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Abstract

Composed video retrieval (CoVR) is a challenging prob-
lem in computer vision which has recently highlighted the in-
tegration of modification text with visual queries for more so-
phisticated video search in large databases. Existing works
predominantly rely on visual queries combined with modi-
fication text to distinguish relevant videos. However, such
a strategy struggles to fully preserve the rich query-specific
context in retrieved target videos and only represents the
target video using visual embedding. We introduce a novel
CoVR framework that leverages detailed language descrip-
tions to explicitly encode query-specific contextual informa-
tion and learns discriminative embeddings of vision only,
text only and vision-text for better alignment to accurately
retrieve matched target videos. Our proposed framework
can be flexibly employed for both composed video (CoVR)
and image (CoIR) retrieval tasks. Experiments on three
datasets show that our approach obtains state-of-the-art per-
formance for both CovR and zero-shot CoIR tasks, achiev-
ing gains as high as around 7% in terms of recall@K=1
score. Our code, detailed language descriptions for WebViD-
CoVR dataset are available at https://github.com/
OmkarThawakar/composed-video-retrieval.

1. Introduction

Composed image retrieval (CoIR) is the task of retrieving
matching images, given a query composed of an image along
with natural language description (text). Compared to the
classical problem of content-based image retrieval that uti-
lizes a single (visual) modality, composed image retrieval
(CoIR) uses multi-modal information (query comprising im-
age and text) that aids in alleviating miss-interpretations by
incorporating user’s intent specified in the form of language
descriptions (e.g., text-based modification to the query im-
age). Following CoIR, composed video retrieval (CoVR) has
been recently explored in the literature [43] where the multi-
modal search is performed to retrieve videos that display

almost identical visual characteristics with the desired user
intent, given a query image of a specific visual theme along
with the modifier (change) text. CoVR is a challenging prob-
lem with various real-world applications, e.g., e-commerce
and fashion, internet video search, finding live events in
specific locations, and retrieving sports videos of particu-
lar players. In this work, we investigate the problem of
composed video retrieval (CoVR).

The problem of CoVR poses two unique challenges: a)
bridging the domain gap between the input query and the
modification text, and b) simultaneously aligning the multi-
modal feature embedding with the feature embedding of the
target videos that are inherently dynamic. Further, their con-
text can also vary across different video frames. To address
the problem of CoVR, the recent work [43] introduces an an-
notation pipeline to generate video-text-video triplets from
existing video-caption datasets. The curated triplets con-
tain the source and target video along with the change text
describing the differences between the two videos. These
triplets are then used to train a CoVR model, where a multi-
modal encoder encodes the image query to obtain visual
features which are passed along with the change text to an
image-grounded text encoder, thereby generating the feature
embedding. In this way, a correspondence is established
between the latent embedding of input visual query’s and
the desired change text to retrieve a target video.

We note that the aforementioned framework [43] strug-
gles (see Fig. 1) since the latent embedding of a query visual
input (image/video) is likely to be insufficient to provide nec-
essary semantic details about the query image/video due to
the following reasons: a) visual inputs are high-dimensional
and offer details, most of which are not related to the given
context, b) the visual depiction often shows a part of the
broader context and there exist non-visual contextual cues
that play a crucial role in understanding the given inputs.
This motivates us to look into an alternative approach that
explicitly encodes contextual information beyond what is
apparent through only the visual input.

In this work, we argue that the detailed language descrip-
tions of the visual content is likely to provide complementary
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The image shows a close-up
view of a red liquid being
poured into a printing machine.
The liquid appears to be a deep,
dark red color, and is being
poured into the machine
through a spigot or nozzle at
the top…….

change to blue

CoVR-BLIP

Ours This is an image of a field of
red and yellow tulips with a
white tulip in the center. The
white tulip stands out from the
crowd of colorful flowers and is
the focal point of the image.
……

in yellow

CoVR-BLIP

Ours The image is a sunset scene
over the ocean with clouds in
the sky. The sun is setting
behind the clouds, casting a
warm orange and yellow light
on the water. The water is calm
and reflects the light from the
sun ..……

make it orange

CoVR-BLIP

Ours

Figure 1. Comparison between the baseline CoVR-BLIP [43] (top row) and our approach (bottom row) on example video samples from the
WebVid-CoVR testset. Here, the change text is highlighted in red. We observe that the baseline typically focuses only on the change while
ignoring the semantic alignment of the target video with the query input video (e.g., the composed target video in the second example from
the left should have change "yellow" reflected on the salient white tulip surrounded by red flowers, as in the query input). However, the
retrieved target video loses the context (red flowers surrounding the yellow tulip). This suggests that it is particularly challenging for the
model to understand the correspondence between the change text and the relevant target video using only the visual input. In contrast, our
retrieved target videos are visually similar to the input query composed with the change text. Our approach leveraging detailed descriptions
(highlighted in white boxes) for joint multi-modal embedding alignment encodes the necessary context to alter the composition of the video
(e.g., changing the color of the "white flower" in 2nd video to yellow and changing the color of the "sky and clouds" to orange in 3rd video).

contextual information that is otherwise difficult to encode
through visual input only. For instance, consider example
query videos of red liquid, flowers, and sunset in Fig. 1. We
can observe that the context becomes clear with language
descriptions of these query videos; the red liquid is for the
printing machine not immediately visible in the input, the
white tulip stands out from the crowd of colorful red and
yellow flowers, and the sun is setting over the ocean and
behind the clouds. Here, richer semantics and a better con-
text reduce the ambiguities while emphasizing important
relationships e.g., the saliency of the white tulip means the
change text relates to its color change, existing colors of the
sky at sunset mean the change to orange should pertain to it.

Contributions: We propose a framework that explicitly
leverages detailed language descriptions to preserve the
query-specific contextual information, thereby reducing the
domain gap with respect to the change text for CoVR. To
this end, we utilize recent multi-modal conversational model
to generate detailed textual descriptions which are then used
during the training to complement the query videos. Further-
more, we learn discriminative embeddings of vision, text
and vision-text during contrastive training to align the com-
posed input query and change text with target semantics for
enhanced CoVR. Our framework can be flexibly employed
for both CoVR and CoIR tasks.

Extensive experiments on three datasets reveal the mer-
its of our proposed contributions leading to state-of-the-art
performance on both CoVR and zero-shot CoIR tasks. On
the WebVid-CoVR dataset, our approach achieves a signifi-
cant gain of ≈7% in terms of recall@K=1 score compared
to recent CoVR-BLIP [43]. On the CIRR test set for the
zero-shot setup, our approach achieves recall@K=1 score
of 40.12. Fig. 1 shows a comparison on example WebVid-
CoVR test set example video samples between our approach
and the recent CoVR-BLIP method [43].

2. Related Work

Composed Image Retrieval (CoIR): A significant progress
has been made in the field of content-based image re-
trieval thanks to recent advances in deep learning tech-
niques [7, 16, 35, 46]. The problem holds extensive prac-
tical significance finding applications in diverse domains
such as, product search, face recognition, and image geo-
localization [18, 30, 34, 41]. Following the advances in
cross-modal image retrieval, the scope has been extended to
multiple query modalities such as, text-to-image retrieval,
sketch-to-image retrieval, cross-view image retrieval, event
detection and also to the problem of composed image re-
trieval (CoIR) [21, 28, 40, 45, 47]. CoIR is challenging
since it requires image retrieval based on its reference im-
age and corresponding relative change text. Most existing
CoIR approaches are built on top of CLIP [37] and learn
the multi-model embeddings comprising reference image
and relative change text caption for target image retrieval
[12–14, 29, 32]. These methods carefully harness the ca-
pabilities of large-scale pretrained image and text encoders,
effectively amalgamating compositional image and text fea-
tures to achieve improved performance.
Composed Video Retrieval (CoVR): The field of text-to-
video retrieval has witnessed significant breakthroughs as a
pivotal sub-domain within the broader context of multimedia
information retrieval [12–14, 29, 32, 33]. Early efforts in
this domain predominantly explored content-based retrieval
approaches, leveraging key-frame analysis, color histograms,
and local feature matching. The advent of deep learning
techniques has further revolutionized text-to-video retrieval,
with the emergence of multi-modal embeddings and atten-
tion mechanisms [38, 49–52]. Recently, [43] explored the
problem of composed video retrieval (CoVR) where the ob-
jective is to retrieve the target video, given the reference
video and its corresponding compositional change text. Due

26897



to the unavailability of a benchmark and following exist-
ing CoIR works [3, 31], [43] propose a new benchmark for
CoVR, named WebVid-CoVR, which comprises a synthetic
training set and a manually curated test set. Further, the au-
thors also propose a framework, named CoVR-BLIP, that is
built on top of BLIP [26] where an image grounded text en-
coder is utilized to generate multi-model features and aligns
it with target video embeddings using a contrastive loss [36].
Our Approach: Different from COVR-BLIP [43], our ap-
proach leverages detailed language descriptions of the refer-
ence video that are automatically generated through a multi-
modal conversation model and provide with following ad-
vantages. First, it helps in preserving the query-specific
contextual information and aids in reducing the domain gap
with the change text. Second, rather than relying on only us-
ing the visual embedding to represent target video as in [43],
learning discriminative embeddings through vision, text, and
vision-text enables improved alignment due to the extracting
complementary target video representations. It is worth men-
tioning that these automatically generated detailed language
descriptions can be effectively utilized within our framework
either only during training or at both training and inference.
In both cases, our approach leads to superior performance
compared to original [43] as well as using default (short) text
captions within [43]. Furthermore, our approach exhibits
notable competitive capabilities in both transfer learning and
zero-shot learning contexts for the CoIR task.

3. Method
Problem Statement: Composed Video Retrieval (CoVR)
strives to retrieve a target video from a database. This target
video is desired to be aligned with the visual cues from a
query video but with the characteristics of the desired change
represented by the text. Formally, for a given embedding of
input query q ∈ Q and the desired modification text t ∈ T ,
we optimize for a multi-modal encoder f and a visual en-
coder g, such that f(q, t) ≈ g(v), where v ∈ V is the target
video from a database. As discussed earlier, the problem
of CoVR is challenging since it requires bridging the do-
main gap between input query q and the modification text t.
Furthermore, it requires simultaneously aligning the multi-
modal feature embedding f(q, t) with the feature embedding
of target videos that are inherently dynamic, and their con-
text also varies across different video frames.
Baseline Framework: To address the above problem, we
base our method on the recently introduced framework [43],
named CoVR-BLIP, that trains the multi-modal encoder f
which takes the representations from the visual encoder g.
The visual encoder g remains frozen and is used to get the
latent embeddings for visual input query which are then pro-
vided to multi-modal encoder f along with the tokenized
change text t to produce multi-modal embedding f(q, t).
Then, the input visual query and the change text t are aligned

with the desired target videos using a contrastive loss be-
tween f(q, t) and g(v) (Fig. 2). This results in a direct
correspondence between the visual latent embedding of the
input query and the desired change text for retrieving a target
video. For more details, we refer to [43].

We note that the baseline CoVR-BLIP framework strug-
gles to effectively preserve the contextual information of the
query sample, since the multi-modal information is likely
biased towards the change text. This is evident in Fig. 1,
where the dominant feature in the baseline is the change text
mixed with the holistic representation of the visual query
e.g., yellow follower or orange sky. Instead, here the ob-
jective was to convert only the white tulip to yellow with
the surrounding red flowers or orange sky over the beach.
Next, we propose our approach that aims to alleviate these
limitations for improved CoVR performance.

3.1. Architecture Design

Motivation: To motivate our proposed approach, we distin-
guish two desirable characteristics that are to be considered
when designing an approach for the CoVR task.
Query-specific Contextual Information Preservation: As
discussed earlier, compositional video retrieval (CoVR) re-
lies on reducing the domain gap between the visual input and
the change text. This is typically achieved by leveraging an
image-grounded text encoder, where the cross-attention lay-
ers are trained using the changing text and embedding from
a frozen visual encoder [43]. As the training occurs within
the image-grounded text encoder only, the multi-modal rep-
resentation is likely to get predominately biased towards the
change text. As a result, it looses the context of the query
sample which is essential for the task.

In this work, we argue that such a query-specific contex-
tual information can be incorporated in the image-grounded
text encoder through detailed language descriptions of these
query videos; the red liquid is for printing machine not im-
mediately visible in the input, the white tulip stands out from
the crowd of colorful red and yellow flowers, and the sun
is setting over the ocean and behind the clouds (see Fig. 1).
Therefore, the correspondence between embedding of the
visual input (q) and its corresponding detailed description
(d) results in an enhanced vision-text representation f(q, d)
of q, thereby ensuring a contextualized understanding of the
query video. Further, the complementary nature of detailed
descriptions aids in reducing the domain gap between the
input query and the modification text by establishing cor-
respondence between the detailed description of the input
query and the modification text, as f(d, t). Thus, we seek to
improve CoVR by minimizing the following objective:

v∗ = argmax
v∈V

L
(
f̃(q, d, t), g(v)

)
, (1)

f̃(q, d, t) = f(q, t) + f(q, d) + f(e(d), t). (2)
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Figure 2. Our framework comprises three inputs: the reference video, a detailed visual description of an input video, and a change text
corresponding to the target video. The input video is encoded by the vision encoder g, and the description is encoded by the frozen text
encoder e. The default tokenizer tokenizes the change text. The encoded input triplet (q,d,t) is then processed by the multi-model encoder
(f ) grounding two inputs a time. The dotted lines shown are going to the cross-attention for grounding. During training, we add outputs
of the multi-model encoder to obtain the joint multi-model embedding f̃(q, d, t) that is aligned across three target databases using hard
negative contrastive losses (HN-NCE): Lve, Lmme, and Lte. During inference, our approach can utilize input query or a combination of
input query along with its description to retrieve a composed target video.

where, q and d represent input query (image/video) and its
corresponding language description, t is the desired modifi-
cation text, f̃(q, d, t) is the pairwise summation of individual
correspondence embeddings and L is a similarity-based loss.
Learning Discriminative Embeddings for Alignment: In
the CoVR task, the model is desired to learn to align its
output with the target video after mixing the change text
with the query video. Instead of only representing the tar-
get video in the latent space through a visual embedding
[43], a multiple discriminative embedding of vision, text,
and vision-text is expected to provide better alignment due
to complementary target video representation.

Overall Architecture: Figure 2 presents our proposed
architecture comprising three inputs: the reference video,
the text corresponding to the change, and the detailed video
description. Compared to the baseline framework, the focus
of our design is to effectively align the joint multi-modal
embedding, comprised of the three inputs (f̃(q, d, t)), with
the target video database to achieve enhanced contextual
understanding during training for composed video retrieval.
Within our proposed framework, we first process the refer-
ence video and its description using pre-trained [26] image
encoder g and text encoder e to produce their latent embed-
ding of the same dimension as, q ∈ Rm and d ∈ Rm. We
use the same multi-modal encoder f , as in the baseline [43].
This multi-model encoder takes the visual embeddings from
a pre-trained visual encoder g along with tokenized textual
inputs and produces a multi-modal embedding. Given the

tokenized change text t, and embeddings of the reference
video and its descriptions, q and d, we fuse any two inputs at
a time using the multi-modal encoder f comprising of cross-
attention layers, to produce joint multi-modal embeddings
(f̃(q, d, t)), as shown in Fig. 2. The input query video and its
corresponding description are processed by visual encoder
g and text encoder, respectively. It is worth mentioning that
the only difference between the text encoder e and the multi-
modal encoder f are cross attention layers. In other words,
if we remove the cross attention layers from multi-modal
encoder f , it converts to text-only encoder e. We use the text
encoder e to process the language descriptions of an input
video.

Within the proposed framework, we only train the multi-
modal encoder f whereas the image and text encoders re-
main frozen. During training, we provide the change text
t and the visual query embeddings q to the encoder f for
obtaining the multi-model embeddings f(q, t) correspond-
ing to the change text t. As shown in Fig. 2, here grounding
occurs via cross-attention between q and t. In a similar
manner, we obtain an enhanced contextualized multi-model
representation of embeddings of input video q and its tok-
enized description d from f as f(q, d). As a final step, we
provide the change text t to the text encoder f , and ground it
with the embedding of description e(d) to obtain f(e(d), t).
Consequently, we combine these grounded embeddings in a
pairwise summation manner as shown in Eq. (2) to obtain the
joint multi-model embeddings f̃(q, d, t). These joint multi-
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model embeddings are then utilized to retrieve the target
video from the database. In order to train the multi-modal
encoder f , we employ hard-negative contrastive loss [36, 43]
between f̃(q, d, t) and the target database, as shown in Fig. 2.
The loss is as follows,

L = −
∑
i∈B

log

(
eSi,i/τ

α · eSi,i/τ +
∑

j ̸=i e
Si,j/τwi,j

)

−
∑
i∈B

log

(
eSi,i/τ

α · eSi,i/τ +
∑

j ̸=i e
Sj,i/τwj,i

)
(3)

where α is set to 1 and temperature τ is set to 0.07 as in [36],
Si,j is the cosine similarity between the joint multi-modal
embedding f̃(qi, di, ti) and the corresponding target video
g(vi), wi,j is set as in [36] with β = 0.5, and B is the
batch size. Next, we describe how to effectively utilize the
recent multi-modal conversation models [54] to obtain query-
specific detailed language descriptions for composed video
retrieval.

3.2. Query-specific Language Descriptions

In order to obtain the video descriptions, we employ a recent
open-source multi-modal conversation model [54]. Gener-
ally, multi-modal conversation models learn alignment be-
tween a pretrained large language model such as, Vicunna [6]
and a pretrained vision encoder of vision language model
such as, CLIP [37] or BLIP [25]. This alignment enables
these multi-modal conversation models to reason and con-
textualize a given visual input. Since these are image models
and for our case of video inputs, we sample the middle
frame of the video and generate its detailed description using
a multi-modal conversation model by prompting the model
with "Describe the input image in detail". We further remove
the noise within these descriptions by removing the manually
curated unnecessary symbols, tokens, or special characters.
Further, these models can hallucinate about a given visual
sample. To identify hallucinated descriptions, we first mea-
sure the lower bound of cosine similarity between default
WebVid captions [1] and visual inputs within BLIP latent
space to identify a hallucination threshold. We then discard
those descriptions, where the cosine similarity between our
generated description and the visual input is lower than the
hallucination threshold. Consequently, the resulting enriched
descriptions are better aligned with the videos (Fig. 3). As
discussed earlier, the base framework [43] only aligns the
input video with the target video database. To further en-
hance the alignment of our joint multi-modal f̃(q, d, t), we
introduce multiple target datasets as explained next.

3.3. Enhancing Diversity in Target Database

The proposed method takes three inputs (video, modification
text, and video description) and three target databases to

Target Embeddings
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Target Embeddings
Ours
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Figure 3. First row: Comparison between the baseline and our
approach in terms of proximity of the output embedding with the
target videos on WebVid dataset. Here, each data sample represents
the projection of the embedding from Rm to R2. Our joint multi-
modal embeddings leveraging the language information are closer
to the target embeddings, compared to the baseline embedding
utilizing only the visual input. Second row: the cosine similarity
between video embeddings and the WebVid dataset captions (on
the left), compared to the similarity between video embeddings
and our generated textual descriptions (on the right). Here, the
Y-axis corresponds to the number of videos whereas the X-axis
denotes the cosine similarity. Our approach utilizing the generated
descriptions achieves better alignment with the video embeddings.

train the model. The first target database is based on the
visual embedding of input videos generated by a pretrained
vision encoder of BLIP-2 [26]. Our second target database
is based on multi-model embeddings derived from the pre-
trained multi-modal encoder of BLIP-2 [26]. The final target
database is based on a text-only embedding of the video
description generated by the pretrained BLIP-2 [26] text en-
coder. We use these additional databases only during training
time to compute the hard negative contrastive loss between
our joint multi-model embeddings and target datasets.
Overall Loss Formulation: For a given batch B, we for-
mulate hard negative contrastive loss for each of our three
target databases as follows,

Lcontr = λ ∗ Lve + µ ∗ Lmme + δ ∗ Lte, (4)

where, Lve, Lmme, and Lte are the contrastive loss repre-
sented by Eq. (3). We compute the similarity of f̃(qi, di, ti)
with the corresponding target video embedding g(vi), target
multi-modal embedding f(g(vi), dvi), and the target text
embedding dvi for Lve, Lmme, and Lte, respectively. λ, µ,
and δ are learnable parameters that scale the weightage of
each loss during training.
Inference: During inference, for the 3 given inputs: refer-
ence video, description and change text, we first process the
reference video and its description using pre-trained frozen
image encoder g and text encoder e to produce their latent
embedding. The change text is simply tokenized as shown
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Training Recall@K
Model WebVid-CoVR Input Modalities Fusion Backbone Frames R@1 R@5 R@10 R@50

1 Random - - - - 0.08 0.23 0.35 1.76
2 CoVR-BLIP [43] ✘ Text - BLIP - 19.68 37.09 45.85 65.14
3 CoVR-BLIP [43] ✘ Visual - BLIP 15 34.90 59.23 68.04 85.95
4 CoVR-BLIP [43] ✘ Visual + Text Avg CLIP 15 44.37 69.13 77.62 93.00
5 CoVR-BLIP [43] ✘ Visual + Text Avg BLIP 15 45.46 70.46 79.54 93.27
6 Our Approach ✘ Visual + Text Avg BLIP 15 47.52 72.18 82.37 95.06

7 CoVR-BLIP [43] ✘ Visual + Text CA BLIP 15 15.85 32.79 40.3 58.33
8 Our Approach ✘ Visual + Text CA BLIP 15 20.85 41.2 50.2 72.1

9 CoVR-BLIP [43] ✔ Text - BLIP - 23.67 45.89 55.13 77.03
10 CoVR-BLIP [43] ✔ Visual - BLIP 15 38.89 64.98 74.02 92.06
11 CoVR-BLIP [43] ✔ Visual + Text MLP CLIP 1 50.55 77.11 85.05 96.06
12 CoVR-BLIP [43] ✔ Visual + Text MLP BLIP 1 50.63 74.8 83.37 95.54
13 CoVR-BLIP [43] ✔ Visual + Text CA BLIP 1 51.80 78.29 85.84 97.07
14 CoVR-BLIP [43] ✔ Visual + Text CA BLIP 15 53.13 79.93 86.85 97.69
15 Our Approach ✔ Visual + Text CA BLIP 15 60.12 84.32 91.27 98.72

Table 1. Baseline comparison on the WebVid-CoVR test set. Without training on the WebVid-CoVR and using averaging as fusion,
our approach (row 6) achieves a gain of xx over the baseline (row 5). A consistent improvement in performance is also obtained over the
baseline (row 7 vs. row 8) when using cross-attention (CA) as a fusion scheme. The performance is improved when performing training on
the WebVid-CoVR training set. Using the same input modalities, fusion scheme, backbone, and frames, our approach (row 15) achieves a
significant gain of 6.9% in terms of Recall@K=1 over the baseline [43] (row 14). Best results are in bold.

in Figure 2. We use the multi-modal encoder f and gather
the multi-model embeddings from 2 inputs at a time such as
f(q, t), f(q, d) and f(e(d), t). Consequently, we simply do
the pairwise addition of three (3) multi-model embeddings to
produce joint multi-modal embeddings f̃(q, d, t) for target
video retrieval. Note that, this pairwise addition allows us
to use any combination of inputs as illustrated in ablative
analysis (refer Tab. 2). Finally, similar to CoVR [43] the
target videos are retrieved by mapping the similarity between
the joint multi-model embeddings f̃(q, d, t) and the visual
embedding database g(V ).

4. Experiments

4.1. Experimental Setup and Protocols

Dataset for Composed Video Retrieval (CoVR): We eval-
uate our approach on the recently introduced WebVid-CoVR
dataset [43]. The training set of WebVid-CoVR consists
of triplets (input video, change text, and target video) and
is generated synthetically, whereas the test set is manually
curated using the model in the loop. The change text within
a triplet is generated by comparing captions of the input and
target videos using an LLM. It represents the differences
between the input and target videos. The WebVid-CoVR
training set consists of 131K distinct videos and 467K dis-
tinct change texts. One video is associated with each of the
12.7 triplets and the average change text length is 4.8 words.
WebVid-CoVR also includes validation and test sets gath-
ered from the WebVid10M corpus. In the validation set there
are 7K triplets, whereas in the test set there are 3.2K triplets
that have been manually curated to ensure high quality.
Datasets for Composed Image Retrieval (CoIR): We use

CIRR [31] and FashionIQ [48] benchmarks for composed
image retrieval. CIRR [31] consists of manually anno-
tated open-domain natural image and change text pairs with
(36.5K, 19K) distinct pairs. The data distribution of this im-
age and change text pairs is around (28.2K,16.7K), (41.8K,
22.6K), (41.5K, 21.8K) for training, testing, and validation
set, respectively. The FashionIQ [48] dataset consists of im-
ages of fashion products in three categories: Shirts, Dresses,
and Tops/Tees. The reference query and target image are
paired based on their category. The corresponding change
text is manually annotated. This dataset consists of (30K,
40.5K) images and change text pairs queries annotated on
40.5K distinct images. The data distribution of this image
and change text pairs is around (18K, 45.5K), (60.2K, 15.4K)
for training, testing, and validation, respectively.

Evaluation Metrics: We follow standard evaluation pro-
tocol for the composed image as well video retrieval from
[31, 43]. We report the retrieval results using recall values
at rank 1, 5, 10, 50. Recall at rank k (R@k) denotes the
number of times the correct retrieval occurred among the
top-k results.
Implementation Details: We use a multi-modal conver-
sational model [54] to generate the visual descriptions. As
discussed earlier, we built our approach on the recent CoVR-
BLIP [43] and use the same components without adding
any additional parameters. We use ViT-L [11] as the frozen
vision encoder g, which is pretrained for text-image retrieval
on COCO [27]. The frozen text encoder e is from BLIP-
2 [26] without cross-attention with pretrained weights of
BERTbase [9]. We train our model for 20 epochs with a
batch size of 1024 (256 batch size per device) with an initial
learning rate of 1e− 5. For a fair comparison, we report the
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Businessman working with
tablet and documents in the
office.

The image shows a 
businessman sitting at a desk
in a small office. He is wearing 
a black suit and tie, and has a 
laptop on the desk in front of 
him. He appears to be working
on something, as there is a 
pen and paper in front of him 
on the desk. The background of 
the image shows a dark, 
empty room…….

To the garden

1. The image is a view of the 
ocean from a rocky beach.2. 
The image is a cloudy sky with 
some white clouds in the 
background.3.The water is calm 
and the waves are gently 
lapping against the shore.5. 
There are a few rocks and 
pebbles on the beach…..

replace the beach 
with a mountain 

Time lapse of clouds over a
beach.

This image shows an airplane
taxiing on the runway at an 
airport. The plane appears to 
be a commercial airliner with a 
white livery and blue 
markings. It is taxiing towards
the terminal building, which is 
visible in the background 
behind the fence…..

turn it into a 
turboprop airplane 

Jet airplane braking after
landing in dusseldorf airport.

To the garden replace the beach 
with a mountain 

turn it into a 
turboprop airplane 

Figure 4. Qualitative Comparison between default WebVid-CoVR short captions (top row) with our generated detailed descriptions (bottom
row) within our framework. The change text is highlighted in red and the text (default short captions in top row, detailed description in
bottom row) are highlighted in black. Here in all three examples from CovR-Vid testset, we observe that the default WebVid-CoVR short
captions struggle to fully preserve the contextual information in the retrieved target video (top row). In comparison, our approach leveraging
detailed descriptions is able to correctly retrieve the target video with most relevant contextual match with reference video (bottom row). For
instance, keeping person working while putting him beside garden in video-1, keeping the sea while replacing the beach with mountains in
video-2 and keeping the turboprop airplane on airport behind fence in video-3. Best viewed zoomed in. Additional examples are in the suppl.

results of our baseline CoVR-BLIP [43] in the same settings.
For transfer learning on CoIR, we fine-tuned the model on
the FashionIQ dataset for 6 epochs. We use a batch size
of 2048/1024 and an initial learning rate of 1e − 4. After
training, our learnable parameters λ, µ and δ for scaling the
weightage of each loss was optimized based on validation
set with values 0.83, 0.08 and 0.07. We use four NVIDIA
A100 GPUS for all the experiments.

4.2. Composed Video Retrieval

Baseline Comparison: We present a baseline comparison
in Tab. 1. Compared to the baseline CoVR-BLIP [43], our
approach achieves consistent improvement in performance
across different recall rates. Without training on WebVid-
CoVR benchmark, our approach achieves a significant gain
of 5.0% in terms of Recall@K=1 and 13.8% in terms of
Recall@K=50. When conducting training on WebVid-CoVR
dataset, our approach achieves a significant improvement of
7% in terms of Recall@K=1.
Ablation Study: We first analyze the impact of inputs on
CoVR performance. Here, we train our model as described
in Sec. 3. We freeze our model and study the effect of inputs:
reference video, descriptions, and change text with their
different combinations for CoVR during inference (Tab. 2)
on WebVid-CoVR test set. The performance increases as
we replace the input from change text to descriptions to
the reference video. As soon as the video and descriptions
are provided, the performance improves. This shows that
the detailed descriptions provide additional information that
complements the input video. Since modification text is
not part of the input, the model did not have instructions
regarding how to change the composition of the input video
and behaves as a plain retrieval task. Further, we obtain
superior results after providing modification text along with
the detailed descriptions and input video.

Next, we study in Tab. 3 the effect of different target

Table 2. The impact of Inputs on our model performance on
WebVid-CoVR testset. The best performance is obtained when
using all inputs (video, detailed description and change text), in-
dicating the complementary nature of videos and their detailed
language descriptions. Best results in bold.

Input Recall@K
Video (q) description (d) change text (t) R@1 R@5 R@10 R@50

✘ ✘ ✓ 26.95 51.25 62.19 83.24
✘ ✓ ✘ 39.92 65.62 76.21 92.23
✓ ✘ ✘ 40.51 66.56 76.95 92.66
✓ ✓ ✘ 42.19 69.06 78.95 95.0
✘ ✓ ✓ 45.51 73.12 82.7 95.78
✓ ✘ ✓ 56.26 81.46 88.97 98.0

✓ ✓ ✓ 60.12 84.32 91.27 98.72

Table 3. The impact of target datasets on our model perfor-
mance on WebVid-CoVR test set. We study the impact of dif-
ferent configurations of losses (Lve, Lmme, Lte) during training.
The best results are obtained with all loss terms, indicating the
importance of diversity in target datasets. Best results are in bold.

Training Loss Recall@K
Lve Lmme Lte R@1 R@5 R@10 R@50

✘ ✘ ✓ 33.79 65.47 77.93 94.65
✘ ✓ ✘ 42.97 69.49 78.71 93.2
✓ ✘ ✘ 58.37 83.72 89.79 98.16
✘ ✓ ✓ 58.94 83.86 89.76 98.64
✓ ✓ ✘ 59.12 84.18 90.36 98.54

✓ ✓ ✓ 60.12 84.32 91.27 98.72

datasets: visual embeddings, multi-modal embeddings, and
text-only embedding as explained in Sec. 3.3. This implies
that we use any or different combination of the three con-
trastive losses introduced in Eq. (4) (Lve, Lmme, Lte). We
use all three inputs at inference for CoVR. As a result of train-
ing only with Lte, we observe an improvement indicating
that Lte plays a role in refining our joint multi-modal embed-
ding. Introducing Lmme as a training loss further enhances
recall rates, compared to Lte, emphasizing its positive im-
pact on the model’s ability to retrieve relevant instances.
When Lve is employed as a training loss, the performance
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Table 4. State-of-the-art comparison on CIRR test set. Our
approach achieves consistent improvement in performance on both
transfer learning (row 1-12) and zero-shot settings (row 13-20). On
the challenging zero-shot setting and using the same pretraining
WebVid-CoVR dataset, our approach achieves an absolute gain of
1.6% in terms of Recall@K=1 over [43]. Best results are in bold.

Pretrain Recall@K Rsubset@K
Method Data K=1 K=10 K=50 K=1 K=3

Tr
ai

n
C

IR
R

TIRG [44] - 14.61 64.08 90.03 22.67 65.14
MAAF-RP [10] - 10.22 48.68 81.84 21.41 61.60
ARTEMIS [8] - 16.96 61.31 87.73 39.99 75.67
CIRPLANT [31] - 19.55 68.39 92.38 39.20 79.49
LF-BLIP [2, 24] - 20.89 61.16 83.71 50.22 86.82
CompoDiff [17] ✓ 22.35 73.41 91.77 35.84 76.60
Combiner [2] - 33.59 77.35 95.21 62.39 92.02
CASE [24] ✓ 49.35 88.75 97.47 76.48 95.71
CoVR-BLIP [43] - 48.84 86.10 94.19 75.78 92.80
Ours - 49.18 87.06 94.72 75.66 93.16
CoVR-BLIP [43] ✓ 49.69 86.77 94.31 75.01 93.16
Ours ✓ 51.03 88.93 97.53 76.51 95.76

Z
er

o
Sh

ot

Random† - 00.04 00.44 02.18 16.67 50.00
CompoDiff [17] ✓ 19.37 72.02 90.85 28.96 67.03
Pic2Word [39] ✓ 23.90 65.30 87.80 - -
CASE [24] ✓ 35.40 78.53 94.63 64.29 91.61
CoVR-BLIP [43] - 19.76 50.89 71.64 63.04 89.37
Ours - 21.34 52.37 74.92 64.66 90.87
CoVR-BLIP [43] ✓ 38.48 77.25 91.47 69.28 91.11
Ours ✓ 40.12 78.86 94.69 70.47 92.12

Table 5. State-of-the-art comparison on FashionIQ val. set. Our
method obtains favorable results on both transfer learning (row
1-19) and zero-shot (20-25) settings. On the challenging zero-shot
setting and using same pretraining, our method obtains an absolute
gain of 2.6% (average over three classes: Dress, Shirt and Toptee)
in terms of Recall@R=10 over [43]. Best results are in bold.

Pretrain Dress Shirt Toptee
Method Data R@10 R@50 R@10 R@50 R@10 R@50

Tr
ai

n
Fa

sh
io

nI
Q

JVSM [4] - 10.70 25.90 12.00 27.10 13.00 26.90
CIRPLANT [31] - 17.45 40.41 17.53 38.81 61.64 45.38
TRACE [19] - 22.70 44.91 20.80 40.80 24.22 49.80
VAL w/GloVe [5] - 22.53 44.00 22.38 44.15 27.53 51.68
MAAF [10] - 23.80 48.60 21.30 44.20 27.90 53.60
CurlingNet [53] - 26.15 53.24 21.45 44.56 30.12 55.23
RTIC-GCN [42] - 29.15 54.04 23.79 47.25 31.61 57.98
CoSMo[23] - 25.64 50.30 24.90 49.18 29.21 57.46
ARTEMIS[8] - 27.16 52.40 21.78 43.64 29.20 53.83
DCNet[22] - 28.95 56.07 23.95 47.30 30.44 58.29
SAC [20] - 26.52 51.01 28.02 51.86 32.70 61.23
FashionVLP[15] - 32.42 60.29 31.89 58.44 38.51 68.79
LF-BLIP [2, 24] - 25.31 44.05 25.39 43.57 26.54 44.48
CASE [24] ✓ 47.44 69.36 48.48 70.23 50.18 72.24
CoVR-BLIP [43] - 43.51 67.94 48.28 66.68 51.53 73.60
Ours - 44.39 68.86 49.17 67.54 52.47 74.28
CoVR-BLIP [43] ✓ 44.55 69.03 48.43 67.42 52.60 74.31
Ours ✓ 46.12 69.52 49.61 68.88 53.79 74.74

Z
er

o
Sh

ot

Random - 00.26 01.31 00.16 00.79 00.19 00.95
Pic2Word [39] ✓ 20.00 40.20 26.20 43.60 27.90 47.40
CoVR-BLIP [43] - 13.48 31.96 16.68 30.67 17.84 35.68
Ours - 15.24 34.12 18.36 32.54 19.56 37.54
CoVR-BLIP [43] ✓ 21.95 39.05 30.37 46.12 30.78 48.73
Ours ✓ 24.57 40.93 33.12 48.42 33.16 50.24

improves across all metrics. Similarly, the combination of
these losses gives further improvement in performance, indi-
cating their complementing nature.

Lastly, we analyze impact of detailed language descrip-
tions on CoVR. We train our model as described in Sec. 3
and freeze our model to study impact of video description
quality for CoVR. We compare our detailed description with
short WebVid captions (Tab. 6) and observe that the per-
formance is inferior when using default WebVid captions,

Table 6. The impact of detailed descriptions on our model per-
formance on WebVid-CoVR test set. Our approach leveraging
detailed descriptions achieves consistent improvement in perfor-
mance, compared to the default captions. Best results are in bold.

Our Model R@1 R@5 R@10 R@50

using webvid captions 58.23 83.31 90.08 98.05
using our detailed descriptions 60.12 84.32 91.27 98.72

The image shows a 
wooden floor with two
small ferret walking on 
it. They appear to be 
walking towards each 
other and may be 
interacting with each 
other. The wooden floor 
appears to be in a home
or other indoor space, 
with light wood tones 
and a slightly 
distressed look. ……

show a dog sleeping with 
a puppy

Pic2Word

CoVR-BLIP

Ours

The image shows a 
group of four small pigs 
and one grown black pig
standing in the mud, 
with their snouts 
buried in the ground. 
The area around them 
is littered with leaves 
and other debris, and in 
the background, there 
are trees and a forest. 
The overall mood of the 
image is peaceful and 
natural.

change to only one pig, 
brown environment

Pic2Word

CoVR-BLIP

Ours

The image shows a 
dining room with a 
wooden table and 
chairs, a vase of flowers 
on the table, and a large 
window with white 
drapes hanging from 
the top. The walls are 
painted a light shade of 
beige, and there is a rug 
on the floor. There are 
no other objects or 
people in the room.

Table and chairs of a 
lighter color, no flowers, 

only plants, different 
background

Pic2Word

CoVR-BLIP

Ours

Figure 5. Qualitative Comparison between Pic2Word [39](top row),
CoVR-BLIP [43] (mid-row) and our proposed method (bottom-
row) in zero-shot CoIR task. Here in all three examples from CIRR
test set, we observe that using only reference image and change
text (in red) Pic2Word [39] and CoVR-BLIP [43] struggle to cor-
rectly retrieved target video (top and mid row). In comparison, our
approach leveraging detailed descriptions is accurately retrieving
the target video with most relevant contextual match with reference
video (bottom row). Best viewed zoomed in.

likely because they do not provide richer context compared
to detailed descriptions. Fig. 4 further shows the comparison
on example video samples from WebVid-CoVR test set.

4.3. Composed Image Retrieval

We present state-of-the-art comparison in Tab. 4 and Tab. 5
on CIRR [31] and FashionIQ [48], respectively. Here, the
target embeddings are w.r.t a single image. We report results
in two settings: zero-shot and transfer learning on respective
datasets. In zero-shot setting, we use our model trained
on WebVid-CoVR and directly apply it to these respective
benchmarks. In both cases, our approach achieves superior
performance. Fig. 5 presents a qualitative comparison with
existing works on example samples from CIRR [31] test set.

5. Conclusion
We propose an approach that effectively contributes to
CoVR and CoIR tasks by integrating detailed visual de-
scriptions. The descriptions are generated from advanced
vision-language conversational models with relative change
text and visual features aiding to bridge a critical gap in the
retrieval process. The enhanced contextual understanding
and richer content interpretation offered by our approach
leads to superior performance on multiple datasets.
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