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Abstract

The significant amount of manual efforts in annotating
pixel-level labels has triggered the advancement of unsu-
pervised saliency learning. However, without supervision
signals, state-of-the-art methods can only infer region-level
saliency. In this paper, we propose to explore the unsu-
pervised salient instance detection (USID) problem, for a
more fine-grained visual understanding. Our key obser-
vation is that self-supervised transformer features may ex-
hibit local similarities as well as different levels of contrast
to other regions, which provide informative cues to iden-
tify salient instances. Hence, we propose SCoCo, a novel
network that models saliency coherence and contrast for
USID. SCoCo includes two novel modules: (1) a global
background adaptation (GBA) module with a scene-level
contrastive loss to extract salient regions from the scene
by searching the adaptive “saliency threshold” in the self-
supervised transformer features, and (2) a locality-aware
similarity (LAS) module with an instance-level contrastive
loss to group salient regions into instances by modeling the
in-region saliency coherence and cross-region saliency con-
trasts. Extensive experiments show that SCoCo outperforms
state-of-the-art weakly-supervised SID methods and care-
fully designed unsupervised baselines, and has comparable
performances to fully-supervised SID methods.

1. Introduction

Salient Instance Detection (SID) aims to detect instance-
level salient objects. It can provide a fine-grained visual un-
derstanding of the scene, and is therefore able to facilitate
a wide range of applications, e.g., image captioning [21],
scene text recognition [20], medical image analysis [19],
and others [1, 4, 43, 48, 91]. However, existing SID meth-
ods either require pixel-level labels [25, 74] or image-level
labels [62] as supervisions, which are expensive to prepare.
Despite the advancements in unsupervised saliency detec-
tion [32, 44, 57, 72, 79, 81, 87, 88], none of the existing
methods have demonstrated the capability to learn instance-
level saliency, which essentially requires fine-grained dif-

(a) Image (b) FOUND [57] (c) SelfMask [55] (d) Ours (e) GT

Figure 1. Existing unsupervised salient object detection meth-
ods, FOUND [57] (b) and SelfMask [55] (c), cannot differentiate
salient instances (rows 1 and 2), but tend to detect strong semantic
instances, e.g., the woman in row 2. In contrast, our method (d)
correctly detects all salient instances by modeling saliency coher-
ence and different levels of saliency contrast.

ferentiation not only between salient and non-salient re-
gions but also between different salient regions (Figure 1).
In this paper, we propose to study this unexplored task, i.e.,
unsupervised salient instance detection (USID).

Our key observation of this problem is built upon the
advanced self-supervised transformer representations. We
observe that their features exhibit saliency coherence (high
similarities) within local regions and may show varying de-
grees of saliency contrast (lower similarities and dissim-
ilarities) between different regions. In Figure 2, we visu-
alize global saliency information within the self-supervised
transformer features (b-d), and the saliency coherence and
contrast between three feature pixels and the rest of the im-
age (e-g), where each of these pixels is randomly selected
from a salient instance. While the transformer features
themselves may exhibit some degree of global saliency con-
trast (b-d), the computed pixel-based correlations show that
each selected pixel tends to have high saliency coherence
with pixels of the same instance but different levels of
saliency contrast to pixels of other instances and the back-
ground (e-g). This observation inspires us to mine regional
saliency coherence and contrast information for USID.

In this paper, we propose a novel approach, called
SCoCo, to model Saliency Coherence and Contrast infor-
mation from deep self-supervised features to address the
USID problem. Specifically, SCoCo first models scene-
level saliency contrast to determine the “saliency thresh-
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Input image Self-supervised transformer features with different visualization strategies Saliency contrasts for three random pixels

(a) (b) (c) (d) (e) (f) (g)

Low ← Global Saliency Contrast Degree→ High Low ← Pixel-based Saliency Contrast Degree→ High

Figure 2. Given an input image (a), we first visualize its corresponding self-supervised transformer features [8] (b), the pixel correlations
to the [CLS] token (c), and the pixel correlations over the global scene (d). We then randomly sample three pixels (purple dots), each for
one instance, and visualize the saliency contrast of the the transformer features between the sampled pixel and all other pixels of the image
by computing feature point correlations (e-g). We observe that while the self-supervised transformer features may show the global saliency
contrast to some degree, pixels from the same instance tend to be more coherent, while pixels from different regions tend to have different
levels of contrast. This inspires us to mine such regional saliency coherence and contrast for USID.

old,” which differentiates salient regions with respect to
diverse background contents. We implement this via a
novel global background adaptation (GBA) module with
a scene-level contrastive loss, which learns to iteratively
pull the saliency regions out of the complex background.
SCoCo then models the within-region saliency coherence
and cross-region saliency contrast information for grouping
pixels into salient instances. We implement this by propos-
ing a novel locality-aware similarity (LAS) module with an
instance-level contrastive loss, which initially focuses on
modeling the saliency coherence within individual regions
and then shifts to model different levels of saliency contrast
between different regions.

To summarize, this paper has three main contributions:
• To our knowledge, we propose the first USID approach,

named SCoCo, to learn to detect salient instances without
any annotated labels, by modeling the intra-region co-
herence and inter-region contrast information from self-
supervised transformer features.

• SCoCo has two novel modules: a GBA module with a
scene-level contrastive loss to find the saliency thresholds
of different image contents, and a LAS module with an
instance-level contrastive loss to detect salient instances.

• Extensive experiments show that SCoCo outperforms ex-
isting weakly-supervised SID methods and carefully de-
signed unsupervised baselines, and has comparable per-
formances to fully-supervised SID methods.

2. Related Works
2.1. Salient Instance Detection (SID)

SID aims to individualize visually prominent objects in the
input image. Existing deep SID methods can be classified
into two categories based on their learning labels: fully-
supervised and weakly-supervised SID methods.
Fully-supervised SID methods rely on costly pixel-wise
annotated masks for training supervision. Li et al. [25] pro-
pose to apply MAP [80] on instance proposals, which are

generated based on binary saliency and contour maps, to
select and segment salient instances. Fan et al. [14] de-
vise a single-stage salient instance detection method, with
a RoIMasking layer that utilizes both local and surround-
ing contexts of each instance for detection. Pei et al. [45]
propose a spectral clustering method to obtain salient in-
stances by exploring pixel masks and subitizing information
of salient objects, and later a transformer-based method [46]
to detect salient instances in a single stage without NMS for
post-processing. Liu et al. [37] propose an interleaved exe-
cution strategy to incorporate global context and object con-
tour information jointly to detect salient instances. RGB-D
information has also been explored in CalibNet et al. [47],
with a dual-branch cross-modal calibration method.
Weakly-supervised SID methods typically use bounding
boxes and image-level labels, e.g., classes and subitizing
as supervisions. Zhang et al. [80] propose a Maximum A
Posteriori (MAP)-based subset optimization formulation to
select a compact set of salient instances from the redun-
dant box-level proposals, followed by CRF to help segment
pixel-wise instances from box-level predictions. Tian et
al. [61, 62] propose a triple-branch network to exploit
salient boundaries, centroids, and regions jointly from class
and subitizing labels for salient instance detection.

Despite their success, existing SID methods require hu-
man efforts to prepare different types of labels, which are
expensive. In contrast, we propose to model the saliency co-
herence and contrast information based on self-supervised
transformer features, for USID.

2.2. Salient Object Detection (SOD)

SOD is an important task to scene understanding with a
lot of methods proposed. Deep SOD methods can be di-
vided into three groups w.r.t. the supervision signals: fully-
supervised, weakly-supervised, and unsupervised.
Fully-supervised SOD methods mainly incorporate four
types of deep techniques to learn salient object represen-
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tations from pixel-level annotated masks. First, deep fea-
ture fusion [34, 39, 68, 73, 83] is used to aggregate multi-
level context information including low-level stimulus and
high-level semantics for detecting salient objects. Second,
attention mechanisms [30, 35, 36, 58, 84, 85] are used to
reweight multi-scale features and enhance context learning
to help the model focus on the salient regions and sup-
press noise of the background regions. Third, boundary en-
hancement [9, 33, 52, 86] is often applied to improve the
localization and segmentation results by penalizing the er-
rors of boundary-surrounding pixels. Last, recurrent mech-
anisms [22, 29, 60, 66, 84] may also be reused to iterate an
identical network to predict and refine the saliency regions
in a coarse-to-fine manner.

Weakly-supervised SOD methods have explored class la-
bels, image captions, scribbles, bounding boxes, and points
as supervisions. Wang et al. [67] propose the first weakly-
supervised SOD method, which leverages image-level class
labels to localize salient regions and then refines those pre-
dicted regions with CRF. Following [67], Li et al. [26] pro-
pose a pseudo saliency annotation updating scheme to re-
fine the spatial coherence of predicted salient regions. Piao
et al. [50] propose the multi-filter directive network to dis-
till clean saliency maps from multiple class-based pseudo
labels. Zeng et al. [78] devise a multi-source weak su-
pervision framework to jointly utilize category labels, cap-
tions, and a set of unlabelled images for training. Based
on scribble annotations, WSSA [82] and AGGM [77] are
proposed to detect salient objects by exploring local consis-
tency and structure information of objects. Liu et al. [40]
propose to use bounding box supervisions to help address
the over/under detection problems. Gao et al. [15] design
an adaptive masked flood filling algorithm to detect salient
objects from point-wise labels.

Unsupervised SOD methods can be classified into four
categories according to the features and technologies used.
First, conventional methods are typically based on hand-
crafted features [2, 5, 38, 49, 76, 92], e.g., local and global
contrast [10, 38, 49], boundary priors [27, 76, 92], and spa-
tial frequency [2], for detecting salient objects. These meth-
ods may not handle complex scenes as their low-level fea-
tures have limited representation capacities. Second, a se-
ries of methods [32, 44, 72, 79, 81, 87, 88] try to distill clean
labels from pseudo labels, which are produced by some
of the aforementioned conventional methods, for learning
SOD models. Specifically, they use distillation strategies
like iterative refinement [44], causal debiasing [32], and
mining textures around boundaries [89] to reduce the noise
coming from the pseudo labels. Third, instead of learning
from noisy pseudo labels, Yan et al. [75] propose a domain
adaptive SOD method that learns from synthetic but clean
saliency data. Fourth, FOUND [57] and SelfMask [55]
also detect salient objects based on self-supervised deep

features. However, our SCoCo differs from them in both
tasks and proposed techniques. First, they cannot predict
instance-level saliency information, as shown in row 1 of
Figure 1(b,c). Second, they only model the binary contrast
between salient and non-salient regions; they are unable to
suppress non-salient regions/objects with uncertain contrast
degrees. For example, in row 2 of Figure 1(c,d), FOUND
and SelfMask focus mainly on the most prominent woman,
neglecting the umbrella, as the woman has much stronger
semantics than the umbrella. In contrast, our SCoCo (Fig-
ure 1(d)) can correctly individualize salient instances by
modeling intra-region saliency coherence and different lev-
els of saliency contrast between regions.

In summary, unlike the above SOD methods, which do
not consider instance-level object saliency, our work aims
to detect salient instances but without the need to use anno-
tations for supervision.

2.3. Unsupervised Object Detection (UOD)

UOD aims to localize objects without using any human an-
notations. Early methods [11, 63–65] explore inter-image
similarities (e.g., clustering, ranking) to discover objects for
an image collection. Recently, several methods learn to de-
tect objects based on self-supervised deep features. LOST
[56] and TokenCut [71] propose to segment one object per
image based on the pixel graph of self-supervised deep fea-
tures. FreeSOLO [69] and CutLER [70] learn to detect mul-
tiple objects by self-retraining [69] and MaskCut [70].

While these methods tend to detect any objects (salient,
non-salient), our method learns to identify salient instances.

3. Methodology
Learning an unsupervised salient instance detector is chal-
lenging, as there are no explicit labels/knowledge to teach
the detector to identify salient regions at the instance level.
In this work, we observe some interesting cues in the self-
supervised transformer features – they exhibit saliency co-
herence within local regions but saliency contrast of diverse
degrees between different regions. If a detector can model
such correlations well, it may be able to identify salient re-
gions and group them into separate salient instances. Here,
we propose the SCoCo method to mine regional saliency
coherence and contrast information for USID.

Figure 3 shows the overview of our SCoCo. Given an
input image, we first apply a self-supervised transformer
(with frozen weights) to generate the corresponding deep
features. We then feed these deep features separately to a
novel global background adaptation (GBA) module (Sec-
tion 3.1) and a novel locality-aware similarity (LAS) mod-
ule (Section 3.2). The GBA module with its scene-level
contrastive loss aims to find the suitable ‘saliency thresh-
olds’ to distinguish salient regions from diverse background
contents to produce a scene-level saliency map. Meanwhile,
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Figure 3. The overview of our unsupervised pipeline. Given an image, we first obtain its features F from a self-supervised transformer
(whose weights are frozen). We then use F to produce pseudo scene- and instance-level supervisions PS+ and Pn

I+ (1 ≤ n ≤ N ) by
computing feature similarities, and feed F to our novel GBA and LAS modules. The GBA module learns with a scene-level contrastive
loss LS to predict a saliency map PS, while the LAS module learns with an instance-level contrastive loss LI to model saliency coherence
and contrast features. The output features of both GBA and LAS modules are combined in the salient instance detection head to produce
the final salient instance map PI.

the LAS module works with an instance-level contrastive
loss to learn intra-region saliency coherence and inter-
region saliency contrast features. These features are then
fed into a salient instance detection head to produce salient
instances, with the guidance of the scene-level saliency map
produced by the GBA module.

3.1. Global Background Adaptation (GBA) Module

The goal of the GBA module is to adaptively dig saliency
information from diverse background contents. As Fig-
ure 2(b-d) shows, it is challenging to find a fixed saliency
threshold to select salient regions from different scenes with
diverse complexities. To address this issue, we propose the
GBA module, which has learnable saliency threshold func-
tions working in a bifurcation-and-combination manner, to
detect the fine-grained adaptive saliency thresholds. Specif-
ically, as shown in Figure 4, the GBA module is designed to
have two bifurcated branches at the first, with each of them
equipped with its own learnable saliency threshold function,
to handle the potential intra-scene saliency-background am-
biguities separately. The two bifurcated branches are then
combined with another saliency threshold-based branch to
produce the scene-level saliency map.

Our GBA module differs from previous unsupervised
salient object detection methods [55, 57] in the way of de-
tecting saliency thresholds. Existing USOD methods typ-
ically rely on stacking convolutional operations to detect
salient objects. However, such operations (even with dy-
namic convolution kernels [24, 59, 90]) are content-agnostic
as convolution filters are shared across all the feature pixels.
As a result, these methods often fail to detect the salient re-
gions buried in diverse background contents.
Network Structure. Given features F ∈ RH×W×C , we
first process it with two parallel branches, each consisting
of a group of 1×1 and 3×3 conv operators, and a learnable
saliency threshold function f(x). We define f(x) as:

f(x) = (p1 − p2)x · σ(θ(p1 − p2)x) + p2x, (1)

where f(x) is a smooth version of Swish rectifying function
[42, 53], p1 and p2 are learnable parameters that can jointly

determine the upper and lower bounds of the function, σ is
the Sigmoid function, and the learnable parameter θ con-
trols the “selection degree” of salient objects with respect
to the background. Each θ is learned using two fully con-
nected (FC) layers upon a global image vector generated
by the global average pooling (GAP) layer. We then use
another branch to combine the former two branches, with
another set of convolutional operations for feature transfor-
mation and learnable saliency threshold function to unify
the separately modeled saliency thresholds, to produce the
scene-level saliency map.
Scene-level Contrastive Loss. To boost the saliency learn-
ing of the GBA module, we introduce a scene-level con-
trastive loss LS . Since the image background is expected
to have low saliency degrees, we first derive the scene-level
pseudo saliency supervision PS+ through inverting the iden-
tified background regions with low saliency degrees. How-
ever, we note that such pseudo-saliency maps may contain
a significant number of noisy pixels, particularly those false
positive background pixels with medium saliency degrees,
that may hinder learning efficacy. To address this problem,
we leverage the pixels with high saliency degrees in our
instance-level saliency predictions PI (introduced in Section
3.2) to help classify those uncertain pixels into salient and
non-salient ones. To this end, we take PI as positive sam-
ples and utilize scene-level saliency in different images as
negative samples. LS can then be formulated as:

LS = − 1

N

N∑
i=1

log
e(d(Pi

S,P
i
S+)+d(Pi

S,P
i
I ))/τ

e(d(Pi
S,P

i
S+)+d(Pi

S,P
i
I ))/τ +

∑N
k=1,k ̸=i e

d(Pi
S,P

k
S+)/τ

,

(2)
where N is the batch size, PS is the scene-level saliency pre-
diction, d measures the mean square error (MSE), and τ is
a temperature parameter.

3.2. Locality-aware Similarity (LAS) Module

The LAS module aims to capture regional saliency coher-
ence information from the self-supervised deep features.
This information can then be used to help learn differ-
ent levels of saliency contrast using an instance-level con-
trastive loss. We note that the latest saliency instance de-
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Figure 4. The bifurcation-to-combination learning structure of the
global background adaptation (GBA) module. The pink lines in-
dicate the learning flows of learnable saliency threshold functions
for extracting salient objects from different background contents.

tection methods [37, 46] typically leverage the object de-
tector head [6, 17] (a combination of convolutions and self-
attention blocks) to classify and group salient instance pix-
els. However, although convolutional filters are good at de-
tecting repeated patterns, they may fail in discerning pixel
similarities. The self-attention mechanisms tend to model
the interactions of pixel tokens but do not compare region-
level saliency contrasts.

On the other hand, our LAS module first models intra-
region feature coherence by computing channel-wise corre-
lations with respect to regions surrounding every pixel lo-
cation, and then feeds regional features to an instance-level
contrastive loss to learn regional saliency contrasts for dis-
criminating salient instances. The overview of LAS module
is depicted in Figure 5.
Network Structure. Given features F ∈ RH×W×C , we
downsample it to F ′ ∈ RH×W×C′

with a linear layer. We
then compute cosine similarity between a positional feature
x ∈ [1, H] × [1,W ] and the surrounding region of x in
F ′, and collect them into a similarity feature tensor S ∈
RH×W×M×M×C′

. The formulation of S is:

S(x,m) =
F ′(x) · F

′
(x+m)

∥F ′(x)∥ · ∥F
′
(x+m)∥

, (3)

where m ∈ [−M + 1,M − 1] × [−M + 1,M − 1], and
M × M is the region size. Eq. 3 aims to encode the local
saliency coherence of each pixel x into S. We further apply
convolutional filters on S to compact regional features. The
spatial size of S is progressively aggregated from M ×M
to 1 × 1 with cascaded 3 × 3 convolutional filters (with-
out padding) to obtain S′ with the same spatial size as the
input feature F ′. After each convolutional filter, we also

insert the batch normalization and rectifying linear unit lay-
ers. Finally, we combine F ′ and S′ to produce the final fea-
tures F̂ ′ with saliency coherence information, which further
facilitates the saliency contrast modeling for differentiating
salient instances.
Instance-level Contrastive Loss. We propose the instance-
level contrastive loss LI to derive the saliency contrast in-
formation from F̂ ′ for salient instance discrimination, as the
binary cross entropy (BCE) loss adopted by existing unsu-
pervised SOD methods [56, 69, 70] cannot distinguish dif-
ferent salient instances.

Given the self-supervised transformer features, we ex-
tract the key embeddings Fkey , and feed the self-affinity
matrix of Fkey to Normalized Cut [54, 71] to find highly
coherent salient pixels as pseudo salient instance supervi-
sion PI+ in an iterative manner. We find one salient in-
stance Pk

I+ in each iteration k ∈ [1,K], and the iteration
ends if the PK+1

I+ is located in the low-saliency background.
Note that PI is used in LS (Eq. 2) for penalizing pixels
with uncertain saliency degrees. Meanwhile, we can mea-
sure the spatial discrepancy between predicted instances PL

I
and PK

I+ to formulate LI , where L in the number of in-
stances. To reduce the influence of noise that may be con-
tained in pseudo labels, we propose to sample point vectors
from F̂ ′ to compute LI , where F̂ ′, PL

I , and PK
I+ are spa-

tially aligned for the sampling. By sampling a small subset
of point vectors, we make the model less likely to be in-
fluenced by extreme noise that may be present in the full
pseudo label set. Specifically, given F̂ ′, we randomly sam-

ple T (t ∈ [1, T ]) triplets of point vectors F̂ ′
l(t)

I , F̂ ′
l(t)

I+ , and

F̂ ′
l(t)

I- from F̂ ′with respect to each predicted instance Pl
I, its

positive supervision Pk
I+ (IoU (Pl

I, Pk
I+) ≥ 0.7), and negative

supervision Pf
I- (f ̸= k, f ∈ [1,K]), respectively. LI can

then be formulated as:

LI = − 1

L× T 2

L∑
l=1

T∑
t=1

T∑
t=1

log(g(F̂ ′, l, t)), (4)

where g(·) is a contrastive estimation function, which is for-
mulated as:

g(F̂ ′, l, t) =
esim⟨F̂

′l(t)
I ,F̂ ′l(t)

I+ ⟩/τ

esim⟨F̂
′l(t)

I ,F̂ ′l(t)
I+ ⟩/τ +

∑T
t=1 e

sim⟨F̂ ′l(t)
I ,F̂ ′l(t)

I- ⟩/τ
,

(5)
where sim⟨·⟩ is the cosine similarity function to compute

the distance between two point vectors F̂ ′
l(t)

I and F̂ ′
l(t)

I+ , and
l(t) represents the tth point vector of the lth instance. Each
vector is extracted from F̂ ′ according to its spatial location.
Our instance-level contrastive loss (Eq. 4) helps the network
learn the amplified saliency contrast of different instances
while keeping the saliency coherence within each instance
by maintaining their self-similarities.
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Figure 5. The structure of locality-aware similarity (LAS) module.

4. Experiments
4.1. Experimental Settings

Implementation Details. We use DINO [8] to initialize the
self-supervised transformer (i.e., ViT [13]) of our SCoCo
network. Note that neither DINO nor our SCoCo uses any
labeled data (e.g., class labels) for supervision. The input
to both GBA and LAS modules, i.e., F , is the key features
of multi-head attention layers in the last feature block of
DINO-based ViT. In the GBA module, we use the mean at-
tention value of F as the low saliency degree per image to
find its scene-level saliency region PS+. In the LAS mod-
ule, we sample T = 32 triplets of point vectors to formu-
late the loss LI . τ in both LS and LI is set to 0.1. We
adopt the head of Mask-RCNN [17] as our salient instance
detection head. During training, each input image has a
resolution of 1024 × 1024, and is augmented using large-
scale jittering [16]. The batch size N is set to 4 and we
use AdamW (β1 = 0.9, β2 = 0.999) with step-wise learn-
ing rate decay for model optimization. We first train our
SCoCo network for 10 epochs using the pseudo supervision
derived from DINO. We then update the pseudo labels us-
ing SCoCo. Last, we train SCoCo with the updated pseudo
labels for another epoch. SCoCo is trained on two 3090ti
GPU cards.
Datasets and Evaluation Metrics. We conduct our ex-
periments on three SID datasets, including ILSO-1K [25],
ILSO-2K [25], and SIS [46]. The (training/validation/test)
sets in the ILSO-1K [25], ILSO-2K [25], and SIS [46] con-
tain (500/200/300), (1000/400/600), and (7030/2100/1170)
images, respectively. For each dataset, we only use the unla-
beled images of the training set to train our SCoCo network,
and we evaluate the performance on the corresponding test
set. We adopt the mean Average Precision (mAP) metric for
evaluation, following previous SID approaches.

4.2. Baselines

Since we propose the first unsupervised method to detect
salient instances, to evaluate our method comprehensively,
we design several baselines from three aspects, inspired by
related areas, as follows:
• First, we note that existing unsupervised object detection

(OD) methods, i.e., FreeSOLO [69], and CutLER [70],
detect objects in a saliency-agnostic way. We retrain their

models with our pseudo salient instance labels for com-
parison. Their models are initialized with the model pa-
rameters trained on their pseudo labels extracted from
large-scale datasets, e.g., COCO [31] and ImageNet [23].

• Second, VitDet [28] is the best-performing method
among fully-supervised object detection methods that are
based on the ViT [13] backbone. Since we also use ViT as
our backbone, we retrain VitDet with our salient instance
pseudo labels for comparison.

• Third, we adapt existing USOD methods, i.e., SelfMask
[55] and FOUND [57], to detect salient instances. To de-
rive instance-level saliency predictions, we compute IoU
between the region-level saliency predictions from USOD
methods and the instance predictions from CutlER [70] (a
state-of-the-art unsupervised object detection method).

4.3. Main Results

We compare our method to 19 state-of-the-art SID meth-
ods, including seven fully-supervised methods: MSRNet-
V1 [25], MSRNet-V2 [25], S4Net [14], SCG [37], MDNN
[45], RDPNet [74], and OQTR [46]; six weakly-supervised
methods: MAP [80], NLDF [41], DeepMask [21], PRM+D
[12], IRN [3], and WSID-Net [62]; and six unsupervised
baselines: FreeSOLO [69], CutLER [70], VitDet [28] ini-
tialized with the classification backbone, VitDet[28] initial-
ized with the DINO-based backbone, SelfMask [55], and
FOUND [57].
Quantitative Comparisons. Table 1 shows the quantita-
tive results. First, we can see that our method outperforms
all carefully designed unsupervised baselines (the bottom
group). This shows that simply retraining unsupervised
methods with our pseudo labels and/or filtering out non-
salient objects predicted by unsupervised object detectors
is not effective in deriving accurate salient instance predic-
tions. Second, we can also see that our method surpasses all
existing weakly-supervised methods (middle group), while
achieving comparable performances to the fully-supervised
methods (first group). Existing weak supervision signals
(i.e., object-level pixel masks, bounding boxes, classes, and
subitizing labels) cannot provide instance-level supervision,
which limits the performance of existing weakly-supervised
methods. In contrast, even without supervision, SCoCo can
learn to derive instance-level saliency information by mod-
eling saliency coherence and contrast information based on
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Table 1. Quantitative comparison with 7 fully-supervised methods, 6 weakly-supervised methods, and 6 unsupervised baselines mentioned
in Section 4.2. Column 1 shows the supervision and annotation types of the methods listed in Column 2. Column 3 shows their original
tasks (SID: salient instance detection, SOD: salient object detection, OD: object detection, SIS: semantic instance segmentation). Column
4 shows backbone initialization choices, where Cls denotes that their backbones were pre-trained on class labels of ImageNet, and DINO is
a self-supervised backbone pretraining method. - denotes missing results as codes/results are not publicly available. For each supervision
category, best results are marked in bold, while second-best results are underlined.

Supervision type
& Annotation type Method Original

task Init.
Datasets and Metrics (mAPIoU ↑)

ILSO-1K [25] ILSO-2K [25] SIS [46]
mAP50 mAP70 mAP50 mAP70 mAP50 mAP70

Full Supervison
[Images are
labeled with

instance-level
pixel masks.]

MSRNet-V1 [25] SID Cls 65.3% 52.1% - - - -
MSRNet-V2 [25] SID Cls 85.1% 74.7% 78.3% 66.5% - -

S4Net [14] SID Cls 82.2% 59.6% 73.1% 52.9% 86.7% 63.6%
SCG [37] SID Cls 88.8% 78.5% 79.8% 68.9% 83.4% 71.2%

MDNN [45] SID Cls 84.9% 67.8% 76.1% 63.6% 84.6% 67.4%
RDPNet [74] SID Cls 88.9% 73.8% 80.7% 67.2% 82.0% 69.4%
OQTR [46] SID Cls 89.2% 81.0% 81.4% 72.0% 88.1% 81.7%

Weak Supervision
[Images are labeled

with region-level
pixel masks⋆,

bounding boxes△,
classes◦, or subitizing▷◁.]

MAP△ [80] SID Cls 56.6% 24.8% 51.6% 30.3% 58.4% 22.7%
NLDF⋆ [41] SOD Cls 45.5% 24.5% 43.8% 25.2% 46.4% 24.2%

DeepMask△ [51] OD Cls 37.1% 20.5% 35.4% 18.4% 36.4% 21.3%
PRM+D◦▷◁ [12] SIS Cls 49.6% 31.2% 43.7% 29.8% 52.9% 34.2%

IRN◦ [3] SIS Cls 57.1% 37.4% 50.2% 38.4% 60.1% 40.8%
WSID-Net◦▷◁ [62] SID Cls 68.3% 51.7% 59.4% 44.6% 68.4% 47.1%

No Supervision
[Million-level♣,

hundred thousand-level♠,
or thousand-level■

unlabeled images
are used for training.]

FreeSOLO♠ [69] OD Cls 56.8% 43.7% 50.7% 35.8% 55.4% 43.1%
FreeSOLO♣ [70] OD DINO 53.2% 40.2% 46.9% 32.6% 51.8% 40.3%

CutLER♣ [70] OD Cls 68.6% 54.8% 63.2% 48.3% 66.9% 54.4%
CutLER♣ [70] OD DINO 65.4% 52.1% 59.8% 44.9% 62.4% 51.5%
VitDet■ [28] SIS Cls 55.6% 43.6% 51.9% 35.8% 54.4% 44.1%
VitDet■ [28] SIS DINO 55.7% 43.4% 52.4% 37.0% 56.5% 44.8%

SelfMask■ [55] SOD DINO 65.5% 51.1% 58.9% 44.0% 64.8% 52.1%
FOUND■ [57] SOD DINO 66.2% 51.3% 61.4% 45.9% 67.1% 53.8%

Ours■ SID DINO 70.7% 58.3% 64.8% 50.4% 71.4% 55.7%

just the self-supervised Transformer features.
Qualitative Comparison. Figure 6 compares the visual re-
sults of our method and 10 top performing methods from
the three groups of methods in Table 1. We can see that the
unsupervised baselines (columns 8 to 11) often fail to de-
tect the complete salient instances and produce messy pre-
dictions. For the weakly-supervised methods (columns 5 to
7), MAP, which is trained with bounding box labels, may
fail to segment complete objects even with the CRF post-
processing. IRN and WSID-Net, which are trained with
different class labels, may struggle to determine the bound-
aries between salient instances of the same class, e.g., the
sausages in row 3. Fully-supervised methods (columns 2
to 4) tend to be trained to predict as many salient instances
as possible. However, they may predict multiple instances
from a salient instance of self-contrast (e.g., rows 1, 2, 5 and
6) and sometimes miss salient instances of solid colors (e.g.,
rows 4 and 6). In comparison, our method can successfully
detect salient instances and delineate their boundaries, with
the help of learning intra-instance saliency coherence and
cross-instance saliency contrast.

4.4. Ablation Study

Ablation Study of SCoCo. We first study the effective-
ness of the proposed GBA and LAS modules, and the loss
functions LS and LI used in them. The mAP50 results in
Table 2 show that solely applying either scene-level (GBA +

Table 2. Ablation study of the GBA and LAS modules, and the
corresponding losses, LS and LI , on the SIS [46] test set using
mAP metrics. Best performances are marked in bold.

Method GBA LS LAS LI mAP50 mAP70

SC
oC

o

64.7% 52.6%
✓ 67.0% 53.5%
✓ ✓ 68.4% 54.1%

✓ 67.4% 53.1%
✓ ✓ 69.0% 54.4%

✓ ✓ ✓ ✓ 71.4% 55.7%

LS ) or instance-level (LAS + LI) saliency contrast learning
may produce a performance decrease of 2-3%, and the per-
formance drops by around 4% if we use the GBA or LAS
module only. Combining all of them produces the best per-
formance, which verifies the necessities of our designs.
Visualization of the GBA Module. Figure 7 visualizes
the scene-level salinecy map learned by the GBA module
and the corresponding SID result. We can see that without
the GBA module, the model tends to be distracted by high-
contrast background regions, such as the shadow, and iden-
tifies them as salient regions. In contrast, using the GBA
module can successfully suppress such noise by learning
proper saliency thresholds.
Visualization of the LAS Module. In Figure 8, we investi-
gate the influence of our LAS module by visualizing feature
correlations to points (purplish dots) in individual instances.
We can see that the two pigs have non-uniform white and
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|—– Fully-supervised methods —–| |—- Weakly-supervised methods —-| |———————– Unsupervised methods ———————–|

Input
Image

S4Net
[14]

RDPNet
[74]

OQTR
[46]

MAP
[80]

IRN
[3]

WSID-Net
[62]

FreeSOLO
[69]

CutLER
[70]

FOUND
[57]

SelfMask
[55]

SCoCo
(Ours)

Ground
Truth

Figure 6. Qualitative comparison with existing state-of-the-art methods and baselines. Each color represents a unique salient instance.

Image |——- w/o GBA ——-| |——- w/ GBA ——-| GT

Figure 7. Visualization of the GBA module.

(a) Input Image

(b) Pixel-based saliency contrast w/o LAS

(c) Pixel-based saliency contrast w/ LAS

Figure 8. Visualization of the LAS module.

black colors on their bodies, causing our model to learn in-
complete saliency coherence for each pig and produce over-
detection results without the LAS module (b). With the
LAS module, our model can separate the two pigs success-
fully by learning saliency contrast between instances while
maintaining intra-instance saliency coherence.
Backbone Initialization Choices. Finally, we study the
alternatives of self-supervised methods for initializing our
ViT backbone. As shown in Table 3, in comparison to
MoCo-v3 [18] and SWaV [7], we choose DINO [8] to ini-
tialize our backbone as it can provide better performances
from its learned feature similarities. In addition, we select
ViT-S as our backbone since ViT-B can only introduce mi-
nor improvements with larger parameters.

5. Conclusion
In this paper, we have studied a new task, unsuper-
vised salient instance detection. We have observed that
self-supervised transformer features exhibit intra-region
saliency coherence and different levels of inter-region

Table 3. Quantitaive analysis of backbone initialization choices.
Best performances are marked in bold.

Method Init. Arch. mAP50 mAP70

SC
oC

o MoCo-v3 [18] ViT-S 70.5% 54.9%
SWaV [7] ViT-S 70.2% 54.3%
DINO [8] ViT-S 71.4% 55.7%
DINO [8] ViT-B 71.9% 55.6%

saliency contrast, which can help differentiate salient in-
stances. With this observation, we have proposed SCoCo,
with two novel designs, to model such regional saliency
coherence and contrast information. First, we propose a
global background adaptation (GBA) module and a scene-
level contrastive loss to find saliency thresholds for salient
objects w.r.t. diverse background contents. Second, we
propose a locality-aware similarity (LAS) module and an
instance-level contrastive loss to model in-region saliency
coherence and cross-region saliency contrasts for detecting
salient instances. Extensive experiments have verified the
effectiveness of our method against SOTA methods.

Our method does have limitations. We note that SCoCo
may not be able to detect small salient instances as it learns
from high-level, low-resolution features. As shown in Fig-
ure 9, the person standing on the speedboat is too small to be
detected by SCoCo. As a future work, it would be interest-
ing to study multi-granularity salient feature similarity and
contrast modeling to detect multi-scale salient instances.

Input Ours GT

Figure 9. SCoCo may fail to detect small salient instances.
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Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In
ICCV, 2021. 2, 6, 8

[9] Zixuan Chen, Huajun Zhou, Jianhuang Lai, Lingxiao Yang,
and Xiaohua Xie. Contour-aware loss: Boundary-aware
learning for salient object segmentation. IEEE TIP, 2020.
3

[10] Ming-Ming Cheng, Niloy J Mitra, Xiaolei Huang, Philip HS
Torr, and Shi-Min Hu. Global contrast based salient region
detection. IEEE TPAMI, 2014. 3

[11] Minsu Cho, Suha Kwak, Cordelia Schmid, and Jean Ponce.
Unsupervised object discovery and localization in the wild:
Part-based matching with bottom-up region proposals. In
CVPR, 2015. 3

[12] Hisham Cholakkal, Guolei Sun, Fahad Shahbaz Khan, and
Ling Shao. Object counting and instance segmentation with
image-level supervision. In CVPR, 2019. 6, 7

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In ICLR, 2020. 6

[14] Ruochen Fan, Ming-Ming Cheng, Qibin Hou, Tai-Jiang Mu,
Jingdong Wang, and Shi-Min Hu. S4net: Single stage
salient-instance segmentation. In CVPR, 2019. 2, 6, 7, 8

[15] Shuyong Gao, Wei Zhang, Yan Wang, Qianyu Guo, Chen-
glong Zhang, Yangji He, and Wenqiang Zhang. Weakly-
supervised salient object detection using point supervision.
In AAAI, 2022. 3

[16] Golnaz Ghiasi, Yin Cui, Aravind Srinivas, Rui Qian, Tsung-
Yi Lin, Ekin D Cubuk, Quoc V Le, and Barret Zoph. Simple
copy-paste is a strong data augmentation method for instance
segmentation. In CVPR, 2021. 6

[17] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In ICCV, 2017. 5, 6

[18] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In CVPR, 2020. 8

[19] Brian Hu, Bhavan Vasu, and Anthony Hoogs. X-mir: Ex-
plainable medical image retrieval. In WACV, 2022. 1

[20] Lai Jiang, Yifei Li, Shengxi Li, Mai Xu, Se Lei, Yichen Guo,
and Bo Huang. Does text attract attention on e-commerce
images: A novel saliency prediction dataset and method. In
CVPR, 2022. 1

[21] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic align-
ments for generating image descriptions. In CVPR, 2015. 1,
6

[22] Yun Yi Ke and Takahiro Tsubono. Recursive contour-
saliency blending network for accurate salient object detec-
tion. In WACV, 2022. 3

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. NeurIPS, 2012. 6

[24] Duo Li, Jie Hu, Changhu Wang, Xiangtai Li, Qi She, Lei
Zhu, Tong Zhang, and Qifeng Chen. Involution: Invert-
ing the inherence of convolution for visual recognition. In
CVPR, 2021. 4

[25] Guanbin Li, Yuan Xie, Liang Lin, and Yizhou Yu. Instance-
level salient object segmentation. In CVPR, 2017. 1, 2, 6,
7

[26] Guanbin Li, Yuan Xie, and Liang Lin. Weakly supervised
salient object detection using image labels. In AAAI, 2018. 3

[27] Xiaohui Li, Huchuan Lu, Lihe Zhang, Xiang Ruan, and
Ming-Hsuan Yang. Saliency detection via dense and sparse
reconstruction. In ICCV, 2013. 3

[28] Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He.
Exploring plain vision transformer backbones for object de-
tection. In ECCV, 2022. 6, 7

[29] Ming Liang and Xiaolin Hu. Recurrent convolutional neural
network for object recognition. In CVPR, 2015. 3

[30] Zijian Liang, Pengjie Wang, Ke Xu, Pingping Zhang, and
Rynson WH Lau. Weakly-supervised salient object detection
on light fields. IEEE TIP, 2022. 3

[31] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV, 2014. 6

[32] Xiangru Lin, Ziyi Wu, Guanqi Chen, Guanbin Li, and
Yizhou Yu. A causal debiasing framework for unsupervised
salient object detection. In AAAI, 2022. 1, 3

[33] Jiang-Jiang Liu, Qibin Hou, Ming-Ming Cheng, Jiashi Feng,
and Jianmin Jiang. A simple pooling-based design for real-
time salient object detection. In CVPR, 2019. 3

[34] Nian Liu and Junwei Han. Dhsnet: Deep hierarchical
saliency network for salient object detection. In CVPR, 2016.
3

[35] Nian Liu, Junwei Han, and Ming-Hsuan Yang. Picanet:
Learning pixel-wise contextual attention for saliency detec-
tion. In CVPR, 2018. 3

2710



[36] Nian Liu, Ni Zhang, Kaiyuan Wan, Ling Shao, and Junwei
Han. Visual saliency transformer. In ICCV, 2021. 3

[37] Nian Liu, Wangbo Zhao, Ling Shao, and Junwei Han. Scg:
Saliency and contour guided salient instance segmentation.
IEEE TIP, 2021. 2, 5, 6, 7

[38] Tie Liu, Zejian Yuan, Jian Sun, Jingdong Wang, Nanning
Zheng, Xiaoou Tang, and Heung-Yeung Shum. Learning to
detect a salient object. IEEE TPAMI, 2010. 3

[39] Yudong Liu, Yongtao Wang, Siwei Wang, TingTing Liang,
Qijie Zhao, Zhi Tang, and Haibin Ling. Cbnet: A novel com-
posite backbone network architecture for object detection. In
AAAI, 2020. 3

[40] Yuxuan Liu, Pengjie Wang, Ying Cao, Zijian Liang, and
Rynson WH Lau. Weakly-supervised salient object detec-
tion with saliency bounding boxes. IEEE TIP, 2021. 3

[41] Zhiming Luo, Akshaya Mishra, Andrew Achkar, Justin
Eichel, Shaozi Li, and Pierre-Marc Jodoin. Non-local deep
features for salient object detection. In CVPR, 2017. 6, 7

[42] Ningning Ma, Xiangyu Zhang, Ming Liu, and Jian Sun. Ac-
tivate or not: Learning customized activation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8032–8042, 2021. 4

[43] S Mahdi H Miangoleh, Zoya Bylinskii, Eric Kee, Eli Shecht-
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