to 1.5◦.
To ensure fairness, all methods use the same view graphs,
feature matches, and global camera rotations as input.

5.1. Relative Translation Re-estimation

We conduct experiments to evaluate the impact of both
using unnormalized normal vectors and filtering out fea-
ture matches with low parallax angles on the re-estimated
relative translations. In Eq. (9), the loss width β is set to
sin 1◦ · sin 5◦, indicating an expectation that the error angle
γ should be less than 5◦ when the parallax angle α equals
1◦. The cumulative distribution functions (CDF) of the rel-
ative translation errors, as presented in Fig. 5, demonstrate
that the use of unnormalized normal vectors significantly
enhances the accuracy of relative translations. Further im-
provements are achieved by filtering feature matches with
parallax angles below A = 1.5◦. Additionally, the com-
promised accuracy of relative translations estimated using
normalized normal vectors in the 1DSfM-ROF data is at-
tributed to the sub-optimal global camera rotations. How-
ever, our method still yields a superior outcome in this case.

5.2. Evaluation on Sequential Data

The KITTI dataset is collected using two cameras
mounted on a driving car, where most parallax angles of
the feature matches are limited and the camera motion tra-
jectories tend to be approximately collinear. Two cameras
are used but considered independently in all experiments,
which raises a significant challenge for the global transla-
tion estimation system. The calibration results are presented
in Tab. 1, where HETA achieves the highest accuracy. The
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Figure 6. Comparison of camera motion trajectories on a part of KITTI[19] odometry benchmark. The sample state-of-the-art global SfM
methods include LUD [38], CReTA [32], PGILP [30] and LiGT [8].

Data LUD[38] CReTA-BATA [32] LiGT[8] PGILP[30] 1DSfM[54] HETA
BA BA BA BA BA L1 L2 BA

Name Nt ẽ ē Nc ẽ ē Nc ẽ ē Nc ẽ ē Nc ẽ ē Nc ẽ ē ẽ ē ẽ ē Nc

ALM 497 0.1 0.5 483 0.1 0.4 487 0.3 1.8 422 0.1 0.5 486 0.3 4.6 389 0.5 1.2 0.5 1.2 0.1 0.4 488
ELS 217 0.2 0.4 212 0.2 0.4 215 0.2 0.4 204 0.2 0.4 216 0.2 0.4 196 2.4 3.9 2.1 3.8 0.2 0.4 216

GDM 590 0.1 3.4 560 0.1 3.6 561 5.1 1e3 504 0.2 4.1 556 0.4 66.5 475 2.8 10.4 2.2 10.1 0.2 2.7 564
MDR 178 0.2 6.3 168 0.2 5.6 170 8.6 16.4 137 0.2 9.7 170 0.8 9.8 122 1.4 9.7 1.4 9.6 0.2 7.0 174
MND 403 0.1 0.1 399 0.1 0.1 399 0.1 0.1 383 0.1 0.1 398 0.1 0.3 363 0.5 1.0 0.5 1.0 0.1 0.1 400
ND 479 0.1 0.6 457 0.1 0.3 468 6.2 7.3 397 0.1 0.3 462 0.1 47.5 374 0.3 1.4 0.3 0.9 0.1 0.3 476

NYC 296 0.1 0.2 290 0.1 0.3 294 0.1 1.5 222 0.1 0.2 285 0.1 5.7 261 0.7 1.8 0.5 1.5 0.1 0.1 290
PDP 295 0.1 0.4 287 0.1 0.1 286 7.4 2e2 108 0.1 0.3 290 0.1 1.9 249 1.1 2.9 1.1 2.9 0.1 0.2 291
PIC 1838 0.1 0.5 1797 0.1 0.5 1811 12.3 81.8 649 0.1 0.5 1774 0.5 3.1 1621 0.9 1.9 0.7 1.7 0.1 0.4 1807
ROF 918 0.1 0.2 875 0.1 0.2 899 0.6 3.1 732 0.1 0.5 892 0.8 23.5 725 1.9 3.9 1.2 3.3 0.1 0.1 907
TFG 3989 0.9 2.5 3864 0.7 1.8 3913 37.5 45.8 789 1.2 4.3 3860 12.1 18.9 3348 3.3 6.4 2.6 5.8 0.7 2.4 3951
TOL 396 0.5 3.6 391 0.2 4.8 387 70.3 76.0 152 0.3 4.3 380 3.2 7e2 276 2.5 4.9 2.1 4.5 0.4 1.5 387
USQ 637 0.3 2.8 582 0.3 4.4 603 6.7 1e2 336 0.5 4.5 602 0.4 1e2 505 4.2 7.5 3.6 7.2 0.2 2.1 619
VNC 713 0.2 5.7 672 0.2 9.7 702 20.5 28.2 474 0.2 9.1 664 0.2 4.5 556 1.8 4.2 1.7 4.0 0.1 0.8 686
YKM 337 0.1 0.1 327 0.1 0.1 329 0.1 0.3 318 0.1 0.2 323 2.9 23.9 262 1.2 2.4 1.1 2.1 0.1 0.2 333

Table 2. Camera position accuracy on 1DSfM [54] dataset. Nt is the number of images in the view graph. Nc is the number of registered
images after BA, whose best results are shown in bold. ẽ and ē respectively denote the median and mean distance error in meters.

1DSfM method, which is also an explicit method, fails to
reconstruct most of the data. Despite using highly accu-
rate relative translations, as shown in Fig. 5, both LUD and
CReTA-BATA struggle to produce accurate results. The
method LiGT estimates the camera translations based on
matrix decomposition, which enhances efficiency but com-
promises robustness. In contrast, PGILP produces better
results by optimizing each camera-to-point constraint under
the L1 norm. The estimated camera motion trajectories are
depicted in Fig. 6. From these comparisons, we can con-
clude that our method, HETA, surpasses all the compared
methods in terms of both accuracy and robustness.

5.3. Evaluation on Unordered Data

The 1DSfM dataset [54] is collected by many different
types of cameras. Due to the limited accuracy of provided
camera intrinsic parameters and substantial incorrect fea-
ture matches, the estimated relative poses have large er-
rors. As a consequence, the accuracy of global rotations
estimated by [9] is not as high as that for the KITTI dataset,
making global translation estimation more challenging. The

calibration results after BA are shown in Tab. 2. From this
comparison, the accuracy of estimated camera positions in
LUD, CReTA-BATA and HETA is comparable. However,
for the majority of the data, HETA registers the highest
number of images, indicating its higher robustness com-
pared to LUD and CReTA-BATA. For the implicit methods,
LiGT and PGILP, which rely solely on all feature tracks as
input, their performances are inferior to HETA. This dis-
crepancy arises due to the incorporation of numerous incor-
rect constraints stemming from feature track outliers.

5.4. Ablation Study on Objective Function

We analyze the influence of various objective functions,
considering different formulations (“Cross” denotes cross-
product-form, and “Scale” denotes scale-form), various in-
put observations (“PT” for pure relative translation, “PF”
for pure feature tracks, and “H” for using a hybrid com-
bination of both), and different methods for handling 3D
points (“E” for explicit and “I” for implicit). For example,
“Scale-PT” represents the method that employs the scale-
form objective function solely based on relative translations
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KITTI Scale-PT Cross-PT Scale-PFI Scale-HE Cross-HI Cross-HE
Name ẽ ē ẽ ē ẽ ē ẽ ē ẽ ē ẽ ē

00 12.2 24.2 5.0 13.4 7.4 14.6 5.3 17.9 4.1 9.7 3.0 7.7
01 82.0 1e2 62.4 1e2 53.8 1e2 88.9 1e2 45.5 1e2 29.6 1e2
02 11.1 19.0 8.6 13.0 30.1 43.1 22.9 33.9 3.6 7.2 4.5 5.7
03 5.7 17.1 2.0 5.2 5.8 30.3 1.5 8.8 1.3 2.1 0.2 0.4
04 1.5 2.8 1.5 2.0 1.4 2.0 0.5 1.8 1.2 1.9 0.4 1.2
05 7.5 11.5 3.2 4.7 7.5 11.3 2.9 4.2 1.4 3.2 1.6 2.8
06 7.4 15.5 4.5 13.3 6.0 20.1 3.3 17.6 1.8 10.6 0.6 1.1
07 4.7 8.1 1.2 2.4 5.0 8.8 3.3 7.1 1.0 1.4 0.8 1.1
08 15.0 23.7 3.8 7.3 18.2 21.1 26.5 38.4 5.6 8.2 5.6 6.9
09 14.4 26.0 7.0 24.4 7.7 17.8 3.7 13.8 1.9 14.8 1.7 3.7
10 5.4 12.6 0.7 3.6 11.8 24.9 4.5 15.6 0.7 3.2 0.5 4.2

Table 3. Camera position errors produced by applying various ob-
jective functions on the KITTI dataset. The best results are shown
in bold and the second-best results are underlined.

 

 

 

 

 

 

 

 
  

  
 
  
  
 
  
  
 

 

 

 

  

  

 
 
 
 
  
  
 
  
  
 

 

        
           

        
           

         
           

        
           

Figure 7. Median and mean camera position errors produced by
applying various objective functions on the 1DSfM dataset.

as input, corresponding to the method LUD [38]. Similarly,
“Scale-PFI” and “Cross-HE” respectively correspond to the
methods PGILP [30] and HETA. All hybrid methods solely
use camera-to-camera inequality constraints for L1 norm
optimization. The calibration results for KITTI and 1DSfM
datasets are respectively displayed in Tab. 3 and Fig. 7.

When comparing different formulations, cross-product-
form methods outperform scale-form methods for better
convergence on the KITTI dataset, where the scales of both
types of input observations exhibit wide variations. For
some data in the 1DSfM dataset, numerous relative trans-
lation outliers display substantial angular errors. As a re-
sult, the performance of the cross-product-form method un-
der L1 norm optimization is slightly lower than that of the
scale-form. However, after unbiased L2 norm optimiza-
tion, the results from both formulations become compara-
ble. In terms of input observations, methods with hybrid
input generally outperform those with pure relative transla-
tions or pure feature tracks. Pure relative translations lack
constraints from 3D points, and pure feature tracks lack ro-
bustness. In contrast, methods with hybrid input strike a
balance between these two aspects. When considering the
handling manner of 3D points, explicit methods outperform
implicit methods on both the KITTI and 1DSfM datasets.

The running time of three hybrid methods with different
objective functions is illustrated in Fig. 8. We find cross-
product-form methods are more efficient, as they avoid re-
dundant scale variable optimization. Furthermore, the ef-

 

  

  

  

 
  

  
  

  
 

 

 

  

  

 
  

  
  

  
 

                        

Figure 8. Running time for L1 norm optimization of three hybrid
methods on KITTI dataset (left) and 1DSfM dataset (right).

            

                         

 

 

 

 

 

  

  

  

 
  
 
  
  
 
 

         
         
         

       
       
       

            

                         

 

 

 

 

  

  

 
  
 
  
  
 
 

          
          
          

        
        
        

Figure 9. Camera position errors of the HETA method with vary-
ing numbers of feature tracks on some data for the KITTI dataset
(left) and some data for the 1DSfM dataset (right).

ficiency of explicit methods and implicit methods is com-
parable, dispelling the misconception that explicit methods
escalate problem complexity. Complete time comparison
with existing methods is shown in supplemental material.

5.5. Discussion on Track Selection

In this section, we explore how the quantity of feature
tracks impacts the accuracy of HETA. As depicted in Fig. 9,
with an increase in feature tracks, initial reductions in cam-
era position errors are observed, followed by stabilization,
although some instances show a slight rise. This indicates
that incorporating feature tracks effectively enhances accu-
racy but excessive tracks may introduce outliers, diminish-
ing accuracy. Given the heightened issue of collinear mo-
tion in sequential data, we utilize a larger number of feature
tracks. Specifically, parameter N is set to 50 for unordered
datasets and 100 for sequential datasets in our study.

6. Conclusion
We revisit the global translation estimation problem with

feature tracks and propose a novel hybrid explicit frame-
work. Our approach outperforms many existing state-of-
the-art methods on both sequential and unordered datasets.
However, the prevalence of feature match outliers still poses
a challenge to the broader adoption of global SfM. In the
future, we intend to harness the insights gained from neural
networks to enhance the performance of feature matching.
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tional Key R&D Program of China (No.2023YFB3906600),
the National Natural Science Foundation of China
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