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Abstract

Super-Resolution (SR) reconstructs high-resolution im-
ages from low-resolution ones. CNNs and window-attention
methods are two major categories of canonical SR mod-
els. However, these measures are rigid: in both opera-
tions, each pixel gathers the same number of neighbor-
ing pixels, hindering their effectiveness in SR tasks. Al-
ternatively, we leverage the flexibility of graphs and pro-
pose the Image Processing GNN (IPG) model to break the
rigidity that dominates previous SR methods. Firstly, SR
is unbalanced in that most reconstruction efforts are con-
centrated to a small proportion of detail-rich image parts.
Hence, we leverage degree flexibility by assigning higher
node degrees to detail-rich image nodes. Then in order to
construct graphs for SR-effective aggregation, we treat im-
ages as pixel node sets rather than patch nodes. Lastly, we
hold that both local and global information are crucial for
SR performance. In the hope of gathering pixel informa-
tion from both local and global scales efficiently via flex-
ible graphs, we search node connections within nearby re-
gions to construct local graphs; and find connections within
a strided sampling space of the whole image for global
graphs. The flexibility of graphs boosts the SR performance
of the IPG model. Experiment results on various datasets
demonstrates that the proposed IPG outperforms State-of-
the-Art baselines. Codes are available at this link.

1. Introduction

The ill-posed task of Super-Resolution (SR) constructs
high-resolution images from low-resolution ones. SR works
typically apply Deep Neural Network (DNN) knowledge
learned from High-Resolution training images to construct
missing details in low-resolution inputs. Existing DNN
variants for classical SR tasks include CNNs [16, 24, 50]
and Transformers [5, 6, 23]. These measures have proved
effective in creating High-Resolution images, and are used
in real-world applications like medical imaging [10], re-
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Figure 1. Convolution (left), Self-Attention (middle-left), KNN
Graph Aggregation (middle-right), and Graph Aggregation in IPG
(right). Compared with other methods, IPG graph aggregation
considers the unbalanced nature of SR: detail-rich, high-frequency
image nodes (red) have higher node degrees; while flat, low-
frequency image nodes (blue) require fewer aggregations.

mote sensing [15], et cetera.
Despite various measures, it is taken for granted that

mainstream SR models treat all pixels in a fairly rigid
manner. For instance, as shown in Figure 1, in convolu-
tion layers of the CNN-based SR model VDSR [16], the
same convolution kernel scans through all pixels of feature
maps, i.e. each pixel is rigidly designated to communicate
with its nearest neighbors; in the Transformer-based model
SwinIR [23], all pixels are assigned to equal-sized attention
grids for self-attention operations. In both examples, each
pixel aggregates information from a fixed number of pixels
within a neighborhood of fixed size.

Efforts have been made to overcome the rigidity of con-
volution and window-attention operations. For example,
some recent SR research tries to enhance SR models by
enlarging self-attention grids [5, 46] and designing striped
global attention windows [6, 22]. But these improvements
also introduce a large computation burden. Some other
works [12, 26, 52] leverage the flexibility of graphs and
propose graph-based methods. With content-based graphs
constructed from patch nodes, each image patch could ag-
gregate top-k relevant but distant parts beyond hard local
boundaries in convolution and window-attention.

However, these graph measures have limited flexibility
because the lopsided nature of SR is overlooked. In SR
tasks, only a small proportion of high-frequency pixels re-
quire hard reconstruction efforts; the majority of pixels are
located in flat, low-frequency regions and thus almost left
intact [9]. In response to the imbalance, SR methods should
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ideally pay more attention to detail-rich regions and care
less about flat, detail-poor image parts. However, exist-
ing k-Nearest-Neighbor graph-based methods treat all im-
age nodes equally. In other words, all nodes share the
same pre-set degree k and the unbalanced nature of SR is
not considered. In fact, as we inspect canonical operation
paradigms in SR from a graph perspective, we found that
degree-equivalence rigidity also manifests in convolution
and window-attention: in these paradigms, each pixel on
the image aggregates the same number of pixels regardless
of image content, and thus, sharing ”equal degrees” in graph
terms. Equal node degrees that are rigidly assigned to nodes
or pixels mismatch their unequal reconstruction demands in
SR, thus impacting SR performance.

Trying to break rigidity, we propose the graph-based Im-
age Processing Graph Neural Networks (IPG) model for
SR that taps the flexibility potential of graphs. Firstly,
to break the degree-equivalence rigidity of convolution,
window-attention, and k-Nearest-Neighbor (KNN) graphs,
we leverage degree flexibility by proposing a novel degree-
variant graph solution based on the unbalanced nature of
SR. Specifically, a detail-aware metric is designed to mea-
sure the importance of image nodes where larger degrees
are assigned to high-frequency nodes. Then, different from
graph-based model counterparts, IPG adopts pixels rather
than patches as image graph nodes to avoid misalignment
issues due to patch rigidity. Finally, in the interest of hav-
ing both local and global perception without sacrificing ef-
ficiency due to large pixel-level search space, we resort to
local and global node sampling strategies. In this way,
graphs are established efficiently from small pixel subsets
and could either focus on local information for detail recon-
struction, or span over the whole image for spatially distant
but crucial features. With the measures mentioned above,
IPG could fully exert graph flexibilities and achieve out-
standing performances on SR tasks.

2. Related Work
Recent SR Methods. In canonical approaches to Super-
Resolution, manifold previous works phrase SR as a re-
gression problem and is proved effective via applications
of CNN models [16, 24, 50, 51]. In these works, a crafted
CNN model is applied to the LR image to render it into HR.
Since the introduction of Transformers to vision [8], mani-
fold works integrate the self-attention mechanism in Trans-
formers into SR models [4–7, 23, 47, 53]. SwinIR [23]
borrows shifted window-attention to SR and demonstrates
good performance. Latest SR models include using striped
attention windows [6, 22], channel attention [5, 22, 40], per-
muted attention [53], et cetera.

Despite the fact that manifold SR works follow similar
convolution or window-attention methodologies, their SR
performance is still confined to the rigidity of ordinary vi-

sion models, i.e. fixed paradigms for aggregating neigh-
boring pixels and neglecting the unbalanced reconstruction
demand among pixels in SR. Hence, we resort to graphs as
a flexible way to aggregate information in order to break
these sorts of rigidity.
Graphs for Vision. Graphs have been widely applied to vi-
sion tasks, including point cloud segmentation [17, 41], hu-
man action recognition [42], and image classification [12,
32]. Some previous low-level vision works also view im-
ages as graphs. Most works leverage graph to aggregate
non-local information, either intra-scale [2, 18, 21, 35, 38]
or cross-scale [26, 52]. Other low-level vision works on
graphs include cross-layer [27] or inter-image information
aggregation [37]. Among these works, edge-conditioned
aggregation from neighboring nodes is mostly preferred.

In terms of graph construction from images, a majority
of works use k-nearest neighbors [18, 21, 26, 35, 38, 52].
Since all image nodes share the same degree, KNN graphs
are not flexible enough; and the unbalanced nature of image
nodes in low-level vision tasks is neglected as well. Be-
sides, most graph works regard patches as image nodes [18,
21, 26, 35, 52], disregarding potential patch misalignment
issues in low-level vision. As for the scale of graphs, some
works [21, 26, 52] search in a global scale to construct
graphs; other works [38, 39] construct graphs from a lo-
cal box. Graphs in these works are not flexible enough in
that they fail to take care of both local and global aspects.

3. Method

3.1. Rigidity of Previous SR Methods

Convolution [16, 24, 50] and window-attention [5, 6, 23]
are two major pathways for SR model designs. Despite
popular usages in SR, these measures are not flexible; their
deep-rooted rigidity could hinder SR performance. In one
convolution operation, each outputted pixel gathers infor-
mation within a tiny kernel-sized window; each pixel only
has access to its neighboring pixels. For instance, in a
standard 3 × 3 convolution, the perception field of a sin-
gle pixel is confined to a tiny 3 × 3 box. All pixels on
the image collect information from 8 respective neighbors
and themselves. The similar rigidity goes for window atten-
tion: though larger window sizes (compared to convolution)
are usually adopted, the perception field of window atten-
tion is still confined within hard window boundaries. In a
8× 8 window-attention scenario, all pixels gather 64 pixels
within the window where they belong.

Therefore, beyond rigidity in convolution and window-
attention, some works think out of the box and adopt graphs
in SR models. Unlike convolution and window-attention
where information aggregation is bounded to boxes, these
graph-based works are more spatially flexible: each node
could aggregate information from its favorite top-k nodes
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with loose spatial constraints. In this sense, graph aggre-
gation is not limited to preset rigid patterns; it is more dy-
namic and scalable compared to convolution and window-
attention counterparts.

However, though previous graph-based methods break
through hard aggregation boundaries, we hold that the flex-
ibility of graphs is not fully exploited in SR tasks. First
and foremost, as shown in Figure 1, all previous method-
ologies (either graph-based, convolution-based, or window-
attention-based) are degree-rigid. SR reconstruction de-
mand is unbalanced among different image parts. But in
previous methods, all pixels or nodes on the image are
aggregating the same number of pixels or nodes; i.e. in
graph terms, they share the same aggregation degree. Sec-
ondly, previous graph-based works are patch-rigid. Though
patches are usually regarded as image nodes, patch aggre-
gation usually requires rigid pixel-wise alignment. Possi-
ble misalignment of low-level features in patches makes
SR models perform worse. Thirdly, previous graph-based
works rigidly use graphs on either global or local scales,
but information at both scales is potentially important for
SR reconstruction. These rigid aspects are hindering the
performance of SR models.

3.2. Graph Construction

To break these rigidities, we construct degree-flexible pixel
graphs at local and global scales in the IPG model. In this
manner, we could fully exploit the flexibility of graphs and
achieve outstanding performance in SR tasks.
Degree Flexibility. Firstly, we try to figure out a degree-
flexible graph solution based on the unique “unbalanced
property” of SR tasks. SR reconstruction of images fea-
tures imbalance. As Gou et al. [9] put it, SR is a long-tailed
problem where only a small proportion of high-frequency
pixels need to be reconstructed; the rest of the image parts
need minimal restoration only. However, Gou et al. [9] tries
to address the issue by designing training losses rather than
rethinking it from the aspect of model designs. In the lop-
sided SR problem, it is a long-neglected aspect that treating
all pixels or parts on the image equivalently is unsuitable
and inefficient.

To this end, we opt to assign various node degrees to pix-
els based on a detail-rich indicator that marks pixels needing
more reconstruction efforts. Then we design the detail-rich
indicator as follows: given feature map F ∈ RH×W×C and
downsampling ratio s, the detail-rich indicator metric per
pixel DF ∈ RH×W is designated as the absolute difference
between the bilinearly downsampled and upsampled feature
map and the feature map itself:

DF :=
∑
C

|F − F↓s↑s|, (1)

where s is taken as 2 to avoid severe information loss. We

are aware that some explainable SR works [11, 43] propose
metrics to measure the importance of a certain part in the
output. However, these measures are gradient-based, which
requires costly backward passes. In comparison, the pro-
posed metric DF is operation cheap in that it only requires
bilinear interpolation twice. We also provide FLOPs statis-
tics in the Appendix.

Figure 2. Visualization of the detail-rich indicator DF in IPG.
Original image (left); DF of the shallowest block (middle); DF

of the deepest block (right). DF could effectively reflect detail-
rich parts on the image.

The overall degree budgets are assigned to each pixels
based on DF . The degree for a pixel node v ∈ F on the
feature map is in proportion to its corresponding pixel value
at DF :

deg (v) ∝ DF (v) . (2)

The detail-rich indicator DF in different MGB blocks is
visualized. From Figure 2, it can be seen that detail-rich
parts are responsive: margins and corners have high DF

while flat color blocks are low in DF . The visualization
reveals that the proposed DF could effectively reflect high-
frequency parts on the image throughout layers.
Pixel Node Flexibility. Then we are faced with the formu-
lation of vertices in image graphs. In previous graph-based
vision works [21, 26, 36, 52], graph nodes are typically set
as image patches. During graph aggregation, patches are
weighted-summed in a pixel-wise manner. However, the
forcible element-wise alignment of pixels during aggrega-
tion is unsuitable for SR tasks where feature maps have
rich low-level features. Object shift and rotation within
low-level patches are two major issues causing patch mis-
alignment. As for object shift, locations of objects within
patches could vary; location-misaligned patch objects intro-
duce noises. Object rotation is another faulty aspect of patch
aggregation. The orientation of patches is disregarded due
to rigid rectangular patch shapes during patch alignment.

To avoid the above problems during node aggregation,
we hold that finer-grained pixel nodes are better solutions
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Figure 3. The architectures of IPG, Multiscale Graph-aggregation Blocks (MGB), and Graph Aggregation Layers (GAL). Each IPG
consists of M MGB blocks, and each MGB has G GAL layers. Local and global graphs are distributed to GALs alternatively within MGB.

in the low-level vision scenario. Pixel graphs are more flex-
ible: each pixel node could directly find its relevant pixels
in aggregation, therefore avoiding pixel misalignment.

However, we admit that compared to pixel graphs, patch
graphs could potentially have larger perception fields and
are easier to construct due to a smaller number of nodes
in total, which means a smaller search space for edge con-
nections. Hence, we need an efficient way to construct a
flexible and effective pixel graph.
Space Flexibility. Then we develop the space flexibility
of IPG graphs via an efficient search of pixel node connec-
tions both locally and globally. We propose that both local
and global information are crucial for SR reconstruction:
while lossy image parts could rebuild themselves from lo-
cal neighborhoods, they could also learn from distant but
similar features for refinement.

Existing graph-based methods have demonstrated some
sort of space flexibility. As shown in Figure 1, compared
to convolution and window attention options where a pixel
always attends to a fixed neighboring region, graph aggrega-
tion could flexibly focus on crucial image parts regardless
of space limits. However, existing graph-based works are
not spatially flexible enough as they fail to consider both
local and global aspects.

In fact, computation considerations are the major con-
cern of a comprehensive connection search. It is costly
to construct global graphs by searching through all im-
age nodes. As a remedy, strided sampling is always
adopted [21, 26, 52]. But consequently, local regions are ne-
glected. The choice of pixels as graph nodes makes graph
construction even more challenging, because node spaces
are enlarged further and it is hardly impractical to search
through all pixels for graph construction.

For the sake of efficiency, and to gather local-level sur-
rounding features and global-level distant features contribu-
tive to detail reconstruction in SR tasks, we use two types
of sampling to aggregate both local and global information,
shown in Figure 4. For local sampling, the neighborhood

surrounding a certain node is chosen as a local-scale search
space on which a graph is established; for global sampling,
sampled nodes span over the image in a dilated pattern.

Figure 4. An illustration of sampling strategies. The original im-
age with the highlighted image node (left), local sampling (mid-
dle), and global sampling (right) are demonstrated. In this way,
image graphs could flexibly gather both local and global informa-
tion in an efficient manner.

In the proposed IPG SR model, both sampling meth-
ods are performed in order to construct local and global-
scale graphs. For each pixel node, its node connections are
searched within the sampling space. In this way, we achieve
spatial flexibility in a cost-efficient fashion.

3.3. Graph Aggregation

Now that flexible graphs are constructed, graph aggrega-
tion is performed such that each node can communicate
with its connected neighbors and use their information for
self-refinement in SR. In vision applications of graphs, ag-
gregation in max-pooling [12, 28] or edge-conditioned [21,
26, 36] forms are mostly preferred. We tend to adopt edge-
conditioned aggregation [36], as max-pooling could result
in significant loss of information from neighboring pixels
that are crucial for low-level vision. Since pixel recon-
struction in SR heavily relies on abundant neighboring in-
formation, edge-conditioned aggregation is adopted as it
cares about pixel inter-relations and maintains more neigh-
boring information for effective reconstruction. The edge-
conditioned aggregation [21, 26, 36, 52] is mathematically

24111



formulated as follows: at the kth layer in IPG, given node
feature hk−1 as input, neighboring node setN (v), the node
v output hk

v is calculated as:

hk
v =

1

Ck

∑
u∈N(v)

exp
(
fk (u, v)

)
hk−1
u , (3)

where fk : Rd × Rd → R is a parameterized function that
measures the correlation between node pair (u, v); Ck :=∑

u∈N(v) exp
(
fk (u, v)

)
is a normalizing constant. In our

case, cosine similarity is adopted as the correlation metric.
Despite the flexibility of graph aggregation, we are con-

cerned that the spatial information is damaged in the process
of graph aggregation: since all nodes are treated equally,
the model will grasp little knowledge about node position.
Hence, inspired by Liu et al. [25, 29], we add relative po-
sition encoding to node features before aggregation to en-
hance position information.

3.4. Model Architecture

The proposed graph construction and graph aggregation
mechanisms are then merged into the effective MetaFormer
architecture as the IPG model. The detailed structure of IPG
is shown in Figure 3.
The IPG Architecture. The general architecture of IPG
follows mainstream SR models [5–7, 23, 53]. As an LR im-
age is inputted into the model, it is first passed to a Conv
Layer to extract shallow features. Then the features are
passed through a series of Multiscale Graph-aggregation
Blocks (MGB) for effective deep feature extraction with the
aid of flexible graphs. Each MGB consists of a stack of
Graph Aggregation Layers (GAL) where graph aggregation
on both local and global scales is performed. Finally, the
image is spatially reconstructed via a pixel-shuffle upsam-
pler.
MGB Blocks. Multiscale Graph-aggregation Blocks
(MGB) gather both local and global-scale information for
effective image SR reconstruction. Both local and global
pixel graphs are calculated per block based on block inputs.
Block-wise graph calculations enable regular graph updates
throughout the model. The construction steps are detailed in
Section 3.2, where local and global sampling is performed
respectively for local or global graph construction. The two
types of graphs (local/global) are then distributed to GALs
throughout the block for aggregation operations. Local and
global graphs are distributed in a sequentially alternative
manner to ensure that both local and global-scale informa-
tion are sufficiently aggregated.
GAL Layers. The design of Graph Aggregation Layers
(GAL) follows the general MetaFormer-like structure [44].
Graphers that are responsible for graph aggregation (as in-
troduced in Section 3.3) are used as token mixers. Gra-
pher gathers local or global information based on the type

of graph it receives. Following [5, 22, 53], we leverage
efficient Channel Attention (CA) modules and ConvFFN
blocks to aid the SR performance of our model.

4. Experiments
4.1. Experiment Setting

We adopt the general training setting of recent SR works [5,
6, 23] for fair comparison. We use DIV2K+Flickr2K
(DF2K) as the training set (DIV2K for lightweight mod-
els). Cropped patches of size 64 × 64 are sent into the
model. Training data is augmented by random flipping and
random rotation of degrees [0, 90, 180, 270]. Our model
is trained for 500K iterations using the Adam Optimizer
(β1 = 0.9, β2 = 0.99) at a learning rate of 2e − 4.
The training input size is set at 64 × 64. MultistepLR
is adopted where the learning rate is halved at iterations
[250000, 400000, 450000, 475000]. Batchsize is set as 32.

4.2. Super-Resolution Performance
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Figure 5. Comparison of the proposed IPG-S and IPG with SR
baselines in FLOPs and performance. Urban100×4 in PSNR is re-
ported. Thanks to the flexibility of graphs, IPG could outperform
other SR models by >0.1dB at similar FLOPs. Notably, FLOPs
only reflect theoretical computation costs instead of actual infer-
ence speed.

We compare the performance of our model with var-
ious SR baselines in Table 1 on Set5 [3], Set14 [45],
BSDS100 [33], Urban100 [13], and Manga109 [34] bench-
marks. The chosen baselines are as follows: IGNN [52]
is a patch-graph-based SR method; ELAN [49], IPT [4],
SwinIR [23], CAT-A [6], ART [47], GRL-B [22], and
HAT [5] are transformer-based methods. Performance of
SR ×2, ×3, ×4 models are measured by PSNR and SSIM.
”+” marks stand for baselines with self-ensemble strate-
gies, which boosts SR performance further. IPG could out-
compete other models by large margins. In particular, IPG
reaches 28.13dB of PSNR on the Urban100× 4 task, ex-
ceeding existing SOTA by more than 0.1dB with standard
training setting. IPG has an outstanding performance in the
PSNR versus theoretical FLOPs plot, shown in Figure 5.
But notably, IPG runs slower than previous methods for
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Method SET5 [3] SET14 [45] B100 [33] Urban100 [13] Manga109 [34]

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
×
2

SR

IGNN [52] 38.24 0.9613 34.07 0.9217 32.41 0.9025 33.23 0.9383 39.35 0.9786
ELAN [49] 38.36 0.9620 34.20 0.9228 32.45 0.9030 33.44 0.9391 39.62 0.9793
IPT [4] 38.37 N/A 34.43 N/A 32.48 N/A 33.76 N/A N/A N/A
SwinIR [23] 38.42 0.9623 34.46 0.9250 32.53 0.9041 33.81 0.9427 39.92 0.9797
EDT [20] 38.45 0.9624 34.57 0.9258 32.52 0.9041 33.80 0.9425 39.93 0.9800
CAT-A [6] 38.51 0.9626 34.78 0.9265 32.59 0.9047 34.26 0.9440 40.10 0.9805
ART [47] 38.56 0.9629 34.59 0.9267 32.58 0.9048 34.30 0.9452 40.24 0.9808
GRL-B∗ [22] 38.48 0.9627 34.64 0.9265 32.55 0.9045 33.97 0.9437 40.06 0.9804
HAT∗ [5] 38.61 0.9630 34.77 0.9266 32.61 0.9053 34.45 0.9465 40.23 0.9806
IPG (Ours) 38.61 0.9632 34.73 0.9270 32.60 0.9052 34.48 0.9464 40.24 0.9810
IPG+ (Ours) 38.65 0.9633 34.87 0.9274 32.62 0.9053 34.54 0.9468 40.32 0.9811

×
3

SR

IGNN [52] 34.72 0.9298 30.66 0.8484 29.31 0.8105 29.03 0.8696 34.39 0.9496
ELAN [49] 34.90 0.9313 30.80 0.8504 29.38 0.8124 29.32 0.8745 34.73 0.9517
IPT [4] 34.81 N/A 30.85 N/A 29.38 N/A 29.49 N/A N/A N/A
SwinIR [23] 34.97 0.9318 30.93 0.8534 29.46 0.8145 29.75 0.8826 35.12 0.9537
EDT [20] 34.97 0.9316 30.89 0.8527 29.44 0.8142 29.72 0.8814 35.13 0.9534
CAT-A [6] 35.06 0.9326 31.04 0.8538 29.52 0.8160 30.12 0.8862 35.38 0.9546
ART [47] 35.07 0.9325 31.02 0.8541 29.51 0.8159 30.10 0.8871 35.39 0.9548
GRL-B∗ [22] 35.05 0.9323 31.00 0.8543 29.49 0.8153 29.83 0.8837 35.24 0.9541
HAT [5] 35.07 0.9329 31.08 0.8555 29.54 0.8167 30.23 0.8896 35.53 0.9552
IPG (Ours) 35.10 0.9332 31.10 0.8554 29.53 0.8168 30.36 0.8901 35.53 0.9554
IPG+ (Ours) 35.19 0.9335 31.14 0.8558 29.57 0.8171 30.48 0.8911 35.65 0.9558

×
4

SR

IGNN [52] 32.57 0.8998 28.85 0.7891 27.77 0.7434 26.84 0.8090 31.28 0.9182
ELAN [49] 32.75 0.9022 28.96 0.7914 27.83 0.7459 27.13 0.8167 31.68 0.9226
IPT [4] 32.64 N/A 29.01 N/A 27.82 N/A 27.26 N/A N/A N/A
SwinIR [23] 32.92 0.9044 29.09 0.7950 27.92 0.7489 27.45 0.8254 32.03 0.9260
EDT [20] 32.82 0.9031 29.09 0.7939 27.91 0.7483 27.46 0.8246 32.03 0.9254
CAT-A [6] 33.08 0.9052 29.18 0.7960 27.99 0.7510 27.89 0.8339 32.39 0.9285
ART [47] 33.04 0.9051 29.16 0.7958 27.97 0.7510 27.77 0.8321 32.31 0.9283
GRL-B∗ [22] 32.90 0.9039 29.14 0.7956 27.96 0.7497 27.53 0.8276 32.19 0.9266
HAT [5] 33.04 0.9056 29.23 0.7973 28.00 0.7517 27.97 0.8368 32.48 0.9292
IPG (Ours) 33.15 0.9062 29.24 0.7973 27.99 0.7519 28.13 0.8392 32.53 0.9300
IPG+ (Ours) 33.23 0.9064 29.30 0.7979 28.04 0.7525 28.22 0.8407 32.72 0.9310

Table 1. Comparison of IPG with recent SR methods. Methods with ”∗” are replicated with standard setting, detailed in the Appendix;
items with ”+” stands for self-ensemble strategies.

lack of hardware support; IPG costs slightly advantageous
peak memory. Apart from the quantitative comparison in
PSNR/SSIM metrics, we also provide visual results of diffi-
cult details reconstructed by IPG. As shown in Figure 6, the
proposed IPG model is compared against recent top-tier SR
baselines on the SR ×4 task. Our IPG model could visually
outcompete other methods.

4.3. Lightweight SR

We also provide some lightweight variants of IPG. While
the architecture of IPG-S and IPG-Tiny remains the
same as the base version, their depth and dimension
width are significantly reduced for computation-constrained
applications. Variant config details are in the Ap-
pendix. We choose canonical SR baselines including
CARN [1], IMDN [14], LAPAR-A [19], LatticeNet [31],
and ESRT [30]; other baselines have MetaFormer archi-
tectures, including SwinIR-light [23], ELAN [48], SwinIR-
NG [53], and SRFormer-light [53]. IPG could outcompete
SR baselines that share similar MetaFormer [44] architec-
tures at similar computation costs. Specifically, IPG-Tiny
could achieve more than 0.1dB of PSNR improvement on
Urban100 compared with other lightweight baselines.

4.4. Ablation Study

Pixel Nodes vs. Patch Nodes. As claimed in Section 3.2,
patches as image graph nodes may suffer in cases like ob-
ject shift and object rotation. The forcible element-wise
alignment of patch pixels could hinder SR performance
to a great extent. In order to investigate the negative im-
pact of patch nodes, we provide a patched version of IPG
as follows: rather than using pixel nodes, we use 2 × 2-
sized patches as nodes in this patched variant. Other model
settings are kept unchanged for fair comparison, including
model depths, feature dimensions, MLP ratios, and sam-
pling region size. However, we are aware that the com-
putation costs of patch node aggregation could be different
compared to pixel nodes. Hence, we tune the number of
aggregation times for the patched variant, to make sure that
aggregation of patch nodes has a similar cost as pixel node
aggregation. The ablation results are shown in Table 2.

Set5 Set14 Urban100

2× 2-Patched IPG 33.01 29.18 27.81
Pixel IPG 33.15 29.24 28.13

Table 2. Comparison of pixel-node graphs against patch-node
graphs in IPG. SR×4 results are reported.

In Figure 7, we also provide a vision comparison be-
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Urban100: img 024 (×4)

HQ Bicubic IGNN [52] IPT [4] SwinIR [23]

GRL-B [22] ART [47] CAT-A [6] HAT [5] IPG (ours)

Urban100: img 092 (×4)

HQ Bicubic IGNN [52] IPT [4] SwinIR [23]

GRL-B [22] ART [47] CAT-A [6] HAT [5] IPG (ours)

Urban100: img 098 (×4)

HQ Bicubic IGNN [52] IPT [4] SwinIR [23]

GRL-B [22] ART [47] CAT-A [6] HAT [5] IPG (ours)

Figure 6. Visual comparison of image SR (×4) with latest SR baselines in challenging cases.

Urban100: img 092 (×4)

HQ IGNN [52] (3× 3)

Patched IPG [6] (2× 2) IPG [47]
Figure 7. Visual comparison of patch-node graph methods over
IPG that uses pixel node graphs.

tween IGNN [52] (3× 3 patch), patched IPG (2× 2 patch),
and IPG (pixel graph). For the IGNN case that uses large
patches as nodes, patch alignment is causing trouble: the
model is puzzled about the texture orientations, so it makes
mistakes during texture reconstruction by aligning pattern-
similar but orientation-different patches. For patched IPG,
misaligned orientation is causing issues as well: line tex-
tures are distorted. In contrast, pixel aggregation in IPG
avoids misalignment and performs well.
KNN vs. Degree-flexible Graphs. In canonical graph

Set5 Set14 Urban100

KNN 33.09 29.19 28.06
Degree-Flex 33.15 29.24 28.13

Table 3. Comparison of degree-flexible graphs against plain KNN
graphs in IPG. SR×4 results are reported.
applications for vision tasks, k-Nearest-Neighbor (KNN)

graphs are normally adopted for graph construction. How-
ever, KNN still suffers the degree rigidity, as all nodes
are connected to a fixed number of neighboring nodes.
To improve degree flexibility, we consider the unbalanced
demand of pixels in SR tasks and propose a degree-
flexible scheme of graph construction (introduced in Sec-
tion 3.2). We compare KNN and the degree-flexible graph
scheme in IPG under the same settings. According to Ta-
ble 3, Degree-Flex could outcompete the KNN variant of
IPG. Interestingly, our Degree-Flex graph could outcom-
pete computation-heavy fully-connected graphs (see Ap-
pendix), further implying the effectiveness of our Degree-
Flex graphs.

As shown in Figure 8, we visually compare the con-
nected regions of detail-poor and detail-rich pixels at the
local scale. Detail-poor pixels are usually on flat, change-
less parts of the image; these pixels require minimal node
connection for reconstruction. On the contrary, detail-rich
pixel nodes are usually on edges and corners, which are as-
signed higher node degrees and thus a larger region of per-
ception. In this sense, the detail-rich indicator metric DF

could endow IPG with degree flexibility.

Local/Global Graphs. In the design of IPG, we aggregate
information from both local and global scales based on lo-
cal and global pixel node sampling. Though numerous SR
works highlight the importance of either local or non-local
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Method Training
Dataset

Params FLOPs SET5 [3] SET14 [45] B100 [33] Urban100 [13] Manga109 [34]

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

×
2

SR

CARN [1] DIV2K 1592K 222.8G 37.76 0.9590 33.52 0.9166 32.09 0.8978 31.92 0.9256 38.36 0.9765
IMDN [14] DIV2K 694K 158.8G 38.00 0.9605 33.63 0.9177 32.19 0.8996 32.17 0.9283 38.88 0.9774

LAPAR-A [19] DF2K 548K 171G 38.01 0.9605 33.62 0.9183 32.19 0.8999 32.10 0.9283 38.67 0.9772
LatticeNet [31] DIV2K 756K 169.5G 38.15 0.9610 33.78 0.9193 32.25 0.9005 32.43 0.9302 N/A N/A

ESRT [30] DIV2K 751K - 38.03 0.9600 33.75 0.9184 32.25 0.9001 32.58 0.9318 39.12 0.9774
SwinIR-light [23] DIV2K 910K 244G 38.14 0.9611 33.86 0.9206 32.31 0.9012 32.76 0.9340 39.12 0.9783

ELAN [49] DIV2K 621K 203G 38.17 0.9611 33.94 0.9207 32.30 0.9012 32.76 0.9340 39.11 0.9782
SwinIR-NG [7] DIV2K 1181K 274.1G 38.17 0.9612 33.94 0.9205 32.31 0.9013 32.78 0.9340 39.20 0.9781

SRFormer-light [53] DIV2K 853K 236G 38.23 0.9613 33.94 0.9209 32.36 0.9019 32.91 0.9353 39.28 0.9785
IPG-Tiny (Ours) DIV2K 872K 245.2G 38.27 0.9616 34.24 0.9236 32.35 0.9018 33.04 0.9359 39.31 0.9786

×
3

SR

CARN [1] DIV2K 1592K 118.8G 34.29 0.9255 30.29 0.8407 29.06 0.8034 28.06 0.8493 33.50 0.9440
IMDN [14] DIV2K 703K 71.5G 34.36 0.9270 30.32 0.8417 29.09 0.8046 28.17 0.8519 33.61 0.9445

LAPAR-A [19] DF2K 594K 114G 34.36 0.9267 30.34 0.8421 29.11 0.8054 28.15 0.8523 33.51 0.9441
LatticeNet [31] DIV2K 765K 76.3G 34.53 0.9281 30.39 0.8424 29.15 0.8059 28.33 0.8538 N/A N/A

ESRT [30] DIV2K 751K - 34.42 0.9268 30.43 0.8433 29.15 0.8063 28.46 0.8574 33.95 0.9455
SwinIR-light [23] DIV2K 918K 111G 34.62 0.9289 30.54 0.8463 29.20 0.8082 28.66 0.8624 33.98 0.9478

ELAN [49] DIV2K 629K 90.1G 34.61 0.9288 30.55 0.8463 29.21 0.8081 28.69 0.8624 34.00 0.9478
SwinIR-NG [7] DIV2K 1190K 114.1G 34.64 0.9293 30.58 0.8471 29.24 0.8090 28.75 0.8639 34.22 0.9488

SRFormer-light [53] DIV2K 861K 105G 34.67 0.9296 30.57 0.8469 29.26 0.8099 28.81 0.8655 34.19 0.9489
IPG-Tiny (Ours) DIV2K 878K 109.0G 34.64 0.9292 30.61 0.8470 29.26 0.8097 28.93 0.8666 34.30 0.9493

×
4

SR

CARN [1] DIV2K 1592K 90.9G 32.13 0.8937 28.60 0.7806 27.58 0.7349 26.07 0.7837 30.47 0.9084
IMDN [14] DIV2K 715K 40.9G 32.21 0.8948 28.58 0.7811 27.56 0.7353 26.04 0.7838 30.45 0.9075

LAPAR-A [19] DF2K 659K 94G 32.15 0.8944 28.61 0.7818 27.61 0.7366 26.14 0.7871 30.42 0.9074
LatticeNet [31] DIV2K 777K 43.6G 32.30 0.8962 28.68 0.7830 27.62 0.7367 26.25 0.7873 N/A N/A

ESRT [30] DIV2K 751K - 32.19 0.8947 28.69 0.7833 27.69 0.7379 26.39 0.7962 30.75 0.9100
SwinIR-light [23] DIV2K 930K 63.6G 32.44 0.8976 28.77 0.7858 27.69 0.7406 26.47 0.7980 30.92 0.9151

ELAN [49] DIV2K 640K 54.1G 32.43 0.8975 28.78 0.7858 27.69 0.7406 26.54 0.7982 30.92 0.9150
SwinIR-NG [7] DIV2K 1201K 63.0G 32.44 0.8980 28.83 0.7870 27.73 0.7418 26.61 0.8010 31.09 0.9161

SRFormer-light [53] DIV2K 873K 62.8G 32.51 0.8988 28.82 0.7872 27.73 0.7422 26.67 0.8032 31.17 0.9165
IPG-Tiny (Ours) DIV2K 887K 61.3G 32.51 0.8987 28.85 0.7873 27.73 0.7418 26.78 0.8050 31.22 0.9176

Table 4. Comparison of IPG-Tiny with recent lightweight SR methods. Under comparable Params and FLOPs, IPG-Tiny could outcompete
lightweight SR baselines.

Detail-Poor Nodes Detail-Rich Nodes

Figure 8. Visual demonstration of parts connected to a pixel node.
Compared with detail-poor nodes (left), detail-rich nodes (right)
requires a larger amount of aggregation due to difficulty in recon-
struction.

aggregation, we demonstrate that both aspects are actually
crucial for SR performance. As shown in Table 5, we per-
form experiments that uses local or global-scale graphs only
under identical settings, and compare them with the original
version of IPG. The optimal performance is reached when

both local and global aggregation are performed.

Set5 Set14 Urban100

Local Only 33.08 29.19 28.10
Global Only 33.04 29.11 27.59
Local + Global 33.15 29.24 28.13

Table 5. Ablations of local and global graph usages on SR×4.

5. Conclusion
Existing SR measures are rigid both in terms of space and
degree. In order to break rigidity in SR, the paper pro-
poses IPG – an SR model that fully leverages the flexibility
of graphs. Firstly, we are aware that SR is a task where
detail-rich image parts require lopsided reconstruction ef-
forts. Hence, we designed a degree-varying scheme for
graph construction rather than k-nearest neighbors. Then
we take pixels rather than patches for graph aggregation.
To reach the maximum amount of spatial flexibility, nodes
are sampled both on local and global scales. IPG reaches
State-of-the-art performance compared with SR baselines.
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