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Abstract

Estimating the relative camera pose from n ≥ 5 corre-
spondences between two calibrated views is a fundamen-
tal task in computer vision. This process typically involves
two stages: 1) estimating the essential matrix between the
views, and 2) disambiguating among the four candidate rel-
ative poses that satisfy the epipolar geometry. In this pa-
per, we demonstrate a novel approach that, for the first
time, bypasses the second stage. Specifically, we show
that it is possible to directly estimate the correct relative
camera pose from correspondences without needing a post-
processing step to enforce the cheirality constraint on the
correspondences. Building on recent advances in certifi-
able non-minimal optimization, we frame the relative pose
estimation as a Quadratically Constrained Quadratic Pro-
gram (QCQP). By applying the appropriate constraints, we
ensure the estimation of a camera pose that corresponds
to a valid 3D geometry and that is globally optimal when
certified. We validate our method through exhaustive syn-
thetic and real-world experiments, confirming the efficacy,
efficiency and accuracy of the proposed approach. Code is
available at https://github.com/javrtg/C2P.

1. Introduction

Finding the relative pose between two calibrated views is
crucial in many computer vision applications. This task is
particularly relevant, among others, in Structure from Mo-
tion (SfM) [44, 53], and Simultaneous Localization And
Mapping (SLAM) [13, 46, 47]. In SfM, it serves to geo-
metrically verify the correspondences as well as to provide
pairwise constraints for pose averaging schemes [27, 40]. In
SLAM, besides correspondence verification, it is also used
for bootstrapping the odometry of the camera and comput-
ing an initial estimate of the 3D map.

The relative pose problem has five observable degrees
of freedom: three for the relative rotation between the
cameras, and two for the direction of the relative transla-
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Figure 1. Relative pose directly from matches, without poste-
rior disambiguation and pure rotation checks. Traditionally,
estimating the relative pose involves two steps: 1) Estimating
the essential matrix E using an approximate or globally-optimal
solver, and 2) disambiguating the unique geometrically valid pose
among four candidate relative poses, with an additional step to
determine if the motion is purely rotational. In this paper, we in-
troduce C2P, a globally-optimal and certifiable approach that, for
the first time, solves the relative pose problem in a single step.

tion. The standard approach for its computation [29] be-
gins by considering a set of n pixel correspondences be-
tween the two images. These correspondences can be es-
tablished through matching the descriptors of keypoints ex-
tracted from the images [1, 16, 41, 43], or more recently by
estimating a (semi)dense 2D mapping between the views
[17, 58, 61]. The pose is then computed by minimizing
epipolar errors [29], requiring at least five correspondences.
Solvers that handle n = 5 correspondences are termed min-
imal [48, 54] and those able to handle all the correspon-
dences are called non-minimal [10, 69].

This paper focuses on non-minimal solvers. In a practi-
cal setup in which input correspondences may contain out-
liers, these solvers are essential within RANSAC [19, 49]
and Graduated Non-Convexity (GNC) [66]. In RANSAC,
non-minimal solvers are used to improve the accuracy of
the so-far-best and final models (initially computed with
minimal solvers) thanks to noise cancellation of the inliers
[49]. In GNC, globally-optimal non-minimal solvers serve
as fundamental building blocks to robustly solve a weighted
instance of the problem in an iterative fashion.

Since the seminal paper by Longuet-Higgins [42] in
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1981, computing this non-minimal estimate of the rela-
tive pose, involves two key steps: 1) estimating the es-
sential matrix—which models the epipolar geometry of the
problem—via an approximate (minimal or local optimiza-
tion) method, or a certifiably globally-optimal method, and
2) disambiguating the true relative pose from those satisfy-
ing the same epipolar geometry. This ambiguity arises from
ignoring the cheirality constraints which enforce a valid 3D
geometry (mainly that the 3D points observed in the image
must be in front of the camera), resulting in a additional
overhead that scales with the number of points.

In this paper, we demonstrate that this two-step ap-
proach, gold standard for more than 40 years, is not a must,
and present a method that, for the first time directly esti-
mates the relative pose without requiring posterior disam-
biguation. For this purpose, we leverage convex optimiza-
tion theory and demonstrate that we can obtain a certifiably
globally-optimal solution that is geometrically valid. Ad-
ditionally, our method can determine if the motion between
the images is purely rotational. This information is relevant,
since the translation vector is undefined under pure rotation
and its estimation should not be trusted. Current methods
require a posterior verification for the same purpose. We
present a visual overview of both current approaches and
our method in Figure 1. Our main contributions are: 1) We
provide a non-minimal certifiably globally-optimal method
that, for the first time, solves the relative pose problem with-
out the need of disambiguation. We derive the sufficient
and necessary conditions to recover the optimal solution, 2)
for this purpose, we also derive a novel characterization of
the normalized essential manifold that is needed to enforce
a geometrically valid solution, and 3) besides our theoreti-
cal contributions, we show experimentally that our method
scales better than the alternatives in the literature.

2. Related Work

Non-minimal epipolar geometry. Initial methods for
estimating the essential matrix (or fundamental matrix in
the uncalibrated case) [26, 42] rely on linear relaxations,
which do not account for the nonlinearities arising from
the constraints of the problem. As a result, these meth-
ods provide an approximate solution that needs to be pro-
jected onto the appropriate space. While several methods
[21, 22, 30, 59, 60] refine an approximate estimate through
local optimization on the manifold of the essential matrix,
they, despite being certifiable [21, 22], cannot guarantee the
global optimality of the solution. To achieve global optimal-
ity, various methods [28, 36, 68] employ Branch and Bound
(BnB) techniques to explore the feasible parameter space
and eliminate regions that are guaranteed not to contain the
optimal solution. However, these methods can exhibit ex-
ponential time complexity in the worst case. More recently,

the use of relaxed Quadratically Constrained Quadratic Pro-
grams (QCQP) onto Semidefinite Programs (SDP) via the
Shor’s relaxation [2, 6], has enabled methods to provide,
and certify, globally-optimal solutions [10, 23, 34, 69, 70].
Briales et al. [10] adopt an eigenvalue formulation of the
problem [36] and show that a tight relaxation of this non-
convex formulation can be achieved through redundant con-
straints. Zhao [69] achieves a significant increase in perfor-
mance by optimizing with respect to a more efficient for-
mulation, resulting in a reduced set of constraints and pa-
rameters. In addition, Garcia-Salguero et al. [23] derive re-
dundant constraints to improve the general tightness of the
work by Zhao [69]. Finally, Karimian and Tron [34] show
that, under moderate levels of noise, a faster solution can be
achieved using the Riemannian staircase algorithm [5, 11].
In this paper, we address a common limitation of all previ-
ous approaches. We demonstrate that it is possible to avoid
the posterior disambiguation of the four relative poses that
satisfy their solutions. We achieve this also by relaxing a
QCQP formulation of the problem. We design and intro-
duce the constraints that take into account the 3D geometric
meaning of the estimates, and provide a fast globally opti-
mal solution for the geometrically correct relative pose.

Related certifiably globally optimal methods. Similar
relaxations to those used in previous methods are also ap-
plied in various closely related areas of computer vision.
For example, applications of Shor’s relaxation are found in
tasks such as of solving Wahba’s problem [65], pointcloud
and 3D registration [8, 67] and multiview triangulation [25].
Similarly, the Riemannian staircase algorithm, coupled with
local manifold optimization, is used in tasks exploiting the
low-rank nature of their solutions, including rotation aver-
aging [15] and pose synchronization [9, 50].

3. Non-minimal solver for the relative pose
In this work, we assume a central camera model, making
our method suitable for, e.g., pinhole, fisheye and omnidi-
rectional cameras. We consider that each correspondence,
i, is parameterized by unit bearing vectors f0,i, f1,i ∈ S2.
Given a set of n > 5 correspondences {f0,i, f1,i}ni=1, our
goal is to directly estimate the relative pose, which we pa-
rameterize with a rotation matrix R ∈ SO(3) and a unit-
norm translation vector t ∈ S2. These parameters define
the manifold of normalized essential matrices [30, 69]:

ME := {E | E = [t]×R, R ∈ SO(3), t ∈ S2}1 . (1)

However, Eq. (1) does not account for the geometric pecu-
liarities and symmetry of the epipolar constraints [59, 60],
which motivates us to investigate a necessary and sufficient
characterization for directly estimating the relative pose. In

1Where [t]× denotes the skew-symmetric matrix corresponding to t.

404



R, t R,  t Rπ, tRπ,  t

f0
f1

R(π)f1
t(−)

− −

Eq. (3) ✓

Eq. (5) ✓

Eq. (3) ✓

Eq. (5) ✗

Eq. (3) ✗

Eq. (5) ✗

Eq. (3) ✗

Eq. (5) ✓

Figure 2. Necessary geometric conditions. When removing the
rotational flow between the bearing vectors [37], i.e. considering
f0 and Rf1, they must exhibit the same (counter-)clockwise turn
w.r.t. the translation (Eq. (3)). Otherwise, the rotation must be a
reflected version, Rπ , of the true rotation, R. Considering the cor-
rect rotation, f0 must have greater projection onto the translation
than Rf1 (Eq. (5)). Otherwise, the bearings would not meet along
the direction of their beams ( , ), implying that the translation
is flipped (−t) w.r.t. the correct one, t. Therefore, besides avoid-
ing triangulation, these constraints completely disambiguate the
relative pose and are generally applicable to central camera mod-
els since they do not rely on traditional positive-depth constraints.

Sec. 3.1, we derive such characterization with a focus on
making it amenable for a QCQP formulation (Sec. 3.3). We
demonstrate that the relaxed QCQP yields a tight and certifi-
ably globally optimal solution for the relative pose (Sec. 4).

3.1. Necessary and sufficient constraints

It is well known in the literature [29, Sec. 9.6] that four rel-
ative poses satisfy the same epipolar geometry. However,
only one of these poses is geometrically valid, in the sense
that it leads to an estimation of the 3D points being in front
of the cameras2. A common approach to circumvent this
involves triangulating the points and checking for the posi-
tive sign of their depths [29, 48], a posteriori. Preliminary
experiments showed that enforcing this positive-depth con-
straint during the optimization is challenging and costly due
to the complexities associated with the use of rotation ma-
trices [10, 12], even after imposing convex hull constraints
of SO(3) [51, 52]. Consequently, we propose using sim-
pler and more efficient constraints to disambiguate the pose
during the optimization and visualize them in Figure 2.

Rotation disambiguation. As shown in [37], regardless of
the sign of the translation t, the two normals of the epipolar

2In practice, issues such as noise and small-scale translation relative to
the observed scene can cause some 3D points to appear behind the cameras,
despite a correct pose estimate. Consequently, cheirality is often verified
for all points and then aggregated to robustly select the correct pose [7, 53].

plane of a correspondence (f0, f1): t×f0 and t×Rf1 satisfy:

(t× f0) · (t×Rf1) > 0 , (2)

Intuitively, considering f0 and Rf1 in the same coordinate
system, the smallest in-plane rotations required to align f0
with t and Rf1 with t must be both clockwise or counter-
clockwise. This condition is not met when the 3D point
does not lie along one of the bearing vectors’ beams, which
is the case for the (incorrect) reflected rotation matrix. How-
ever, besides involving R, Eq. (2) is cubic on the unkowns,
requiring a re-formulation with additional parameters to
adapt it for a QCQP. A more straightforward solution arises
upon realizing that t×Rf1 = [t]×Rf1 = Ef1, leading to:

(Ef1) · ([t]×f0) = f⊤1 E⊤[t]×f0 > 0 , (3)

which now depends quadratically on the unknowns and is
thus suitable for a QCQP formulation.

Translation disambiguation. Building on the previous in-
tuition that both f0 and Rf1 require a (counter-)clockwise
in-plane rotation to be aligned with t, it follows that:

f⊤0 t− (Rf1)
⊤t ≥ 0 . (4)

If this condition is not met, the bearing vectors would not in-
tersect along their beams, implying that the translation vec-
tor is the (incorrect) negative of t. The impact of this con-
straint on restricting the space of possible unit translations
is shown in Fig. 3. However, Eq. (4) again involves globally
optimizing R. A more efficient approach is to optimize the
rotated translation vector q := R⊤t, q ∈ S2, resulting in:

f⊤0 t− f⊤1 q ≥ 0 . (5)

which is linear in the unknowns and can be incorporated in a
QCQP with an homogenization variable [10, 24]. However,
this introduces the challenge of ensuring that q = R⊤t still
holds without optimizing R. We address this next by deriv-
ing a novel definition of the normalized essential manifold.

Manifold constraints. To ensure that q = R⊤t holds dur-
ing the optimization, we need to mutually constrain t and q.
Previous definitions of the normalized essential manifold,
such as those involving the left, right and quintessential ma-
trix sets [23, 34, 69], do not include this kind of constraints.
The most suitable constraints for our purposes are the ones
involving the adjugate matrix of E: Adj(E) = qt⊤, used
in [23] as redundant constraints. We show in Th. 3.1 that
these, along with norm constraints, suffice to define ME,
and to perform an efficient joint optimization of E, t and q.

Theorem 3.1. A real 3× 3 matrix, E, is an element ofME

if and only if it satisfies:

(i) tr(EE⊤) = 2 and (ii) Adj(E) = qt⊤ , (6)

for two vectors t,q ∈ S2 and where Adj(E) represents the
adjugate matrix [32] of E.
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Figure 3. Automatic disambiguation of the relative pose. Our method restricts the set of possible rotations and translations (unit vectors,
due to scale ambiguity) for solving the relative pose, by incorporating cheirality constraints in the optimization. We visualize this for the
translation with cost maps of squared epipolar errors in the tangent space at the ground-truth translation, TtS2, and for different levels of
noise. Elements in TtS2 are mapped to the sphere along geodesics using the exponential map, which is a bijective mapping for ∥v∥ ≤ π
with v ∈ TtS2 [4]. This enables us to show, on the right, the space not satisfying the constraint of Eq. (5) with lower opacity, named R.
As can be seen, the global minimum corresponding to t, always lies within the unrestricted space, named U , while it excludes the global
minima corresponding to −t. Therefore the solver is able to automatically select the translation with the correct sign as the solution.

Proof. For the if direction, assume Adj(E) = qt⊤ and
tr(EE⊤) = 2. The outer product qt⊤ is a rank-1 ma-
trix, implying that rank(E) = 2. Thus, the singular
value decomposition (SVD) of E is E = UDV⊤, with
D := diag(σ0, σ1, 0), σ0, σ1 ∈ R+ and U,V ∈ O(3).
The adjugate of E can then be expressed as3:

Adj(E) = Adj(UDV⊤) , (7)

= Adj(V⊤)Adj(D)Adj(U) , (8)

= ±V diag(0, 0, σ0σ1)U
⊤ , (9)

= ±σ0σ1v2u
⊤
2 , (10)

where v2 and u2 are the third columns of V and U, re-
spectively. Since the vectors involved in both outer prod-
ucts, v2u

⊤
2 and qt⊤, are unit vectors, this implies that

σ0σ1 = 1. Furthermore, since tr(EE⊤) = 2, it follows4

that σ2
0 + σ2

1 = 2. These two equations lead to the bi-
quadratic equations:

σ4
i −2σ2

i +1 = (σi−1)2(σi+1)2 = 0, i ∈ {0, 1} , (11)

which have σi = 1 as positive roots, meaning that E has
two non-zero singular values, both equal to 1. Hence, E is
an essential matrix that belongs toME.

For the only if direction, assume E is an essential matrix
inME. Thus, condition (i) is satisfied, and there exist two
unit vectors q, t ∈ S2 and a rotation matrix R ∈ SO(3),
satisfying that E = [t]×R = R[q]× and q = R⊤t. We

3We use the adjugate matrix property Adj(AB) = Adj(B)Adj(A),
for any A,B ∈ Rn×n. We also use that Adj(Q) = det(Q)Q⊤ =
(±1)Q⊤ for any orthogonal matrix Q ∈ O(n).

4Since EE⊤ = UD2U⊤, it follows that tr(EE⊤) =
tr(UD2U⊤) = tr(D2U⊤U) = tr(D2) = σ2

0 + σ2
1 .

can show then that

Adj(E) = Adj([t]×R) , (12)
= Adj(R)Adj([t]×) , (13)

= R⊤tt⊤ = qt⊤ . (14)

Thus, condition (ii) is also satisfied.

3.2. Recovery of the rotation

Assuming tight solutions for E ∈ ME and t, q ∈ S2, we
can directly recover the rotation R ∈ SO(3) without dis-
ambiguation. A (normalized) essential matrix E = [t]×R,
depends linearly on R and since rank(E) = 2, this pro-
vides six independent equations for solving R (its nine el-
ements). Thus, three additional independent equations are
needed. Notably, t lies in the nullspace of [t]×, allowing us
to find the remaining equations in the definition q = R⊤t.
Hence, R can be determined as the solution to this linear
system. Since our method is empirically tight, our estimates
E, t and q belong to their respective spaces, implying that
the resulting R belongs to SO(3). While not theoretically
necessary, for better numerical accuracy, we can: 1) project
the resulting R onto SO(3) by classical means [31], and 2)
consider the linearly dependent equations stemming from
the equivalent definitions: E = [t]×R = R[q]×, q = R⊤t
and t = Rq. The corresponding normal equations have as
their LHS and RHS terms 2I9×9 and 2tq⊤−[t]×E−E[q]×,
respectively (with the RHS expressed in vectorized form).
Thus, R can be solved in closed-form as

R = tq⊤ − 1

2
([t]×E+E[q]×) . (15)

3.3. QCQP

The quadratic nature of our constraints motivates us to for-
mulate the relative pose problem as a Quadratically Con-
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strained Quadratic Program (QCQP). Since we parameter-
ize the problem using the essential matrix E (along with
t,q), we draw inspiration from the efficient optimization
strategy in [69]. We optimize the same cost function. How-
ever, we differentiate from [69] in that our approach auto-
matically disambiguates the pose during the optimization,
thanks to efficiently constraining the parameter space.

Quadratic optimization In a noise-free scenario, an essen-
tial matrix E, satisfies the epipolar constraints: f⊤0,iEf1,i =
0, for any correspondence i [29]. In practice, this does not
happen and we instead optimize E by minimizing the sum
of squared normalized epipolar errors [37, 39, 45]:

min
n∑

i=1

(f⊤0,iEf1,i)
2 . (16)

Since vec(f⊤0,iEf1,i) = (f0,i⊗ f1,i)
⊤ vec(E⊤) [62], this im-

plies that Eq. (16) can be reformulated as:

min e⊤Ce , (17)

e := vec(E⊤), C :=
∑
i

(f0,i ⊗ f1,i)(f0,i ⊗ f1,i)
⊤ , (18)

where ⊗ is the Kronecker product [62] and e ∈ R9 repre-
sents the vector resulting from stacking the rows of E.

Problem QCQP. We formulate the relative pose problem
as the following QCQP:

min
e,t,q

e⊤Ce , (19)

s.t. tr(EE⊤) = 2, Adj(E) = qt⊤, (20)

t⊤t = 1, q⊤q = 1 , (21)

f̄1E
⊤[t]×f̄0 − s2r = 0 , (22)

hf̄⊤0 t− hf̄⊤1 q− s2t = 0 , (23)

h2 = 1 . (24)

Both the minimization term and the constraints are
quadratic. Eqs. (20) and (21) correspond to the constraints
presented in Theorem 3.1, and Eqs. (22) to (24) to those pre-
sented at the beginning of Sec. 3.1. Thus, we have d = 18
parameters and m = 15 constraints. As commented in
Sec. 3.1, these constraints are necessary and sufficient to
disambiguate the relative pose during optimization.

Introduction of inequalities. To transform the proposed
inequalities of Eqs. (3) and (5) into compact quadratic
equalities that facilitate the use of off-the-shelf SDP solvers
(Sec. 4), we use two techniques: 1) we multiply Eq. (23)
with an homogenization variable h, restricted to the values
{−1, 1}. This introduces a spurious (negative) solution if
h = −1, but this is trivially checked and corrected [10, 24].
2) we introduce slack variables [20] s2r, s

2
t ∈ R. Since s2r

and s2t are non-negative, this ensures the fulfillment of the

inequalities. Additionally, s2t offers an interesting advan-
tage, as we show in Sec. 5, since it enables the detection of
pure rotational motions. Finally, note that we have adopted
a modified notation for the bearings: f̄i, to denote that in-
stead of selecting a random correspondence, we average
at runtime the scalar coefficients from Eqs. (22) and (23),
stemming from all the correspondences. This approach is
motivated to average potential inlier noise in the correspon-
dences. We detail this averaging in Supplementary A.1.

4. SDP relaxation and optimization
Generally, optimizations of QCQPs like the one in Prob.
(QCQP) are (nonconvex) NP-hard. However, semidefinite
programming (SDP) relaxations, have shown to be a pow-
erful tool to tackle global optimization in computer vision
[14]. We draw inspiration from this, and relax the QCQP to
an SDP. First, we write Prob. (QCQP) in general form as:

min
x∈Rd

x⊤C0x , (25)

s.t. x⊤Aix = bi, i ∈ {1, . . ,m} , (26)

where x = [e⊤, t⊤,q⊤, h, sr, st]
⊤, C0 is the adaptation

of C in Eq. (18) to the formulation in Eq. (25), i.e. C0 ∈
Sd+5 is a block-diagonal matrix whose only nonzero block
is C, and Ai ∈ Sd are symmetric matrices formed by the
reformulation of Eqs. (20) to (24) to the form of Eq. (26)6.

To relax the QCQP, we use the cyclic property of
the trace to realize that tr(x⊤C0x) = tr(C0xx

⊤) =
tr(C0X), where X := xx⊤ ∈ Sd+ constitutes a lifting of
the parameters from Rd to Sd+. Doing similarly for Eq. (26),
allows us to define the following SDP:

Problem SDP

min
X∈Sd

tr(C0X) , (27)

s.t. tr(AiX) = bi, i ∈ {1, . . ,m} , (28)
X ⪰ 0 . (29)

SDPs are convex, being solvable globally-optimally in prac-
tice [63]. The relaxation comes from not imposing any con-
straint on X that ensures that the feasible set of Prob. (SDP)
matches that of Prob. (QCQP). If the global minimum of
Probs. (SDP) and (QCQP) match, then we say that the re-
laxation is tight. To obtain the solution estimate x⋆ we need
to recover it from the globally optimal X⋆. Interestingly,
unlike other SDP relaxations in the literature [25, 65], in
the relative pose problem we cannot assume that tightness
is achieved when rank(X⋆) = 1, i.e., that x⋆ can be recov-
ered by the factorization X⋆ = x⋆(x⋆)⊤. Several works

5We denote as Sd
+ the set of d×d positive semidefinite (PSD) matrices.

6In practice, off-the-shelf solvers like SDPA [64] allow the use of a
sparse representation of the constraints and only store the nonzero values
of our constraints and minimization term.
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have noted this empirically [10, 34, 69]. For instance, the
formulation of [69] can be tight when rank(X⋆) = 2. We
prove this in Supplementary B. Inspired by [23], to increase
the overall tightness of our solutions, we also include the
following redundant quadratic constraints in our method:

EE⊤ = [t]×[t]
⊤
× , E⊤E = [q]×[q]

⊤
× . (30)

We will refer to our method as C2P, and as C2P-fast when
the redundant constraints of Equation (30) are not used.

4.1. Relative pose recovery

Given the optimal SDP solution, X⋆, our goal is to recover
the optimal relative pose. We define X⋆

E,tq,h := X⋆
[1:16,1:16]

as the top-left 16 × 16 submatrix of X⋆. Empirically,
X⋆

E,tq,h exhibits three nonzero singular values of varying
magnitudes, while others are close to zero (∼ 10−6). This
observation aligns with our parameterization, existing three
linearly independent vectors that equally minimize Eq. (19)
(shown in Theorem 4.1). However, only the vector corre-
sponding to the largest singular value meets the proposed
cheirality constraints (Sec. 3.1). The reasoning for this is
as follows: X⋆ being a PSD matrix, can be decomposed
(ignoring the singular values close to 0) as X⋆

E,tq,h =∑3
i σiviv

⊤
i when tight, and with (σi,vi) being a singular

value-vector pair. This implies that 1) Each vi minimizes
Eq. (19) (see Theorem 4.1), and 2) to satisfy the cheirality
constraints, the singular vector vi corresponding to the cor-
rect solution, must have the biggest singular value in order
to satisfy Eqs. (22) and (23). If we are strict, we should take
into account the norms of E, t and q to see which singu-
lar pair contributes more positively in Eqs. (22) and (23).
However, in practice, the solution is consistently found in
the dominant singular vector (with biggest σi). We show
some experiments corroborating this in Figure 4. Given
the dominant vector v0, we extract the parameters from its
decomposition v0 = [(e⋆)⊤, (t⋆)⊤, (q⋆)⊤, h]⊤. We then
appropriately scale them, and follow the rotation recovery
approach of Sec. 3.2. The complete method is outlined in
Algorithm 1. For more details, please refer to Supp. A.

Sufficient and necessary condition for global optimal-
ity. To alleviate the notation in the following proof, let
us define the following auxiliary variables:

X⋆
e := X⋆

[1:9,1:9] , X⋆
tq := X⋆

[10:15,10:15] , (31)

X⋆
E,tq,h := X⋆

[1:16,1:16] , vtq := [t⊤,q⊤]⊤, (32)

where X⋆
[i:j,i:j] represents the submatrix of X⋆ extracted

by selecting the rows and columns ranging from index i
through index j.

Theorem 4.1. The semidefinite relaxation of Prob. (QCQP)
is tight if and only if rank(X⋆

E,tq,h) ∈ [1, 3] and its subma-
trices X⋆

e,X
⋆
tq are rank-1.

Proof. For the only if part, assume the relaxation is tight.
Then, X⋆ is contained in the convex hull of the linearly
independent rank-1 solutions to the relative pose prob-
lem [10]. We can form at most three feasible linearly-
independent solutions that minimize the cost equally7, e.g.:

x0 :=

 e
vtq

h

 , x1 :=

 e
−vtq

h

 , x2 :=

 e
−vtq

−h

 , (33)

Note that t and q must share the same sign to be feasible.
Thus, the convex combination (αi ∈ R+,

∑
i αi = 1, i ∈

{0, 1, 2}) that forms the globally optimal matrix can be ex-
pressed as:

X⋆
E,tq,h = α0x0x

⊤
0 + α1x1x

⊤
1 + α2x2x

⊤
2 , (34)

=

 ee⊤ a0ev
⊤
tq a1he

a0vtqe
⊤ vtqv

⊤
tq a2hvtq

a1he
⊤ a2hv

⊤
tq 1

 , (35)

where a0 := (α0 − α1 − α2), a1 := (α0 + α1 − α2),
a2 := (α0 − α1 + α2). Therefore, rank(X⋆

E,tq,h) ∈ [1, 3]
and rank(X⋆

e) = rank(X⋆
tq) = 1.

For the if part, we build upon [69, Theorem 2]. Since
X⋆ is a positive semidefinite (PSD) matrix, X⋆

e and X⋆
tq

are also PSD as they are principal submatrices of X⋆ [55].
Given that X⋆

e and X⋆
tq are both rank-1 matrices, it follows

that there exist two vectors e⋆ ∈ R9 and v⋆
tq ∈ R6 that ful-

fill the primal problem’s constraints and satisfy e⋆(e⋆)⊤ =
X⋆

e and v⋆
tq(v

⋆
tq)

⊤ = X⋆
tq.

Regarding the rank of X⋆
E,tq,h, since it is PSD, it can

be factorized as X⋆
E,tq,h = LL⊤, where L ∈ R16×r and

r := rank(X⋆
E,tq,h). Thus, to satisfy the rank-1 property

of X⋆
e and X⋆

tq, each column k of L must be given by:
[ake

⊤, bkv
⊤
tq, ckh]

⊤, for some scalars ak, bk, ck ∈ R. This
constraint limits the rank of X⋆

E,tq,h to at most 3, as any
additional column in L would be a linear combination of
the existing ones. Therefore, since X⋆

E,tq,h must be feasi-
ble, this implies that rank(X⋆

E,tq,h) ∈ [1, 3] and that it is a
convex combination of the three linearly independent solu-
tions, stemming from our parameterization of the problem,
and thus the relaxation is tight.

5. Experiments
To solve Prob. (SDP), we use SDPA [20, 64], a solver for
general SDPs based on primal-dual interior-point methods.
For the experiments we use an Intel Core i5 CPU at 3.00
GHz. For comparison with non-minimal works, we con-
sider the globally optimal methods of [23, 69].

7Recall that the correct solution, besides minimizing the cost term, sat-
isfies the cheirality constraints, and is the singular vector associated with
the highest singular value, as commented in Sec. 4.1.
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Figure 4. The solution is found in the dominant singular vector.
We show, across different levels of noise and number of correspon-
dences (we repeat each experiment 100 times), boxplots for the ra-
tios σsol/σ0 (left box), σsol/σ1 (middle box), σsol/σ2 (right box).
σsol corresponds to the singular value whose vector contains the
estimate closest to the ground-truth. σ0, σ1, σ2 represent, in order
(σ0 > σ1 > σ2) the top-three singular values (the rest are close to
zero). As can be seen, the solution vector consistently corresponds
to the dominant singular vector i.e. σsol/σ0 = 1. Therefore, we
can directly select the dominant vector to recover the solution.

Algorithm 1 C2P: Relative pose without disambiguation

Input: List of correspondences {f0,i, f1,i}ni=1, threshold
εt ∈ R+, optional weights {wi}ni=1

Output: E⋆ ∈ ME, geometrically correct relative pose
(R⋆ ∈ SO(3), t⋆ ∈ S2), certif, is pure rot

1: # Precomputed constraint elements in Eq. (28) form
2: {(Ai, bi)}m−2

i=1 ← Eqs. (20), (21), (24) and (30)
3: # Cost matrix and data-dependent constraint matrices
4: C,Ar,At ← Eqs. (18), (22) and (23)
5: # Solve SDP and recover geometrically-valid rel. pose
6: X⋆ ← SDP(C, {(Ai,bi)}m−2

i=1 ,Ar,At) # e.g. [64]
7: E⋆, t⋆, q⋆, st ← EIG(X⋆) # Sec. 4.1 and Supp. A.2
8: # Global-optimality and (near) pure-rotation certificates
9: certif← BOOL(X⋆ meets Th. 4.1 rank conditions)

10: is pure rot← BOOL(s2t < εt)
11: # Improve numerical accuracy—if needed (Supp. A.3)
12: if s2t < 10−4 then
13: E⋆, t⋆, q⋆ ← SIGNEDEIG(X⋆

[:15,:15]) # Supp. A.3
14: end if
15: R⋆ ← RECOVERROTATION(E⋆, t⋆,q⋆) # Sec. 3.2
16: return E⋆, R⋆, t⋆, certif, is pure rot

Synthetic data. Following [10, 23, 34, 69] we test our
method with synthetic experiments. To simulate the scenes
and cameras, we follow the procedure of [69]. Specifically,
we set the absolute pose of one camera to the identity. For
the other camera, the direction of its relative translation is
uniformly sampled with a maximum magnitude of 2, and
the relative rotation is generated with random Euler angles

C2P-fast (ours)
C2P (ours)

García-Salguero + M

García-Salguero + T

104102 103

10−1

10−2

# Correspondences

Zhao + M

Runtime [s] Zhao + T
100

Figure 5. Run time vs number of correspondences. We compare
the execution time (in sec.) of C2P against Zhao [69] and Garcia-
Salguero et al. [23]. Unlike C2P, [23, 69] need a post-processing
step to disambiguate the four valid candidate poses. For this, we
use two methods: (T) the classic cheirality check [29], that trian-
gulates the points and checks for positive-depths, and (M) A faster
alternative, that avoids triangulation and instead checks Eq. (36).
C2P-fast and [69] + M, are the fastest when the number of cor-
respondences is low, and there exist small difference (< 2 ms) if
we use redundant constraints (C2P). However, for n > 103 (com-
mon in dense matchers [17, 18, 61]) the disambiguation step starts
dominating the runtime of [69] + M, while both versions of our
method (C2P and C2P-fast) present up to 4x and 35x times bet-
ter runtimes w.r.t. the fastest, and slowest alternative, respectively.

bounded to 0.5 radians in absolute value. This generates
random relative poses as they would appear in practical situ-
ations. We uniformly sample point correspondences around
the origin with a distance varying between 4 and 8 and then
transform each to the reference frames of the cameras to
obtain the unit bearing vectors. We add noise to the bear-
ings assuming a spherical camera i.e. we extract the tangent
plane of each bearing and add uniformly distributed random
noise expressed in pixels inside this plane.

Real data. Following [23, 69], we additionally consider the
six sequences from the dataset [56]. We generate 97 wide-
baseline image pairs by grouping adjacent images. For each
image pair, we extract correspondences with SIFT features
[43]. Then, we use RANSAC to filter out wrong corre-
spondences. These results are consistent with the synthetic
scenarios and we provide them in Supplementary D due to
space limitations.

Execution time Although our main contributions are theo-
retical, our method has the advantage of scaling better with
the number of correspondences, thanks to not requiring pos-
terior disambiguation. We compare our runtimes with those
of [23, 69] in Fig. 5 for varying number of points. Since
[23, 69] need to disambiguate the four candidate poses sat-
isfying the same epipolar geometry, we consider two tech-
niques: (T) classic triangulation of the correspondences,
followed by a positive-depth check [29] (we use OpenCV’s
recoverPose [7] for this) and, for fairer comparison, we
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Figure 6. Accuracy vs number of correspondences. (a) For small n, both C2P and the method of Garcia-Salguero et al. [23] perform the
best, while C2P is faster than [23]. We argue that redundant constraints, such as those leveraged in these methods, are particularly helpful
in this regime. (b) As n increases (right) both our C2P and C2P-fast scale better than [23, 69] while having the same accuracy.
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Figure 7. s2t as pure rot. metric. As the translation magnitude
decreases, the accuracy of the estimated t, declines due to its di-
minished impact on the cost function. Our slack variable, s2t , al-
lows us to directly identify when the magnitude of t is ≤ 10−3 of
relative to the scene’s scale through simple thresholding on s2t .

also consider a method (M) that avoids triangulation and
is based on checking the estimated sign of the norms com-
puted with the midpoint method [3, 38]. Specifically, we
select the camera pose that satisfies the most:

(Rf1 × f0) · (f0 × t) > 0 , (Rf1 × f0) · (Rf1 × t) > 0 , (36)

for all correspondences. A geometric derivation of Eq. (36)
is found in [38]. In Supplementary C we provide an alge-
braic derivation. As can be seen, C2P-fast and [69] + M, are
the fastest methods when the number of correspondences is
low. Additionally, there exist small difference (< 2 ms)
w.r.t. C2P which includes redundant constraints. However,
for n > 103 (common in dense matchers [17, 18, 61]) the
disambiguation starts dominating the runtime of [69] + M,
while both C2P and C2P-fast present better scaling.

Accuracy vs number of correspondences We first test the
accuracy of the methods w.r.t. the number of correspon-
dences (n). To better visualize their behavior, we consider
two regimes: R1) n ∈ [12, 30] and R2) n ∈ [102, 104]). We
fix the noise to 1 pixel (the same conclusions hold at dif-
ferent noise levels, as shown in Supp. D). For both regimes
we repeat the experiments 1000 times. We set the step size
of n to 1 in R1 and 400 in R2. In Fig. 6, we report the
mean rotation: arccos(0.5(tr(R⊤

true,R) − 1)) and transla-
tion errors arccos(t⊤truet) in degrees, where Rtrue, ttrue is the

ground-truth pose. From this experiment, we conclude that
redundant constraints help to improve the accuracy when n
is low, as in R1), both C2P and [23], outperform [69], while
our C2P is faster (Fig. 5). In R2) all methods are equally
accurate, while C2P and C2P-fast start becoming the fastest
methods. In practice, we can easily switch between C2P
and C2P-fast based on n, thus achieving a good balance in
speed and accuracy when compared to the alternatives.

Pure rotations In this experiment, we verify our method’s
efficacy under near-pure rotational motions, which is known
to be challenging [10, 37]. Besides, the slack variable s2t ,
corresponding to Eq. (23), enables the detection of such
motions through simple thresholding. Intuitively, Eq. (23)
corresponds to Eq. (4) and this inequality becomes 0 under
pure rotations (f0 = Rf1 in this case). In this experiment,
we vary the translation magnitude and do 1000 repetitions
for each, setting the noise to 0.5 pixels. Results in Sup-
plementary D, show that the rotation accuracy is unaffected
by the translation magnitude, but as this decreases, the es-
timate t worsens since the minimization of the epipolar er-
rors become more insensitive to t. C2P behaves similarly
as [23, 69], while C2P has the advantage of directly identi-
fying near-pure rotations by just checking s2t , thus avoiding
extra steps such as the required in [69] (see Fig. 7).

6. Conclusion and Limitations

In this paper, we introduced C2P, a novel method for esti-
mating the relative pose that, for the first time in the litera-
ture, does not need posterior disambiguation. Our approach
efficiently constrains the parameter space during optimiza-
tion using the necessary and sufficient geometric and man-
ifold constraints, resulting in better runtime with more cor-
respondences and a better balance between accuracy and
efficiency compared to the alternatives. Additionally, our
method is certifiably globally optimal and can directly de-
tect near-pure rotational motions. C2P, however, as of now,
cannot deal with outliers, which is left for future work.
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versidades Scholarship FPU21/04468, the Spanish Government (PID2021-
127685NB-I00 and TED2021-131150B-I00) and the Aragón Government
(DGA T45 23R).

410



References
[1] Pablo Alcantarilla, Jesus Nuevo, and Adrien Bartoli. Fast

explicit diffusion for accelerated features in nonlinear scale
spaces. In BMVC. British Machine Vision Association, 2013.
1

[2] Xiaowei Bao, Nikolaos V Sahinidis, and Mohit Tawar-
malani. Semidefinite relaxations for quadratically con-
strained quadratic programming: A review and comparisons.
Mathematical programming, 129:129–157, 2011. 2

[3] Paul A Beardsley, Andrew Zisserman, and David William
Murray. Navigation using affine structure from motion. In
ECCV. Springer, 1994. 8, 3

[4] Nicolas Boumal. An introduction to optimization on smooth
manifolds. Cambridge University Press, 2023. 4

[5] Nicolas Boumal, Vlad Voroninski, and Afonso Bandeira.
The non-convex burer-monteiro approach works on smooth
semidefinite programs. In NeurIPS. Curran Associates, Inc.,
2016. 2

[6] Stephen P Boyd and Lieven Vandenberghe. Convex opti-
mization. Cambridge university press, 2004. 2

[7] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of
Software Tools, 2000. 3, 7

[8] Jesus Briales and Javier Gonzalez-Jimenez. Convex global
3d registration with lagrangian duality. In CVPR, 2017. 2

[9] Jesus Briales and Javier Gonzalez-Jimenez. Cartan-sync:
Fast and global se(d)-synchronization. IEEE RA-L, 2(4):
2127–2134, 2017. 2

[10] Jesus Briales, Laurent Kneip, and Javier Gonzalez-Jimenez.
A Certifiably Globally Optimal Solution to the Non-Minimal
Relative Pose Problem. In CVPR, 2018. 1, 2, 3, 5, 6, 7, 8

[11] Samuel Burer and Renato DC Monteiro. A nonlinear pro-
gramming algorithm for solving semidefinite programs via
low-rank factorization. Mathematical programming, 95(2):
329–357, 2003. 2

[12] Samuel Burer and Kyungchan Park. A strengthened sdp re-
laxation for quadratic optimization over the stiefel manifold.
Journal of optimization theory and applications, pages 1–20,
2023. 3

[13] Carlos Campos, Richard Elvira, Juan J. Gómez Rodrı́guez,
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lab software package for semidefinite programming, Version
1.3. Optimization Methods and Software, 11(1-4):545–581,
1999. 2

[34] Arman Karimian and Roberto Tron. Essential matrix estima-
tion using convex relaxations in orthogonal space. In ICCV,
pages 17142–17152, 2023. 2, 3, 6, 7

[35] Laurent Kneip and Paul Furgale. Opengv: A unified and gen-
eralized approach to real-time calibrated geometric vision. In
IEEE ICRA, pages 1–8, 2014. 3

411



[36] Laurent Kneip and Simon Lynen. Direct optimization of
frame-to-frame rotation. In ICCV, 2013. 2

[37] Laurent Kneip, Roland Siegwart, and Marc Pollefeys. Find-
ing the exact rotation between two images independently of
the translation. In ECCV, pages 696–709. Springer, 2012. 3,
5, 8

[38] Seong Hun Lee and Javier Civera. Triangulation: Why opti-
mize? In BMVC, 2019. 8

[39] Seong Hun Lee and Javier Civera. Geometric interpre-
tations of the normalized epipolar error. arXiv preprint
arXiv:2008.01254, 2020. 5

[40] Seong Hun Lee and Javier Civera. Hara: A hierarchical ap-
proach for robust rotation averaging. In CVPR, pages 15777–
15786, 2022. 1

[41] Philipp Lindenberger, Paul-Edouard Sarlin, and Marc Polle-
feys. Lightglue: Local feature matching at light speed. In
ICCV, 2023. 1

[42] H Christopher Longuet-Higgins. A computer algorithm for
reconstructing a scene from two projections. Nature, 293
(5828):133–135, 1981. 1, 2

[43] David G Lowe. Distinctive image features from scale-
invariant keypoints. IJCV, 60:91–110, 2004. 1, 7, 3

[44] Pierre Moulon, Pascal Monasse, Romuald Perrot, and Re-
naud Marlet. OpenMVG: Open multiple view geometry. In
International Workshop on Reproducible Research in Pattern
Recognition, pages 60–74. Springer, 2016. 1

[45] Dominik Muhle, Lukas Koestler, Nikolaus Demmel, Flo-
rian Bernard, and Daniel Cremers. The probabilistic normal
epipolar constraint for frame-to-frame rotation optimization
under uncertain feature positions. In CVPR, 2022. 5
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