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Figure 1. NeuRAD is a neural rendering method tailored to dynamic automotive scenes. With it, we can alter the pose of the ego vehicle
and other road users as well as freely add and/or remove actors. These capabilities make NeuRAD suitable to serve as the foundation in
components such as sensor-realistic closed-loop simulators or powerful data augmentation engines.

Abstract

Neural radiance fields (NeRFs) have gained popularity
in the autonomous driving (AD) community. Recent meth-
ods show NeRFs’ potential for closed-loop simulation, en-
abling testing of AD systems, and as an advanced train-
ing data augmentation technique. However, existing meth-
ods often require long training times, dense semantic su-
pervision, or lack generalizability. This, in turn, hinders
the application of NeRFs for AD at scale. In this paper,
we propose NeuRAD, a robust novel view synthesis method
tailored to dynamic AD data. Our method features simple
network design, extensive sensor modeling for both cam-
era and lidar – including rolling shutter, beam divergence
and ray dropping – and is applicable to multiple datasets
out of the box. We verify its performance on five popular
AD datasets, achieving state-of-the-art performance across
the board. To encourage further development, we openly
release the NeuRAD source code.

1. Introduction
In Neural Radiance Fields (NeRFs) a model is trained to
learn a 3D representation from which sensor realistic data
can be rendered from new viewpoints [23]. Such techniques
have been shown to be useful for a multitude of applica-
tions, such as view synthesis [3], generative modeling [11],
or pose and shape estimation [37].

Autonomous Driving (AD) is a field where NeRFs may
become very useful. By creating editable digital clones of
traffic scenes, safety-critical scenarios can be explored in a
scalable manner and without risking physical damage. For
example, practitioners can investigate the behavior of the
system for harsh braking on a highway or aggressive merg-
ing in city traffic. Furthermore, a NeRF-powered closed-
loop simulator can be used for the targeted generation of
corner-case training data.

Multiple works have applied NeRFs to automotive
data [17, 26, 29, 31, 39, 41, 42]. Neural Scene Graphs [26]
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extend the original NeRF model [23] to dynamic automo-
tive sequences by dividing the scene into static background
and a set of rigid dynamic actors with known location and
extent, learning separate NeRFs for each. This enables edit-
ing the trajectories of both the ego-vehicle and all actors in
the scene. The approach can be further improved by includ-
ing semantic segmentation [17] or by using anti-aliased po-
sitional embeddings [41]. The latter enables NeRFs to rea-
son about scale [3] which is essential for large-scale scenes.
However, common for all these approaches is that they re-
quire many hours of training, limiting their applicability for
scalable closed-loop simulation or data augmentation.

More recent works [39, 42] rely on Instant NGP’s
(iNGP) [24] learnable hash grids for embedding positional
information, drastically reducing training and inference
time. Further, these methods generate realistic renderings
in their respective settings, namely front-facing camera with
360◦ lidar. However, their performance in 360◦ multicam-
era settings, which is common in many AD datsets [5, 38],
is either unexplored [39] or is reported by the authors to be
suboptimal [42]. Furthermore, both methods deploy simple
lidar models and cannot model ray drop, a phenomenon im-
portant for closing the real-to-sim gap [19]. Lastly, using
the iNGP positional embedding without anti-aliasing tech-
niques limits performance, especially for larger scenes [4].

In this paper, we present NeuRAD, an editable novel
view synthesis (NVS) method, designed to handle large-
scale automotive scenes and to work well with multiple
datasets off the shelf. We find that modeling sensor char-
acteristics, such as rolling shutter, lidar ray dropping, and
beam divergence, is essential for sensor-realistic renderings.
Further, our model features a simple network architecture,
where static and dynamic elements are discerned only by
their positional embeddings, making it a natural extension
of recent methods to AD data. We verify NeuRAD’s gener-
alizability and achieve state-of-the-art performance across
five automotive datasets, with no dataset-specific tuning.

Our contributions are as follows. (1) Our method is the
first to combine lidar sensor modeling with the ability to
handle 360◦ camera rigs in a unified way, extending the ap-
plicability of NeRF-based methods for dynamic AD data.
(2) We propose using a single network to model dynamic
scenes, where dynamics and statics are separated only by
their positional embeddings. (3) We propose simple, yet
effective methods for modeling multiple key sensor char-
acteristics such as rolling shutter, beam divergence, and ray
dropping, and highlight their effect on performance. (4) Ex-
tensive evaluation using five popular AD datasets shows that
our method is state-of-the-art across the board.

2. Related work
NeRFs: Neural radiance fields [23] is a novel view syn-
thesis method in which a neural network learns an im-

plicit 3D representation from which new images can be
rendered. Multiple works [6, 8, 15, 24] address the long
training time of the original formulation. Notably, Instant-
NGP (iNGP) [24] uses a multiresolution, learnable hash
grid to encode positional information rather than NeRFs
frequency-based encoding scheme. A different line of
work [2–4, 13] focuses on reducing aliasing effects by
embedding pixel frustums instead of extent-free points,
where Zip-NeRF [4] combines the anti-aliasing properties
of mip-NeRF 360 [3] with the fast hash grid embedding of
iNGP [24] by using multisampling and downweighting. Al-
though these works were designed for static scenes and can-
not be applied to dynamic sequences, we draw inspiration
from Zip-NeRF’s anti-aliasing techniques to better model
large scenes.
NeRFs for automotive data: Accurately simulating data
for AD systems is a promising avenue for efficient test-
ing and verification of self-driving vehicles. While game-
engine-based methods [7, 28] have made a lot of progress,
they struggle with scalable asset creation, real-to-sim gap,
and diversity. NeRFs’ sensor-realistic renderings offer
an attractive alternative, and consequently, multiple works
have studied how to apply neural rendering techniques
to automotive data. NSG [26], Panoptic Neural Fields
(PNF) [17] and Panoptic NeRF [9] all model the back-
ground and every actor as multi-layer perceptrons (MLPs),
but struggle with large-scale scenes due to the MLPs limited
expressiveness. S-NeRF [41] extends mip-NeRF 360 to au-
tomotive data similar to NSG by modeling each actor with
a separate MLP, but requires day-long training, making it
impractical for downstream applications. Block-NeRF [29]
and SUDS [31] both focus on city-scale reconstruction.
While handling impressive scale, Block-NeRF filters out
dynamic objects and only models static backgrounds, and
SUDS uses a single network for dynamic actors, removing
the possibility of altering actor behavior.
NeRFs for closed-loop simulation: Among existing work,
two methods [39, 42] are the most similar to ours.
MARS [39] proposes a modular design where practition-
ers can mix and match existing NeRF-based methods for
rendering dynamic actors and the static background. Sim-
ilar to our work, the implementation is based on Nerfstu-
dio [30] to promote open-source collaboration. Unlike our
work, MARS does not natively support lidar point clouds
but relies on dense depth maps from either depth completion
or mono-depth networks, limiting the ease of application to
any dataset. Further, while MARS’ semantic segmentation
supervision is optional, performance deteriorates when this
supervision is not available, especially on real-world data.

UniSim [42] is a neural sensor simulator, showcasing re-
alistic renderings for PandaSet’s [40] front camera and 360◦

lidar. The method applies separate hash grid features [24]
for modeling the sky, the static background, and each dy-
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namic actor, and uses NSG-style [26] transformations for
handling dynamics. For efficiency, the static background
is only sampled near lidar points. Further, UniSim renders
features from the neural field, rather than RGB, and uses
a convolutional neural network (CNN) for upsampling the
features and producing the final image. This allows them to
reduce the number of sampled rays per image significantly.
While efficient, multiple approximations lead to poor per-
formance outside their evaluation protocol. In addition, the
lidar occupancy has a limited vertical field of view and fails
to capture tall, nearby structures which often becomes ev-
ident when using cameras with alternative mounting posi-
tions or wider lenses, e.g., nuScenes [5], Argoverse2 [38]
or Zenseact Open Dataset (ZOD) [1]. In contrast, our
method unifies static and sky modeling and relies on pro-
posal sampling [4] for modeling occupancy anywhere. Fur-
ther, UniSim’s upsampling CNN introduces severe aliasing
and model inconsistencies, as camera rays must describe
entire RGB patches whereas lidar rays are thin laser beams.
In this work, we introduce a novel anti-aliasing strategy that
improves performance, with minimal impact on runtime.

3. Method
Our goal is to learn a representation from which we can
generate realistic sensor data where we can change either
the pose of the ego vehicle platform, the actors, or both.
We assume access to data collected by a moving platform,
consisting of posed camera images and lidar point clouds,
as well as estimates of the size and pose of any moving ac-
tors. To be practically useful, our method needs to perform
well in terms of reconstruction error on any major automo-
tive dataset, while keeping training and inference times to a
minimum. To this end, we propose NeuRAD, an editable,
open source, and performant neural rendering approach; see
Fig. 2 for an overview.

In the following, we first describe the underlying scene
representation and sensor modeling. Next, we cover the
internals of our neural field and the decomposition of se-
quences into static background and dynamic actors. We
then present the unique challenges and opportunities of ap-
plying neural rendering to AD data and how we address
them. Last, we discuss learning strategies.

3.1. Scene representation and sensor modeling

Neural scene rendering: Building on the recent advance-
ments in novel view synthesis [4, 42], we model the world
with a neural feature field (NFF), a generalization of NeRFs
[23] and similar methods [21]. Given a position x, and
a view direction d, an NFF outputs an implicit geometry
s and a feature vector f [42]. The NFF, akin to a NeRF,
is utilized for volumetric rendering. However, it accumu-
lates implicit geometry and features rather than density and
color [23].

To extract features for a ray r(τ) = o + τd, originating
from the sensor center o and extending in direction d, we
sample Nr points along the ray in 3D space. The feature
descriptors of these samples are aggregated using traditional
alpha compositing:

f(r) =

Nr∑
i=1

wifi, wi = αi

i−1∏
j=1

(1− αj). (1)

Here, αi represents the opacity at the point xi = o + τid,
and wi the opacity times the accumulated transmittance
along the ray up to xi. Inspired by its success in recov-
ering high-quality geometry [18, 25], we represent the im-
plicit geometry using a signed distance function (SDF) and
approximate the opacity as αi = 1/(1 + eβsi), where si is
the SDF value at xi and β is a learnable parameter. While
more accurate SDF formulations [32, 34] can provide better
performance, they require gradient calculations for each 3D
point, negatively impacting the runtime.
Camera modeling: To render an image, we volume ren-
der a set of camera rays, generating a feature map F ∈
RHf×Wf×Nf . As in [42], we then rely on a CNN to ren-
der the final image I ∈ RHI×WI×3. In practice, the fea-
ture map has a lower resolution Hf × Wf than the image
HI×WI , and we use the CNN for upsampling. This allows
us to drastically reduce the number of queried rays.
Lidar modeling: Lidar sensors allow self-driving vehicles
to measure the depth and the reflectivity (intensity) of a dis-
crete set of points. They do so by emitting laser beam pulses
and measuring the time of flight to determine distance and
returning power for reflectivity. To capture these properties,
we model the transmitted pulses from a posed lidar sensor
as a set of rays and use volume rendering similar to (1).
For a lidar point, we shoot a ray r(τ) = o + τd, where
o is the origin of the lidar and d is the normalized direc-
tion of the beam. We then find the expected depth Dl of
a ray as E[Dl(r)] =

∑Nr

i=1 wiτi. For predicting intensity,
we volume render the ray feature following (1) and pass the
feature through a small MLP.

In contrast to previous works incorporating lidar mea-
surements [27, 42], we also include rays for laser beams
which did not return any points. This phenomenon, known
as ray dropping, occurs if the return power has too low am-
plitude, and is important to model for reducing the sim-to-
real gap [19]. Typically, such rays travel far without hitting
a surface, or hit surfaces from which the beam bounces off
into empty space, e.g., mirrors, glass, or wet road surfaces.
Modeling these effects is important for sensor-realistic sim-
ulations, but as noted in [14], are hard to capture fully
physics-based because they depend on (often undisclosed)
details of the low-level sensor detection logic. Therefore,
we opt to learn ray dropping from data. Similar to the in-
tensity, we use the rendered ray feature from (1) and pass
it through a small MLP to predict the ray drop probability
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Figure 2. Overview of our approach. We learn a joint neural feature field for the statics and dynamics of an automotive scene, where
the two are discerned only by our actor-aware hash encoding. Points that fall inside actor bounding boxes are transformed to actor-local
coordinates and, together with actor index, used to query the 4D hash grid. We decode the volume rendered ray-level features to RGB
values using an upsampling CNN, and to ray drop probability and intensity using MLPs.

pd(r). Note that unlike [14], we do not model second re-
turns from lidar beams, as this information is not present in
the five datasets considered here.

3.2. Extending Neural Feature Fields

In this section, we delve into the specifics of our volumet-
ric scene representation. We begin by extending the Neu-
ral Feature Field (NFF) definition to be a learned function
(s, f) = NFF(x, t,d), where x ∈ R3 are the spatial coordi-
nates, t ∈ R represents time, and d ∈ R3 indicates the view
direction. Importantly, this definition introduces time as an
input, which is essential for modeling the dynamic aspects
of the scene.
Architecture: Our NFF architecture adheres to well-
established best practices in the NeRF literature [4, 24].
Given a position x and time t we query our actor-aware
hash encoding. This encoding then feeds into a small Mul-
tilayer Perceptron (MLP), which computes the signed dis-
tance s and an intermediate feature g ∈ RNg . The view
direction d is encoded using spherical harmonics [24], al-
lowing the model to capture reflections and other view-
dependent effects. Finally, the direction encoding and g are
jointly processed through a second MLP, augmented with a
skip connection from g, producing the feature f .
Scene composition: Similar to previous works [17, 26, 41,
42], we decompose the world into two parts, the static back-
ground and a set of rigid dynamic actors, each defined by a
3D bounding box and a set of SO(3) poses. This serves
a dual purpose: it simplifies the learning process, and it
allows a degree of editability, where actors can be moved
after training to generate novel scenarios. Unlike previous

methods which utilize separate NFFs for different scene el-
ements, we employ a single, unified NFF, where all net-
works are shared, and the differentiation between static and
dynamic components is transparently handled by our actor-
aware hash encoding. The encoding strategy is straightfor-
ward: depending on whether a given sample (x, t) lies in-
side an actor bounding box, we encode it using one of two
functions.

Unbounded static scene: We represent the static scene
with a multiresolution hash grid [24], as this has been
proven to be a highly expressive and efficient representa-
tion. However, to map our unbounded scenes onto a grid,
we employ the contraction approach proposed in MipNerf-
360 [3]. This allows us to accurately represent both nearby
road elements and far-away clouds, with a single hash grid.
In contrast, prior automotive approaches utilize a dedicated
NFF to capture the sky and other far-away regions [42].

Rigid dynamic actors: When a sample (x, t) falls within
the bounding box of an actor, its spatial coordinates x and
view directions d are transformed to the actor’s coordinate
frame at the given time t. This allows us to ignore the
time aspect after that, and sample features from a time-
independent multiresolution hash grid, just like for the static
scene. Naively, we would need to separately sample multi-
ple different hash grids, one for each actor. However, we in-
stead utilize a single 4D hash grid, where the fourth dimen-
sion corresponds to the actor index. This novel approach
allows us to sample all actor features in parallel, achieving
significant speedups while matching the performance of us-
ing separate hash grids.

14898



3.3. Automotive data modeling

Multiscale scenes: One of the biggest challenges in apply-
ing neural rendering to automotive data is handling the mul-
tiple levels of detail present in this data. As vehicles cover
large distances, many surfaces are visible both from afar and
close up. Applying iNGP’s [24] or NeRF’s position embed-
ding naively in these multiscale settings results in aliasing
artifacts as they lack a sense at which scale a certain point is
observed [2]. To address this, many approaches model rays
as conical frustums, the extent of which is determined lon-
gitudinally by the size of the bin and radially by the pixel
area in conjunction with distance to the sensor [2, 3, 13].
Zip-NeRF [4], which is currently the only anti-aliasing ap-
proach for iNGP’s hash grids, combines two techniques for
modeling frustums: multisampling and downweighting. In
multisampling, the positional embeddings of multiple loca-
tions in the frustum are averaged, capturing both longitu-
dinal and radial extent. For downweighting, each sample
is modeled as an isotropic Gaussian, and grid features are
weighted proportional to the fraction between their cell size
and the Gaussian variance, effectively suppressing finer res-
olutions. While the combined techniques significantly in-
crease performance, the multisampling also drastically in-
creases run-time.

Here, we aim to incorporate scale information with min-
imal run-time impact. Inspired by Zip-NeRF, we propose
an intuitive downweighting scheme where we downweight
hash grid features based on their size relative to the frus-
tum. Rather than using Gaussians, we model each ray
r(τ) = o + τd as a pyramid with cross-sectional area
A(τ) = ṙhṙvτ

2, where ṙh, ṙv are horizontal and vertical
beam divergence based on the image patch size or the beam
divergence of the lidar beam. Then, for a frustum defined
by the interval [τi, τi+1), where Ai and Ai+1 are the cross-
sectional areas at the end-points τi and τi+1, we calculate
its volume as

Vi =
τi+1 − τi

3

(
Ai +

√
AiAi+1 +Ai+1

)
, (2)

and retrieve its positional embedding ei at the 3D point
xi = o + τi+τi+1

2 d. Finally, for a hash grid at level l with
resolution nl we weight the position embedding ei,l with
ωi,l = min(1, ( 1

nlV
1/3
i

)), i.e., the fraction between the cell

size and the frustum size.
Efficient Sampling: Another difficulty with rendering
large-scale scenes is the need for an efficient sampling strat-
egy. In a single image, we might want to render detailed text
on a nearby traffic sign while also capturing parallax effects
between skyscrapers several kilometers away. Uniformly
sampling the ray to achieve both of these goals would re-
quire thousands of samples per ray which is computation-
ally infeasible. Previous works have relied heavily on lidar
data for pruning samples [42], and as a result struggle to

render outside the lidar’s field-of-view.
Instead, we draw samples along rays according to a

power function [4], such that the space between samples
increases with the distance from the ray origin. Even so,
we find it impossible to fulfill all relevant conditions with-
out prohibitively increasing the number of samples. There-
fore, we also employ two rounds of proposal sampling [23],
where a lightweight version of our NFF is queried to gen-
erate a weight distribution along the ray. Then, a new set
of samples are drawn according to these weights. After two
rounds of this procedure, we are left with a refined set of
samples that focus on the relevant locations along the ray
and that we can use to query our full-size NFF. To super-
vise the proposal networks, we adopt an anti-aliased online
distillation method [4] and further use the lidar for supervi-
sion, see Ld and Lw introduced in Sec. 3.4.
Modeling rolling shutter: In standard NeRF-based formu-
lations, each image is assumed to be captured from a sin-
gle origin o. However, many camera sensors have rolling
shutters, i.e., pixel rows are captured sequentially. Thus,
the camera sensor can move between the capturing of the
first row and that of the last row, breaking the single origin
assumption. Although not an issue for synthetic data [22]
or data captured with slow-moving handheld cameras, the
rolling shutter becomes evident with captures from fast-
moving vehicles, especially for side-cameras. The same ef-
fect is also present in lidars, where each scan is typically
collected over 0.1 s, which corresponds to several meters
when traveling at highway speeds. Even for ego-motion
compensated point clouds, these differences can lead to
detrimental line-of-sight errors where 3D points translate to
rays that cut through other geometries. To mitigate these ef-
fects, we model the rolling shutters by assigning individual
times to each ray and adjusting their origin according to the
estimated motion. As the rolling shutter affects all dynamic
elements of the scene, we linearly interpolate actor poses to
each individual ray time. See Appendix E for details.
Differing camera settings: Another problem when mod-
eling autonomous driving sequences is that images come
from different cameras with potentially different capture pa-
rameters, such as exposure. Here we draw inspiration from
research on “NeRFs in the wild” [20], where an appearance
embedding is learned for each image, and passed to the sec-
ond MLP together with g. However, as we know which
image comes from which sensor, we instead learn a single
embeddings per sensor, minimizing the potential for overfit-
ting, and allowing us to use these sensor embeddings when
generating novel views. As we render features rather than
color, we apply these embeddings after the volume render-
ing, significantly reducing computational overhead.
Noisy actor poses: Our model relies on estimates of poses
for dynamic actors, either in the form of annotations or as
tracking output. To account for imperfections, we include
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(a) original (b) no modeling (c) modeling lidar only (d) modeling lidar + camera

Figure 3. Impact of modeling rolling shutter in a high-speed scenario (with inset PSNR). (a) original side-camera image. Omitting the
rolling shutter entirely (b) results in extremely blurry renderings and unrealistic geometry, especially for the pole. Modeling the lidar
rolling shutter (c) improves the quality, but it is only when both sensors are modeled correctly (d) that we get realistic renderings.

the actor poses as learnable parameters in the model, and
optimize them jointly. The poses are parameterized as a
translation t ∈ R3 and a rotation for which we use a 6D-
representation [44].

3.4. Losses

We optimize all model components jointly and use both
camera and lidar observations as supervision L = Limage +
Llidar. In the following, we discuss the different optimiza-
tion objectives in more detail.
Image losses: The image loss is computed patch-wise and
summed over Np patches and consists of a reconstruction
term Lrgb and a perceptual term Lvgg:

Limage =
1

Np

Np∑
i=1

λrgbLrgb
i + λvggLvgg

i . (3)

The reconstruction loss is the squared error between pre-
dicted and true pixel values. The perceptual loss is the dis-
tance between VGG features for real and predicted patches
[33]. λrgb and λvgg are weighting hyperparameters.
Lidar losses: We incorporate the strong geometric prior
given by the lidar by adding a depth loss for lidar rays and
employing weight decay to penalize density in empty space.
Further, to be able to simulate a more realistic lidar we also
include objectives for the predicted intensity and the pre-
dicted ray drop probability:

Llidar =
1

N

N∑
i=1

(λdLd
i +λintLint

i +λpdLpd

i +λwLw
i ), (4)

where λd, λint, λpd , and λw are hyperparameters. The depth
loss Ld

i and the intensity loss Lint
i are the squared error

between the prediction and the observation. For dropped
rays, we penalize estimates only below the specified sensor
range, and do not supervise intensity. For the ray drop prob-
ability loss, Lpd

i , we use a binary cross entropy loss. The
weight decay is applied for all samples outside of a distance
ϵ of the lidar observation:

Lw
i =

∑
τi,j>ϵ

∥wij∥2 , (5)

where τi,j is the distance from sample xij to the lidar obser-
vation for ray i. For dropped rays, weight decay is applied
up until the specified sensor range. Noteably, we omit the
commonly used eikonal loss, as it provided minimal bene-
fits at a high computational cost.

3.5. Implementation details

NeuRAD is implemented in the collaborative, open-source
project Nerfstudio [30]. We hope that our developed sup-
porting structures such as data loaders and native lidar sup-
port will encourage further research into this area. We train
our main method (NeuRAD) for 20,000 iterations using the
Adam [16] optimizer. Using a single Nvidia A100, training
takes about 1 hour. To showcase the scalability of our ap-
proach, we also design a larger model with longer training
(NeuRAD-2x). See Appendix A for further details.

4. Experiments
To verify the robustness of our model, we evaluate its per-
formance on several popular AD datasets: nuScenes [5],
PandaSet [40], Argoverse 2 [38], KITTI [10], and ZOD [1].
To prove the robustness of our method we use the same
model and hyperparameters on all datasets. We investigate
novel view synthesis performance both for hold-out valida-
tion images and for sensor poses without any ground truth.
Furthermore, we ablate important model components. More
results, including a study on the real2sim gap as well as fail-
ure cases can be found in Appendix F and Appendix G.

4.1. Datasets and baselines

Below, we introduce the datasets used for evaluation. The
selected datasets cover various sensors, and the included se-
quences contain different seasons, lighting conditions, and
driving conditions. Existing works typically use one or two
datasets for evaluation and build models around assump-
tions about available supervision, limiting their applicabil-
ity to new settings. Therefore, for each dataset, we compare
our model to SoTA methods that have previously adopted
said dataset, and follow their respective evaluation proto-
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Table 1. Image novel view synthesis performance comparison to
state-of-the-art methods across five datasets. *our reimplementa-
tion. †baselines from [39, 41, 42]. §partial results due to training
instability. Bold/underline for best/second-best.

PSNR ↑ SSIM ↑ LPIPS ↓

Pa
nd

a
FC

Instant-NGP† [24, 42] 24.03 0.708 0.451
UniSim [42] 25.63 0.745 0.288

UniSim* 25.44 0.732 0.228
NeuRAD (ours) 26.58 0.778 0.190

NeuRAD-2x (ours) 26.84 0.801 0.148

Pa
nd

a
36

0

UniSim* 23.50 0.692 0.330
NeuRAD (ours) 25.97 0.758 0.242

NeuRAD-2x (ours) 26.47 0.779 0.196

nu
Sc

en
es

Mip360† [3, 41] 24.37 0.795 0.240
S-NeRF [41] 26.21 0.831 0.228

NeuRAD (ours) 26.99 0.815 0.225
NeuRAD-2x (ours) 27.13 0.820 0.205

K
IT

T
I

M
O

T

SUDS† [31, 39] 23.12 0.821 0.135
MARS [39] 24.00 0.801 0.164

NeuRAD (ours) 27.00 0.795 0.082
NeuRAD-2x (ours) 27.91 0.822 0.066

A
rg

o2

UniSim* 23.22§ 0.661§ 0.412§

NeuRAD (ours) 26.22 0.717 0.315
NeuRAD-2x (ours) 27.73 0.756 0.233

Z
O

D

UniSim* 27.97 0.777 0.239
NeuRAD (ours) 29.49 0.809 0.226

NeuRAD-2x (ours) 30.59 0.857 0.210

cols. Similar to our method, UniSim [42] imposes few
supervision assumptions, and we, therefore, reimplement
the method (denoted Unisim∗) and use it as a baseline for
datasets where no prior work exists. See Appendix C for
reimplementation details and Appendix B for further evalu-
ation details.
PandaSet: We compare our method to UniSim [42] and
an iNGP version with lidar depth supervision provided by
UniSim. We use every other frame for training and the
remaining ones for testing, and evaluate on the same 10
scenes as UniSim. We study two settings: one with lidar
and front-facing camera (Panda FC) for direct comparison
with the results reported in [42], and one with lidar and all
six cameras capturing the full 360◦ field-of-view around the
vehicle (Panda 360). We also evaluate UniSim on the full
360◦ setting using our reimplementation.
nuScenes: We compare our method to S-NeRF [41] and
Mip-NeRF 360 [3]. We follow S-NeRF’s protocol, i.e., se-
lect 40 consecutive samples halfway into the sequences and
use every fourth for evaluation while every other among the
remaining ones is used for training. We test on the same
four sequences as S-NeRF, using the same sensor setup.
KITTI: For KITTI [10], we compare our method to
MARS [39]. We use MARS 50% evaluation protocol, i.e.,
evaluating on every second image from the right camera and
using the left and right camera and lidar from remaining
time instances for training.
Argo 2 & ZOD: To verify the robustness of our method,
we study two additional datasets, Argoverse 2 [38] and

Figure 4. Visualization of ray drop effects for lidar simulation.
Highlighted parts show areas where ray dropping effects are im-
portant to consider in order to simulate realistic point clouds. CD
denotes Chamfer distance normalized by num. GT points.

Table 2. Lidar novel view synthesis performance comparison to
state-of-the-art methods. Depth is median L2 error [m]. Intensity
is RMSE. Drop acc. denotes ray drop accuracy. Chamfer denotes
chamfer distance, normalized with num. ground truth points [m].

Depth ↓ Intensity ↓ Drop acc. ↑ Chamfer ↓

Pa
nd

a
FC

UniSim 0.10 0.065 - -
UniSim* 0.07 0.085 91.0 11.2

NeuRAD (ours) 0.01 0.062 96.2 1.6

Pa
nd

a
36

0 UniSim* 0.07 0.087 91.9 10.3
NeuRAD (ours) 0.01 0.061 96.1 1.9

ZOD [1]. Due to the lack of prior work supporting dy-
namic actors on these datasets, we compare NeuRAD to our
UniSim implementation. For each dataset, we train on ev-
ery other frame, test on the remaining frames, and evaluate
on ten sequences. As ZOD does not have any sequence an-
notations, we use a 3D-object detector and an off-the-shelf
tracker to generate pseudo-annotations for the sequences.

4.2. Novel view synthesis

Camera: We report the standard NVS metrics PSNR,
SSIM [35] and LPIPS [43], for all datasets and baselines
in Tab. 1. NeuRAD achieves SoTA performance across all
datasets. On PandaSet, we improve upon previous work
across all metrics, for both FC and 360. On nuScenes, Neu-
RAD matches the performance of S-NeRF while training
much faster (1 hour compared to 17 hours). NeuRAD also
outperforms previous SoTA on KITTI with a large mar-
gin in terms of PSNR and LPIPS. Finally, NeuRAD also
achieves strong performance on Argoverse 2 and ZOD.
Lidar: We measure the realism of our lidar simulation in
terms of L2 median depth error, RMSE intensity error and
ray drop accuracy. We complement the depth error with the
Chamfer distance as it enables us to evaluate performance
on dropped rays as well. We compare only to UniSim,
evaluated on PandaSet, as no other baseline simulates point
clouds. UniSim has no notion of ray dropping, hence we
assume rays to be dropped past the reported lidar range.
We see in Tab. 2 that NeuRAD decreases the depth error
by an order of magnitude compared to UniSim in the front-
camera setting. Our method generalizes well to the 360◦

setting, where similar results are reported. Furthermore, we
show that NeuRAD is capable of simulating realistic point
clouds, thanks to its high ray drop accuracy and low Cham-
fer distance. Fig. 4 further shows the importance of mod-
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Table 3. FID scores when shifting pose of ego vehicle or actors.

Ego shift Actor shift

No shift Lane 2m Lane 3m Vert. 1m Rot. Trans.

Pa
nd

a
FC

UniSim - 74.7 97.5 - - -
UniSim* 41.7 79.6 102.0 89.3 65.5 59.6
NeuRAD 25.0 72.3 93.9 76.3 64.3 49.1

Pa
nd

a
36

0

UniSim* 88.3 115.5 128.0 126.7 95.9 93.0
NeuRAD 45.5 84.0 98.8 91.3 58.8 55.4

NeuRAD w/ opt 43.0 81.0 95.3 88.8 56.7 53.0

eling ray drop effects for lidar simulation. As noted in the
figure, lidar beams that hit the road far away tend to dis-
perse and not return. Similar effects occur for transparent
surfaces, such as the car window illustrated in the figure,
where the lidar beams shoot right through. Modeling these
effects can increase the realism of simulated point clouds.

4.3. Novel scenario generation

In order for our method to be useful in practice, it must not
only perform well when interpolating between views, but
also when exploring new views, as examplified in Fig. 1.
To that end, we investigate NeuRAD’s capability to gener-
ate images from poses that are significantly different from
those encountered during training. We adapt UniSim’s pro-
tocol on PandaSet, i.e., translating the ego vehicle sensors
laterally two or three meters to simulate a lane shift, and ex-
tend the protocol to include one meter vertical shift, simu-
lating other mounting positions. We further investigate “ac-
tor shift”, and rotate (±0.5 radians) or translate (±2 meters
laterally) dynamic actors in the scene to simulate different
actor behaviors. As no ground truth images exist, we re-
port FID [12], with “no shift” for reference. The results in
Tab. 3 show that NeuRAD is able to generalize to new view-
points and learns meaningful actor representations. We also
include results where we optimize the camera poses follow-
ing [36], as this further increases sharpness.

4.4. Ablations

We validate the effectiveness of some key components in
Tab. 4. To avoid biases toward any specific dataset, we re-
port averaged metrics from sequences from all five datasets
considered in this work. We select 4 diverse sequences from
each dataset, see details in Appendix B. Our full model cor-
responds to the model used in all prior experiments and
strikes a good balance between run-time and performance.
We see that the CNN decoder (a) significantly increases
both quality and speed, by requiring significantly fewer rays
and allowing for interaction between rays. Accurate sen-
sor modeling is also very important, as each of our con-
tributions in that area provide complementary performance
boost: considering rolling shutter (b) or lidar rays that did
not return (e), modeling each ray as a frustum (c) and per-
sensor appearance embeddings (d). We also demonstrate
that replacing individual actor hash grids with a single 4D

Table 4. Ablations when removing core parts of our model. We
report NVS performance for images and lidars, scene generation,
and training megapixels per second (MP/s). Results are averaged
over 20 sequences, evenly split across all five datasets.

PSNR ↑ LPIPS ↓ SSIM ↑ Depth ↓ Scen. gen. ↓ MP/s ↑
Full model 27.26 0.213 0.786 0.030 75.5 1.9

a) CNN decoder 25.29 0.329 0.720 0.107 127.9 0.2
b) Rolling shutter 26.77 0.246 0.763 0.060 80.6 1.9
c) Downweighting 26.12 0.283 0.741 0.146 100.6 2.0
d) Appearance emb. 25.50 0.270 0.744 0.080 102.6 1.9
e) Missing points 25.36 0.361 0.685 0.050 106.3 1.8
f) 4D actor grid 27.22 0.217 0.779 0.030 76.5 1.5
g) SDF 27.37 0.211 0.790 0.029 75.5 1.9

hash grid (f) has no detrimental impact on quality, while sig-
nificantly increasing training speed. Finally, we replace our
SDF with a NeRF-like density formulation (g). The perfor-
mance is overall almost identical and shows that our model
can be configured to either of these field representations de-
pending on the need. If we desire to extract surfaces from
our model, we can use an SDF, but if our scenes are dom-
inated by fog, transparent surfaces, or other effects where
an SDF breaks down, we can fall back to a density formula-
tion. Interestingly, our ablations only show a modest impact
of considering rolling shutter. However, upon closer inspec-
tion of the qualitative results, see Fig. 3, it is apparent that
both the renderings and underlying geometry break down
without considering this effect.

5. Conclusions
In this paper, we have proposed NeuRAD, a neural sim-
ulator tailored specifically for dynamic autonomous driv-
ing (AD) data. The model jointly handles lidar and camera
data in 360◦ and decomposes the world into its static and
dynamic elements, allowing the creation of sensor-realistic
editable clones of real world driving scenarios. NeuRAD
incorporates novel modeling of various sensor phenomena
including beam divergence, ray dropping, and rolling shut-
ters, all increasing the quality during novel view synthe-
sis. We demonstrate NeuRAD’s efficacy and robustness
by obtaining state-of-the-art performance on five publicly
AD datasets, using a single set of hyperparameters. Lastly,
we publicly release our source-code to foster more research
into NeRFs for AD.
Limitations: NeuRAD assumes actors to be rigid and does
not support any deformations. Further, many modeling as-
sumptions are invalid for harsh weather like heavy rain or
snow. We hope to address these limitations in future work.
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