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Abstract

We introduce SynCLR, a novel approach for learning vi-
sual representations exclusively from synthetic images and
synthetic captions, without any real data. We synthesize a
large dataset of image captions using LLMs, then use an off-
the-shelf text-to-image model to generate multiple images
corresponding to each synthetic caption. We perform visual
representation learning on these synthetic images via con-
trastive learning, treating images sharing the same caption
as positive pairs. The resulting representations transfer well
to many downstream tasks, competing favorably with other
general-purpose visual representation learners such as CLIP
and DINO v2 in image classification tasks. Furthermore,
in dense prediction tasks such as semantic segmentation,
SynCLR outperforms previous self-supervised methods by a
significant margin, e.g., improving over MAE and iBOT by
6.2 and 4.3 mloU on ADE20k for ViT-B/16.

1. Introduction

Representation learning extracts and organizes information
from raw, often unlabeled data. The quality, quantity, and
diversity of the data determines how good a representation
the model can learn. The model becomes a reflection of the
collective intelligence that exists in the data. We get what
we feed in.

Unsurprisingly, the current best-performing visual rep-
resentation learning methods [59, 62] rely on large scale
real datasets. However, the collection of real data has its
own dilemmas. Collecting large scale uncurated data [71] is
relatively cheap and thus quite achievable. However, for self-
supervised representation learning, this approach exhibits
poor scaling behavior —i.e., adding more uncurated data has
little effect at large data scales [33, 80]. Collecting small
scale curated data [21] also is achievable, but models trained
in this way are limited to relatively narrow tasks. The ideal
would be large scale curated datasets of real images, and
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Figure 1. Three paradigms for visual representation learning. Top
row: Traditional methods, such as CLIP [62], learn only from real
data; Middle row: Recent methods, such as StableRep [81], learn
from real text and generated images; Bottom row: Our method,
SynCLR, learns from synthetic text and synthetic images, and rival
the linear transfer performance of CLIP on ImageNet despite not
directly observing any real data.

recent work has indeed shown that this can lead to strong
performance gains at scale [59], but this path is costly to
pursue.

To alleviate the cost, in this paper we ask if synthetic
data, sampled from off-the-shelf generative models, is a
viable path toward large scale curated datasets that can train
state-of-the-art visual representations.

We call such a paradigm learning from models, in con-
trast to directly learning from data. Models have several
advantages as a data source for building large scale train-
ing sets: via their latent variables, conditioning variables,
and hyperparameters, they provide new controls for curat-
ing data; we will make use of these controls in the method
we propose. Models also can be easier to share and store
(because models are more compressed than data), and can
produce an unlimited number of data samples (albeit with
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finite diversity). A growing literature has studied these
properties and other advantages (and disadvantages) of us-
ing generative models as a data source for training down-
stream models [3, 26, 40, 41, 69, 81]. Some of these meth-
ods use a hybrid mode — either mixing real and synthetic
datasets [3] or needing a real dataset to generate another
synthetic dataset [81]. Other methods try to learn represen-
tations from purely synthetic data [69] but lag far behind
the best performing models. Instead, we show that learning
from models, without training on any real data, can yield rep-
resentations that match the top-performing representations
learnt from real data. For instance, as illustrated in Figure 1,
representations learnt by our method are able to transfer as
well as OpenAI’s CLIP [62] on ImageNet (both methods
using ViT-B [24]).

Our approach leverages generative models to re-define
the granularity of visual classes. As shown in Figure 2, con-
sider we have four images generated using two prompts: “a
golden retriever, wearing sunglasses and a beach hat, rides
a bike" and “a cute golden retriever sits in a house made
of sushi". Traditional self-supervised method such as Sim-
CLR [13] will treat each of these images as a different class;
embeddings for different images are pushed apart with no
explicit consideration of the shared semantics between im-
ages. On the other extreme, supervised learning methods
(i.e. SupCE) will regard all these images as a single class
(e.g., “golden retriever”). This ignores nuances in the se-
mantics of the images, such as the fact that the dogs are
riding a bike in one pair of images and sitting inside a sushi
house in the other pair of images. Instead, our method, Syn-
CLR, treats captions as classes, i.e., each caption describes
a visual class (this level of granularity was also explored
in StableRep [81]). This allows us to group images by the
concepts of “riding a bike” and “sitting in a sushi house”,
in addition to grouping by a coarser class label like “golden
retrieval”. This level of granularity is difficult to mine in real
data, since collecting multiple images described by a given
caption is non-trivial, especially when scaling up the number
of captions. However, text-to-image diffusion models are
fundamentally built with this ability; simply by conditioning
on the same caption and using different noise inputs, a text-
to-image diffusion model will produce different images that
all match the same caption. In our experiments, we find the
caption-level granularity outperforms both SimCLR and su-
pervised training. Another advantage is that this definition of
visual classes has good scalability. Unlike ImageNet-1k/21k
where a given number of classes is fixed, we can augment ex-
isting classes (or data) in an online fashion, and theoretically
scale up to as many classes as needed.

Our system consists of three steps. The first step is to
synthesize a large corpus of image captions. We design a
scalable approach by leveraging the in-context learning ca-
pability of large language models (LLMs), where we present
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Figure 2. Different learning objectives treat classification granu-
larity differently. These images are generated by two prompts “a
golden retriever, wearing sunglasses and a beach hat, rides a bike"
and “a cute golden retriever sits in a house made of sushi". Sim-
CLR treats each image as a class, while supervised cross-entropy
treats them all as the same “golden retrieval” class. The former
does not consider shared semantics between images, and the latter
is coarse-grained and ignores actions or relationships between sub-
jects/background. Our approach, SynCLR, defines visual classes
by sentences.

examples of word-to-caption translations. Next, a text-to-
image diffusion model is adopted to synthesize multiple
images for each synthetic caption. This yields a synthetic
dataset of 600M images. Then we train visual representa-
tion models by a combination of multi-positive contrastive
learning [43] and masked image modeling [98].

Our learned representations transfer well. With Syn-
CLR pre-training, our ViT-B and ViT-L models achieve
80.7% and 83.0% top-1 linear probing accuracy on
ImageNet-1K, respectively, which is on par with OpenAl’s
CLIP [62]. On fine-grained classification tasks, SynCLR out-
performs CLIP by 3.3% for ViT-B and 1.5% for ViT-L, and
performs similarly to DINO v2 [59] models, which are dis-
tilled from a pre-trained ViT-g model. For semantic segmen-
tation on ADE20k, SynCLR outperforms MAE pre-trained
on ImageNet by 6.2 and 4.1 in mIoU for ViT-B and ViT-L
under the same setup, showing strong transfer ability for
dense prediction tasks similar to DINO v2, which addition-
ally involves a training period on 518x518 resolution images
that SynCLR does not have.

2. Related Works

Self-supervised representation learning approaches in vi-
sion develop domain-specific pre-text tasks, such as col-
orization [94], rotation prediction [31], and solving jigsaw
puzzles [56]. Domain-agnostic approaches have been pop-
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ular, such as contrastive learning [6, 13, 35, 38, 57, 78, 87]
and masked image modeling [2, 4, 5, 29, 39, 86, 90, 98].
Contrastive learning promotes invariance [79] for two views
of the same image and pushes apart representations for dif-
ferent images [85] (or only invariance [11, 34]); the resulting
representations yield strong performance for linear or zero-
shot transfer. Masked image modeling reconstructs the pix-
els [39, 90] or local features [4], often producing excellent
fine-tuning transfer performance, especially in dense predic-
tion tasks [39]. The state of the art DINO v2 [59] leverages
both approaches, and our approach shares a similar spirit.

Supervised learning [36, 45, 75] used to be the dominant
approach for learning transferable visual representations for
various tasks [23, 32, 72]. Recent studies [37, 49] has shown
that, the transferability of representations learned in this way
is limited, e.g., pre-training has no improvement over random
initialization for dense prediction tasks (e.g., object detec-
tion) when the fine-tuning is long enough. Such limitation
continues when the model has been scaled up to 22B [20].
An alternative paradigm learns visual representations from
text supervision [42, 62], e.g., CLIP [62]. This approach is
more flexible (i.e., not requiring classes) and provides richer
supervision, often learning generalizable representations.

Generative models as representation learners. A number
of papers have explored the representations that are learned
by generative models for various recognition tasks [22, 48].
As might be expected intuitively, such models indeed learn
especially good representations for dense tasks, such as opti-
cal flow estimation [70], semantic segmentation [8, 91], and
depth estimation [95]. Another line of work [18, 47] adapt
pre-trained diffusion models for zero-shot image recognition
via analysis-by-synthesis. These approaches may need to
be adapted when the architectures of the generative models
change or a new family of generative model emerge. Our
approach treats images as universal interfaces with the hope
of better generality.

Learning from synthetic data from generative models.
Synthetic data has been explored to train machine learn-
ing models in various domains [27, 46, 53, 54, 65, 66, 74,
77, 92]. In computer vision, the utilization of synthetic
data for training models is common, ranging from optical
flow [52] and autonomous driving [1] to semantic segmenta-
tion [15] and human pose estimation [84]. Others [41, 50]
have explored synthetic data for representation learning,
with the predominant approach of altering the latent vari-
ables of deep generative models. Our approach aligns with
this research paradigm, but it diverges in its use of text-to-
image models, which have also been investigated by other re-
searchers [40, 69, 99]. But they use synthetic data for super-
vised learning [26, 69]. The closet work is StableRep [81],
which also conducts representation learning but still needs a
real text dataset.

3. Approach

In this paper, we study the problem of learning a visual en-
coder f in the absence of real images or textual data. Our
approach hinges on the utilization of three key resources: a
language generation model (g1 ), a text-to-image generative
model (g2), and a curated list of visual concepts (C). Our ex-
ploration include three steps: (1) we employ g; to synthesize
a comprehensive set of image descriptions 7', which encom-
pass the range of visual concepts in C'; (2) for each caption
in T', we generate multiple images using g, culminating in
an extensive synthetic image dataset X; (3) we train on X
to obtain a visual representation encoder f.

We use Llama-2 7B [83] and Stable Diffusion 1.5 [64] as
g1 and go, respectively, because of their fast inference speed.
We anticipate that better g; and g- in the future will further
enhance the effectiveness of this approach.

3.1. Synthesizing captions

To harness the capability of powerful text-to-image models
for generating a substantial dataset of training images, we ini-
tially require a collection of captions that not only precisely
depict an image but also exhibit diversity to encompass a
broad spectrum of visual concepts.

We have developed a scalable approach to create such a
large collection of captions, leveraging the in-context learn-
ing capability of LLMs [9]. Our method involves crafting
specific prompt engineering templates that guide the LLM to
produce the required captions. We start by gathering the con-
cept list C' from some existing datasets, such as ImageNet-
21k [21] and Places-365 [96]. For each concept ¢ € C, we
consider three straightforward templates to generate captions
effectively.

* c—> caption. As the most direct and simple approach, we
have the Llama-2 model sample a sentence for the concept
c.

* ¢, bg —> caption. We combine the visual concept ¢ with
a background or setting bg. A naive approach would ran-
domly select both ¢ and bg, where bg may correspond to a
class name from a places dataset like [96]. However, this
method often leads to unlikely combinations in the real
world, such as a blue whale in a football field. Our abla-
tion experiments demonstrate that this strategy results in
suboptimal performance, likely because the generated cap-
tions fall far outside the training distribution of gs. Instead,
we employ GPT-4 [58] to generate a list of suitable back-
grounds for the chosen concepts. This approach increases
the likelihood of generating more plausible combinations,
such as a tiger in a forest or a cat in a kitchen, enhancing
the overall quality of the results.

* ¢, rel —> caption. Given a visual concept ¢, we consider
pairing it with a positional relationship word, rel. Take
for instance, if ¢ signifies cat and rel translates to in front
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Templates

In context examples

c—> caption

¢,bg —> caption

c,rel —> caption

revolver —> Multiple antique revolvers lie on a wooden table, gleaming under soft, ambient light.

closet —> The compact closet, brimming with clothes and shoes, exudes a feeling of organization.

zebra —> A zebra is gallantly trotting across the vast, sunlit plains of the African savannah, creating a
captivating black and white spectacle.

bus station —> The bustling bus station thrums with restless energy, as travelers navigate through the crowded
space, awaiting their journeys amid the echoes of departing buses.

tiger, forest —> Two tigers are running together in the forest.

lighter, motorhome —> In the cozy, cluttered environment of a well-traveled motorhome, a sleek silver lighter
holds dominion on the rustic wooden table.

sunset, lake —> Golden sunset hues reflect on a calm lake, silhouetting a lone canoeist against a backdrop of
fiery clouds.

kit fox, in front of —> A group of small, fluffy, golden kit foxes is playfully gathered in front of a lush, green,
towering forest backdrop.

cabbage, besides —> A vibrant image portrays a lush, green cabbage, glistening with dewdrops, nestled
besides a rustic, wooden crate full of freshly harvested vegetables.

Table 1. We show examples for the three synthesis templates. Such examples are used as demonstrations for Llama-2 to perform the
in-context learning task. We have 176 such examples in total. Most of them are generated by prompting GPT-4 [58], while a handful of
others are human generated (in a 10M scale pilot study of synthetic captions, we do not notice significant differences between including or

excluding human generated examples.)

Context

Generate an image caption with an object category and an
environment category:

Generated Caption

tiger, forest => Two tigers are running together in the forest. wild red fox sitting on a

partially snow covered

Llama 2
groom, wedding ceremony => father of groom congratulating him)|

after the wedding ceremony. suburbs of a small city
fountain, park => Water cascades from an ornate fountain,
surrounded by autumn-hued trees in a serene park.

red fox, yard => — ]

Figure 3. In-context caption generation using Llama-2 [83]. We
randomly sample three in-context examples for each inference run.

of, our objective is to prompt the LLM to create captions
such as a cute yellow cat is enjoying the fish in front of the
sofa. To add variety, we have a selection of 10 different
positional relationship words that we randomly choose
from.

For each of the three templates, we have prepared multi-
ple demonstration examples that serve as instructions for the
LLM to complete the caption synthesis task. Table 1 shows a
couple of examples for each template. In total, we have 106
examples for c—>prompt, 50 examples for ¢, bg—>prompt,
and 20 examples for ¢, rel->prompt. Such examples are
mostly collected by prompting GPT-4, with a handful from
human. In a pilot study, we do not observe difference be-
tween including or excluding human generated examples.

In the stage of generating captions in-context, we select a
concept and one of the three templates. Next, we randomly
pick three examples from the chosen template and frame the
caption generation as a text completion task. This process is
illustrated in Figure 3.

3.2. Synthesizing Images

For each text caption, we generate a variety of images by
initiating the reverse diffusion process with different random
noise. The Classifier-Free Guidance (CFG) scale is a crucial
factor in this process. A higher CFG scale enhances the qual-
ity of the samples and the alignment between text and image,
whereas a lower scale results in more diverse samples and
better adherence to the original conditional distribution of
images based on the given text. Following the approach used
in StableRep [81], we opt for a lower CFG scale, specifically
2.5, and produce 4 images for each caption. Examples of
these images can be seen in Figure 4.

3.3. Representation Learning

Our representation learning method is built upon Sta-
bleRep [81]. The key component of our approach is the
multi-positive contrastive learning loss [43] which works by
aligning (in the embedding space) images generated from the
same caption. We additionally combine multiple techniques
from other self-supervised learning methods, including a
patch-level masked image modeling objective. We briefly
review StableRep and elaborate on the added modules.

StableRep [81] minimizes the cross-entropy loss between
a ground-truth assignment distribution and a contrastive as-
signment distribution. Consider an encoded anchor sample
a and a set of encoded candidates {by, b, ..., bx }. The con-
trastive assignment distribution q describes how likely the
model predicts a and each b to be generated from the same
caption, and the ground-truth distribution is the actual match
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A fluffy, black and white Jjunco bird perches a snow-covered ence,
overlooking a dark forest.
Figure 4. Random examples of synthetic captions and images
generated in our SynCLR pipeline. Each caption comes with 4
images.

between a and b (a is allowed to match multiple b):

exp(a-b;/T
Zj:l exp(a-b;/T)
pi = I}match(a,bi) (2)
Zj:l ]lmatch(a,bj)

where 7 € R is the scalar temperature, a and all b have
been /5 normalized, and the indicator function 1pqich(.,.)
indicates whether two samples are from the same caption.
The contrastive loss for a is given as

K
L(a) = H(p,q) =— Y piloga 3)
1=1

iBOT [98] is a masked image modeling objective, wherein
a localized patch is masked, and the model is tasked with
predicting the tokenized representation of said masked patch.
It adapts the DINO [11] objective from the image level into
the patch level. We follow [67] to replace the softmax-
centering method with the iterative Sinkhorn-Knopp (SK)
algorithm [19]. We run SK for 3 iterations to build the
prediction target.

Exponential Moving Average (EMA) is firstly introduced
into self-supervised learning by MoCo [38]. We use EMA to
encode crops as b and to produce the targets for iBOT loss.
We update the EMA model as 0.4 < Mema + (1 — A)0,
following a cosine schedule for A from 0.994 to 1 during
training [34, 59]. We find the EMA module not only in-
creases the final performance, but also improves the training
stability for long training schedules.

Multi-crop strategy is introduced by [10] as a smart way to
improve computation efficiency, and is adopted in this paper.

For these local crops, we only employ the contrastive loss,
omitting the iBOT loss. Local crops are encoded only by
the student network, and matched to global crops from the
same caption encoded by the EMA model. Such reuse of
global crops saves computation. For each image x, where
we generate a single global crop x9 alongside n local crops
2!, the final loss can be expressed as follows:

n

L(z9) + % > L(ah) + LT (29) (4)
=1

3.4. Implementation

Concept list. We concatenate class names from various
datasets, including IN-1k [21], IN-21k (we keep the most fre-
quent 13k classes), Aircraft [51], Cars [44], DTD [17], Flow-
ers [55], Pets [60], Sun397 [88], Caltech-101 [30], Food-
101 [7], and Places-365 [96]. If the concept is a place (i.e.
SUN397 and Places) or a texture (i.e. DTD), we only apply
the ¢ —> caption template. For fine-grained classes such
as pets or flowers, we employ GPT-4 to generate a consol-
idated list of probable backgrounds, rather than producing
distinct lists for each specific class. We favor more frequent
sampling from IN-1k, Food101, Cars, Aircraft, and Flowers.
Batches. For each training batch, we sample 2048 captions
(except when noted), and use all of the 4 images generated
by each caption. We generate 1 global and 4 local crops for
each image. As a result, each batch contains 8192 global
crops, which is similar with prior work [13, 14, 34, 81].
Masking. For the iBOT loss, we randomly choose 50%
images inside a batch to mask, and randomly mask 50% of
the tokens in each chosen image. We use 65536 prototypes.
While the target from the EMA model is ascertained using
the SK algorithm, we apply softmax normalization to the
output of the student model.

Projection heads. We follow the design in MoCo v3 [14]
and DINO [11] for the contrastive and iBOT loss heads,
respectively, ensuring consistency with established methods.
Other hyper-parameters. We set the temperature in the con-
trastive loss to 0.08. For the temperature used in the iBOT
loss, we linearly increase it from 0.04 to 0.07 over 4000
iterations, and keep it as 0.07 afterwards, as in DINO [11].
Additionally, the weight decay parameter is incrementally
adjusted from 0.04 to 0.2, adhering to a cosine schedule.

4. Experiment

We first perform an ablation study to evaluate the efficacy of
various designs and modules within our pipeline. Then we
proceed to scale up the volume of synthetic data.

4.1. Study different components

We analyze each component of SynCLR, and ablate their
effectiveness in two measurements: (1) linear probing perfor-
mance on IN-1k; (2) average accuracy of linear transfer on
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captions StableRep SynCLR
P IN  avg. IN  avg.
IN+h+Places 754 800 78.7 83.0

IN+Places+LLM 737 769 77.6 81.8
IN+OurBG+LLM 753 785 782 819

our final config. 75.8 857 78.8 88.1

Table 2. Comparison of different caption synthesis strategies.
We report top-1 ImageNet linear evaluation accuracy and the aver-
age accuracy over 9 fine-grained datasets. Every item here includes
10M captions and 4 images per caption.

CFG 2 3 4
INtop-1 728 726 726

Table 3. Classifier-free guidance scale (CFG). Contrastive loss
prefers small CFG scale but is not very sensitive to it.

fine-grained datasets Aircraft [51], Cars [44], DTD [17],
Flowers [55], Pets [60], Sun397 [88], Caltech-101 [30],
Food-101 [7], and Pascal VOC [25]. For analysis conducted
in this subsection, we train ViT-B/16 [24] models for 85000
iterations, and use the c1s token as image representation.
Synthesize captions. Following [81], we use cc12m [12]
real captions as our baseline, which has 10M sentences.
To synthesize captions, we design the following variants:
(a) IN+h+Places randomly combines one IN class plus its
hypernyms in WordNet graph, with one place class; (b)
IN+Places+LLM uses the ¢, bg —> caption in-context syn-
thesis template with ¢ from IN and bg from places; (c)
IN+ourBG+LLM uses the background classes output by
GPT-4, instead of Places; (d) ours means our full configu-
ration specified in Section 3.1. For each of the config, we
generate 10M captions. If not enough, we do duplication.
Results are summarized in Table 2, where we train both
StableRep and SynCLR to avoid biases favored by a single
method. Compared to a real caption dataset cc12m, sim-
ply concatenating IN and Places class names improves the
ImageNet linear accuracy but reduces the fine-grained classi-
fication performance. Interestingly, naively asking Llama to
combine IN and Places classes into captions yields the worst
performance. Replacing random background from places
with GPT generated background improves the accuracy. This
shows the importance of synthesizing captions that follow
the distribution of real captions, which were used to train the
text-to-image model. Finally, our full configuration achieves
the best accuracy on both ImageNet and fine-grained classi-
fication. Another advantage of our synthesis method is its
scalability — scale up to hundreds of millions of captions with
little duplication. In contrast, if we concatenate IN classes
with Places classes, there are at most 365k unique captions.
Synthesize images. There are two major parameters in this
process: number of images per caption and classifier free

method EMA iBOT MC IN avg. ADE20k
StableRep 75.8 85.7 -
v 76.7 86.7 48.0
v v 776  87.1 50.5
v v 786 878 49.5

SynCLR v v v 788 88.1 50.8

Table 4. Important components for our model. ViT-B/16 models
are trained for 85000 iterations. We study the modules that af-
fect the ImageNet linear evaluation, the fine-grained classification
(avg.), and ADE20k segmentation.

method IN avg.
Supervised CE 71.9 75.0
SimCLR 63.6 67.9
SynCLR 75.3 78.5

Table 5. Comparison of different learning objectives. These
objectives assume different level of classification granularity, as
shown in Figure 2. Our modeling, i.e., defining classes as captions,
outperforms the other two. To accomondate Supervised CE training,
all items here used IN+OurBG+LLM entry in Table 2.

guidance scale. For the former, we find generating 4 images
is almost able to reproduce StableRep [81]’s performance
(10 images) when using cc12m captions (ours 73.0% v.s.
StableRep 73.5% on ImageNet). Thus we stick to 4. For
guidance scale, we briefly find the contrastive loss is not very
sensitive to CFG in a pilot study, as shown in Table 3. Thus
we stick to 2.5, similar as StableRep [81].

Model components. We present the improvement of accu-
racy brought by different modules in Table 4. Compared
to the baseline StableRep, adding a teacher EMA model
improves the IN linear accuracy by 0.9%. Further adding
iBOT local objective or the multi-crop strategy increases the
accuracy by 0.9% and 1.9%, respectively. Combining all
of them results in our full SynCLR model, which achieves
78.8% top-1 IN linear accuracy. The fine-grained classifica-
tion performance follows a similar trend, and reaches 88.1%.
Besides, we test the transfer ability to semantic segmenta-
tion on ADE20k. The iBOT objective brings 1.0 more mloU
than multi-crop strategy, demonstrating the effectiveness of
masked image modeling for dense prediction tasks.
Compare to SimCLR and supervised training. We com-
pare the three different representation learning objectives
shown in Figure 2, which classify images at different lev-
els of granularity. Since supervised cross-entropy training
requires a fixed set of balanced classes (indeed both fixed
set and balance are limitations of such method), we use
the IN+ourBG+LLM configuration where we have 1000
balanced classes (i.e., each class has 40k images). The su-
pervised training recipe follows [76]. For a fair compari-
son with SIimCLR, we remove all unmatched modules (i.e.,
EMA, iBOT, and MC) to make sure that the only difference
between SimCLR and our SynCLR is the classification gran-
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2 | = g 8 £ = g &
g g B8 : £ 2 T ¥ 5
text img #imgs £ < o 3 = & 2 o = s 2
StableRep  real syn 100M  ViT-B/16 | 75.7 | 59.2 835 80.1 973 883 743 947 851 879 834
CLIP real real 4oom VITB/IO | 802 | 595 867 792 981 931 784 947 928 892 857
ViT-L/14 | 83.9 | 69.4 909 821 992 951 81.8 965 952 89.6 889
400M  ViT-B/16 | 78.9 | 61.1 923 819 982 915 779 952 909 880 863
OpenCLIP  real real 400M ViT-L/14 | 823 | 67.1 940 836 988 925 810 964 934 888 884
2B ViT-L/14 | 834 | 71.7 953 853 99.0 942 822 975 941 889 898

iT- T

DINO v2* © real  1aom  VITB/14 | 839" | 794 882 833 996 962 773 961 928 882 89.0
ViT-L/14 | 8577 | 81,5 90.1 840 997 966 78.7 975 943 883 90.1
SynCLR on  syn  600M V¥T—B/16 80.7 | 81.7 93.8 799 99.1 936 762 953 91.6 894 89.0
ViT-L/14 | 83.0 | 856 942 82.1 992 941 784 96.1 934 903 904

Table 6. Comparison on ImageNet linear evaluation and fine-grained classificaton. SynCLR achieves comparable results with OpenAlI’s
CLIP and DINO v2 models, despite only using synthetic data. *DINO v2 modes are distilled from a ViT-g model, thus advantageous in this

comparison. T we rerun only using c1s token instead of concatenating multiple layers presented in the original DINO v2 paper [59].

ularity defined by the contrastive loss. For all of them, we
do pre-training and then linear probing on the target dataset.

Table 5 presents the comparison. Our multi-positive ob-
jective, which defines images as the same class if they are
generated by the same caption, achieves the best perfor-
mance. It outperforms supervised cross-entropy training
and SimCLR by 3.4% and 11.7% for top-1 accuracy on
ImageNet linear evaluation, and by 3.5% and 10.6% on fine-
grained classification tasks. Besides, our objective does not
require balance between samples from a fixed set of classes,
making it easier to scale up.

4.2. Scaling up

After we have ablated different components, we scale up our
experiments. Specifically, we synthesize a dataset of 150M
captions, called SynCaps-150M, from which we generate
600M images. We train both ViT-B/16 and ViT-L/14 (no
SwiGLU [73] or LayerScale [82]), and extend the training
schedules to 500k steps with a batch size of 8192 captions.
We use 224x224 resolution for all pre-training tasks.

We compare SynCLR with OpenAI’s CLIP [62], Open-
CLIP [16], and DINO v2 [59], which represent learning
from data. We note that ViT-B/14 and ViT-L/14 from DINO
v2 are distilled from a ViT-g [93] model, which makes DINO
v2 advantageous in our comparison. We also includes Sta-
bleRep [81], which uses the hybrid paradigm.

ImageNet linear evaluation. For fair comparison, cls
token from the last block is used as representation across all
models (whereas in DINO v2, results are from concatenating
multiple layers). As shown in Table 6, SynCLR achieves
80.7% with ViT-B and 83.0% with ViT-L. This is similar
as CLIP, but still lags behind DINO v2 by 3.2% and 2.7%,
respectively, partially because of the extra distillation in
DINO v2. We note SynCLR has already outperformed other
self-supervised methods pre-trained directly on ImageNet-
1k (e.g., DINO achieves 78.2% with ViT-B/16 and iBOT

method pre-train data distill ViT-B  ViT-L
StableRep hybrid, 100M 494 -
MoCo v3 real, IN1IK-1M 473 49.1
BEiT real, IN1K-1M+DALLE 471 53.3
MAE real, INIK-1M 48.1 53.6
iBOT real, IN1K-1M 50.0 -
CLIP real, WIT-400M 526 -
BEiT v2  real, WIT-400M, IN1K v 53.1 56.7
DINO V2  real, LVD-142M v 5447 5751
SynCLR  synthetic, 600M 543 5777

Table 7. ADE20K semantic segmentation (mloU) using UperNet,
with single scale at 512x512 resolution. T use patch size of 14x14,
thus adapt to 518x518 resolution.

reaches 81.0% with ViT-L/16).

Fine-grained classification. On the nine fine-grained
datasets we have evaluated in Table 6, SynCLR achieves
very similar average accuracy as DINO v2, e.g., 89.0% v.s.
89.0% for VIiT-B, and 90.1% vs 90.4% for ViT-L. Both Syn-
CLR and DINO v2 have curated the pre-training data to
include the distribution for these datasets (but in different
ways and portions), and end up with similar performance.
Interestingly, SynCLR outperforms others on Aircraft and
Cars, possibly because we favor more frequent sampling
towards them. This can be an advantage for synthetic data
when we know what downstream tasks to solve. Besides,
SynCLR outperforms CLIP and StableRep by 3.3% and by
5.6% for ViT-B, respectively.

Semantic segmentation. To evaluate the pixel-level under-
standing ability of SynCLR, we fine-tune the pre-trained
models on ADE20k [97], following the setup in [5, 39].
UperNet [89] is used as the task layer, and we evaluate with
a single-scale, i.e. 512x512. Besides CLIP and DINO v2,
we also compare to self-supervised methods pre-trained on
ImageNet, as well as BEiT v2 [61], which distills from CLIP.
Table 7 shows that our SynCLR outperforms self-supervised
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SynCLR (ours)

Figure 5. PCA visualization. Follow DINO v2 [59], we compute a PCA between the image patches from the same set and colorize by their
first 3 components. Compared to DINO v2, SynCLR produces more accurate maps for cars (e.g., zoom-in to see the two bars on the roof of
the first car, and the three side windows of the third car) and airplanes (e.g., the boundaries), while being slightly worse for dogs (e.g., heads).
We use ViT-L/14 for both methods. Images are resized to 336x448 resolution, yielding 24x32 visualization grids.

methods trained on IN-1k by a clear marge, e.g., 4.3 higher
mloU than iBOT. Despite not involving a high resolution pre-
training period like DINO v2 (e.g., 518x518), SynCLR per-
forms similarly with DINO v2 (0.1 lower for ViT-B possibly
because DINO v2 uses a smaller patch size of 14x14, but
0.2 higher for ViT-L). This suggests SynCLR pre-training is
suitable for dense prediction tasks.

ImageNet fine-tuning. We evaluate the fine-tuning transfer
ability of SynCLR on ImageNet. Our SynCLR achieves
87.9% top-1 accuracy with ViT-L, outperforming models
trained on ImageNet images or large scale image datasets.
Specifically, SynCLR outperforms OpenCLIP ViT-L (87.1%
top-1) trained on Laion-2B, which is the dataset Stable Dif-
fusion (the text2image model we used) is trained on. This
contrasts with [26, 69], which shows that directly training
a classifier on synthetic images yields bad classification ac-
curacy. Our finding suggests synthetic images are good for
training representations, which later can be easily adapted to
a downstream task with limited amount of real data. Detailed
comparisons are provided in Appendix C.

PCA visualization. Following the method used in DINO
v2 [59], we present visualizations derived from the Principal
Component Analysis (PCA) conducted on patch features
extracted using our model SynCLR. As depicted in Figure 5,
a comparative analysis is conducted between SynCLR and
DINO v2, both utilizing the ViT-L/14 architecture. The
results demonstrate that SynCLR effectively accentuates the
features of cars and planes, while efficiently minimizing
background clutter.

5. Discussions and Conclusion

Why learn from generative models? One compelling rea-
son is that a generative model can act like hundreds of
datasets simultaneously. Traditionally, researchers have to

spend separate effort collecting datasets for different image
categories, e.g., cars, flowers, cats, dogs, and so on. DINO
v2 [59] achieves robust representations by curating and amal-
gamating numerous such datasets. Such a process introduces
complexities such as clustering and search challenges. In
contrast, advanced text-to-image generative models like Sta-
ble Diffusion [63] or Imagen [68] have the capability to
generate many diverse datasets. These models provide the
flexibility to produce an infinite number of samples (albeit
finite diversity) and control the generation process through
textual input. Thus, generative models offer a convenient and
effective method for curating training data. In our study, we
harness this advantage to synthesize images encompassing a
broad spectrum of visual concepts.

What can be further improved? Enhanced caption sets
can be achieved through various methods, such as enriching
the set of in-context examples, optimizing the sampling ra-
tios among different concepts, and utilizing more advanced
LLMs. In terms of the learning process, one approach is to
distill knowledge from a larger model, and incorporate an ad-
ditional high-resolution training phase (as discussed in [59])
or an intermediate IN-21k fine-tuning stage (as per [5, 61]).
Regarding architectural improvements, the integration of
SwiGLU and LayerScale, coupled with superior model ini-
tialization strategies (referenced in [28]), can be beneficial.
However, due to limited resources and the scope of this
paper not being focused on achieving the highest possible
metrics, we propose these areas for further exploration in
future research endeavors.

In summary, this paper studies a new paradigm for visual
representation learning — learning from generative models.
Without using any real data, SynCLR learns visual represen-
tations that are comparable with those achieved by state of
the art general-purpose visual representation learners.
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