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The butterfly's feet are not visible in this 

image. The wings and part of the body of the 
butterfly are in view, but the feet are either 
hidden beneath the body or out of the frame of 
the picture. Butterflies have delicate, slender feet 
which are often not the most noticeable feature 
when they are perched, especially from the angle 
shown in this image.

The school bus is parked facing away from 
the camera. You can tell because the rear 

lights and the back of the exterior rearview mirror 
are visible. The text "SCHOOL BUS" is also 
reversed, which is typically seen on the front of a 
bus, designed so that it reads correctly in a 
rearview mirror.

The image you've provided is small and of 
low resolution, but it appears that the hearts 

have a dark-colored edge or outline. 

This outline varies in visibility, likely due to 
the quality of the image.

From the camera’s perspective, the piano’s 

back panel is on the left side.  The 

keys visible in the foreground suggest that 
we looking at the piano from front-right 
side, thus placing the back panel on the left 
from this angle.

Based on the image, it appears that the 

keyboard does have a backlight. 

This is indicated by the illumination seen 
around the keys, which suggests that there is 
a light source beneath them to enhance 
visibility in low-light conditions.

The dog is facing to the right from 

the camera's perspective. You can tell by 
the position of its tail and the orientation 
of its body.

No, there are no windows visible in 

this image. The image shows a traditional red 
pillar box, which is a type of mailbox found in 
the United Kingdom.

The image shows one eye of the animal. 

It's a close-up of a bald eagle facing slightly to 
its right, which presents only one side of its 
face to the viewer.

No, the door of the truck is not open in 

the image provided.

In the image provided, I can see two 
wheels on the visible side of the car.

Q: Are the butterfly’s feet visible?
Q: Is the school bus parked facing the 
camera or away from the camera?

Q: Is the edge of the heart in the 
picture white or dark-colored? 

Q: From the camera’s perspective, 
is the piano’s back panel on the 
left or right side?

Q: Does the keyboard 
have a backlight?

Q: Is the dog facing left or right 
from the camera's perspective?

Q: Do you see any 
window in this image?

Q: In this image, how many eyes 
can you see on the animal?

Q: Is the door of the truck cab open?
Q: How many wheels can 
you see in the image? 

Figure 1. Instances are systematically identified where the visual question answering (VQA) capabilities of GPT-4V [41] fall short
(Date accessed: Nov 04, 2023). Our research highlights scenarios in which advanced systems like GPT-4V struggle with seemingly
simple questions due to inaccurate visual grounding. Text in red signifies an incorrect response, while text in green represents hallucinated
explanations for the incorrect answer. All the images referenced are sourced from ImageNet-1K and LAION-Aesthetic datasets.

Abstract
Is vision good enough for language? Recent advance-

ments in multimodal models primarily stem from the pow-
erful reasoning abilities of large language models (LLMs).
However, the visual component typically depends only on
the instance-level contrastive language-image pre-training
(CLIP). Our research reveals that the visual capabilities
in recent MultiModal LLMs (MLLMs) still exhibit system-
atic shortcomings. To understand the roots of these errors,
we explore the gap between the visual embedding space of
CLIP and vision-only self-supervised learning. We iden-
tify “CLIP-blind pairs” – images that CLIP perceives as
similar despite their clear visual differences. With these
pairs, we construct the Multimodal Visual Patterns (MMVP)
benchmark. MMVP exposes areas where state-of-the-art

systems, including GPT-4V, struggle with straightforward
questions across nine basic visual patterns, often provid-
ing incorrect answers and hallucinated explanations. We
further evaluate various CLIP-based vision-and-language
models and found a notable correlation between visual pat-
terns that challenge CLIP models and those problematic for
multimodal LLMs. As an initial effort to address these is-
sues, we propose a Mixture of Features (MoF) approach,
demonstrating that integrating vision self-supervised learn-
ing features with MLLMs can significantly enhance their
visual grounding capabilities. Together, our research sug-
gests visual representation learning remains an open chal-
lenge, and accurate visual grounding is crucial for future
successful multimodal systems.
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1. Introduction
Multimodal Large Language Models (MLLMs) [8, 13, 31,
40] have been rapidly developing in recent times. MLLMs
integrate images into large language models (LLMs) and
leverage the powerful abilities of LLMs [41, 59, 69], show-
casing remarkable proficiency in tasks such as image under-
standing, visual question answering, and instruction follow-
ing. In particular, the recently released GPT-4V(ision) [40]
has pushed performance to an unprecedented level [41, 63].

Beneath the advancements of these models, we find there
exists a notable weakness: they still exhibit visual short-
comings, some of which are surprisingly elementary and
evident (see Figure 1). We ask: Where do these problems
originate? Is it a deficiency in visual modality, language un-
derstanding, or their alignment? In this work, we suggest
that these shortcomings observed in MLLMs might stem
from a problem related to the visual representations.

At their core, most MLLMs [8, 31, 71] are built on pre-
trained vision [43, 54] and language [59, 68, 69] mod-
els. These models are connected using various types of
adapters [2, 26, 31] to integrate the different modalities. A
natural hypothesis is that any limitation in the pretrained vi-
sion models can cascade into the downstream MLLMs that
adopt them. Studies have explored a similar issue for lan-
guage. For example, Tong et al. [57], Yuksekgonul et al.
[65] demonstrate that failure patterns in the pretrained text
encoder [43, 44] will lead to downstream failures in text-
guided generative models [22, 46].

On the vision side, most open-source MLLMs [2, 26,
31] adopt the pretrained Contrastive Language-Image Pre-
Training (CLIP) model [43] as the visual encoder. We begin
by identifying failure examples that CLIP struggles to en-
code properly (Section 2). Inspired by Tong et al. [57], we
exploit the erroneous agreements in the embedding space.
If two visually different images are encoded similarly by
CLIP, then at least one of the images is likely ambiguously
encoded. We call such a pair of images a CLIP-blind pair.
To measure the visual similarity between images, we use a
vision-only self-supervised encoder such as DINOv2 [42].
In this context, CLIP-blind pairs are images with similar
CLIP embeddings but different DINOv2 embeddings.

We discover that these CLIP-blind pairs indeed lead to
errors in downstream MLLMs. With these pairs, We intro-
duce the MultiModal Visual Patterns (MMVP) benchmark.
This benchmark is specifically designed to inquire about
differences in CLIP-blind pairs and evaluate the visual abil-
ities of state-of-the-art MLLMs with straightforward ques-
tions. We evaluate a variety of open-source [8, 30, 31, 71]
and closed-source models [13, 41] including GPT-4V [40],
and conduct a user study to measure human performance.
The results show that MLLM models struggle with straight-
forward visual questions. Most of these models perform
below the level of random guessing, with GPT-4V being

the exception. Yet, even GPT-4V exhibits a considerable
disparity in performance – exceeding 50% – compared to
human performance.

Having identified a large number of individual failure in-
stances in MLLMs, we continue to study the systematic vi-
sual patterns in MMVP which CLIP models struggle (Sec-
tion 3). We summarize nine prevalent patterns of the CLIP-
blind pairs in MMVP, such as “orientation”, “counting”,
and “viewpoint”, which pose significant challenges for the
CLIP vision encoder. Notice that there has been significant
and ongoing progress in scaling up both training data and
model size for CLIP [10, 43, 54, 62, 66]. We categorize ex-
amples from MMVP into visual patterns to systematically
assess whether scaling alone can mitigate these challenges.
Our findings suggest that 7 out of the 9 identified visual
patterns cannot be resolved by any large-scale CLIP-based
models, indicating that model/data scaling alone is not suf-
ficient. Moreover, we identify a strong correlation between
the visual patterns that challenge CLIP models and the per-
formance of MLLMs. If CLIP struggles with a particular
visual pattern, such as “orientation”, MLLMs will likely
also fall short. This shows that the CLIP vision encoders
could become a bottleneck in such systems.

Finally, we take a step towards improving the visual
grounding of MLLMs. Since the visual shortcomings of
MLLMs stem from their reliance on the CLIP model, we in-
vestigate the impact of integrating vision-centric represen-
tations into MLLMs (Section 4). Specifically, we explore
ways to incorporate a vision-only self-supervised model,
such as DINOv2 [42], to enhance the visual grounding
capabilities of MLLMs. We refer to these techniques as
Mixture-of-Features (MoF). First, we linearly mix CLIP
and DINOv2 features in different ratios, which we refer
to as Additive-MoF (A-MoF). This process reveals that
DINOv2 features are more effective in visual grounding,
though they come at the cost of diminished instruction-
following ability. To address this, we introduce Interleaved-
MoF (I-MoF) that spatially mixes visual tokens from both
CLIP and DINOv2 models. We find that this practice sig-
nificantly enhances visual grounding while maintaining the
instruction-following capabilities.

2. The Multimodal Visual Patterns (MMVP)
Benchmark

Currently, the majority of open-source MLLMs [8, 31, 71]
use the off-the-shelf CLIP vision encoders to process im-
ages. In this section, we begin by identifying CLIP-blind
pairs in the CLIP model (Section 2.1). Subsequently, we
construct the Multimodal Visual Patterns-MLLM (MMVP-
MLLM) benchmark using these CLIP-blind pairs (Sec-
tion 2.2). We evaluate SOTA MLLMs including GPT-4V
on the benchmark (Section 2.3) and find that all the tested
models struggle with simple questions on visual details. A
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“The dog’s head in the left image is resting 
on the carpet, while the dog’s head in the 
right image is lying on the floor.”

Step 1

Finding CLIP-blind pairs.

CLIP Space

DINOv2 Space

𝑺𝒊𝒎𝑪𝑳𝑰𝑷 = 0.95

𝑺𝒊𝒎𝑫𝑰𝑵𝑶 = 0.58

For a CLIP-blind pair, a human annotator attempts to spot 
the visual differences and formulates questions.

Where is the yellow animal’s head lying in this image?

(a) Floor  (b) Carpet

Step 2

Spotting the difference between two images.

Discover image pairs that are proximate in CLIP feature 
space but distant in DINOv2 feature space.

Formulating questions and 
options for both images.

Step 3

Benchmarking multimodal LLMs.

Evaluate multimodal LLMs using a CLIP-blind 
image pair and its associated question.

Where is the yellow animal’s head lying in this image?

(a) Floor  (b) Carpet

(no score for this pair)

The model receives a score only when both 
predictions for the CLIP-blind pair are correct.

(b) Carpet(b) Carpet

Figure 2. Constructing MMVP benchmark via CLIP-blind pairs. Left: We start with finding CLIP-blind pairs that have similar CLIP
embedding but different DINOv2 embedding. Center: We manually inspect the differences between pair-wise images and formulate
questions based on the differences in the images. Right: We ask MLLMs the question alongside the CLIP-blind pair. The model receives
a score only when both questions for the CLIP-blind pair are answered correctly.

visualization of this process is provided in Figure 2.

2.1. Finding CLIP-blind Pairs

It is challenging to directly find instances (images) that the
CLIP vision encoder struggles to encode “properly”. To
circumvent this issue, we extend the idea proposed in Tong
et al. [57] to automatically find blind pairs in vision models.
The underlying principle is simple: if two images, despite
having stark visual differences, are encoded similarly by the
CLIP vision encoder, then one of them is likely encoded
ambiguously (See Figure 2 left for example). To measure
the visual difference between two images, we examine the
images’ representations within a reference model: a vision-
only self-supervised model trained without any language
guidance, e.g., DINOv2 [42]. These models are shown to
capture more visual details and information [42, 53].

We take the corpus datasets, ImageNet [47] and LAION-
Aesthetics [48], to collect these CLIP-blind pairs.

For each pair, we compute its CLIP embeddings using
CLIP-ViT-L-14 [9, 43] model and their DINOv2 embed-
dings using DINOv2-ViT-L-14 [9, 42] model. We return
pairs such that the cosine similarity exceeds 0.95 for CLIP
embeddings and less than 0.6 for DINOv2 embeddings.

2.2. Designing Benchmark from CLIP-blind Pairs

We introduce the Multimodal Visual Patterns (MMVP)
benchmark, and a Visual Question Answering (VQA)
benchmark. Utilizing the collected CLIP-blind pairs, we
carefully design 150 pairs with 300 questions. For each
CLIP-blind pair of images, we manually pinpoint the visual

details that the CLIP vision encoder overlooks (see the mid-
dle of Figure 2) and craft questions that probe these visual
details, for example “Is the dog facing left or right?” (See
the right of Figure 2 and more examples in Figure 3). The
primary goal is to determine whether MLLM models would
fail when posed with these seemingly basic questions and
overlook critical visual details. Hence, the questions are in-
tentionally straightforward and unambiguous.

2.3. Benchmark Results

We assess the questions on SOTA open-source mod-
els (LLaVA-1.5 [31], InstructBLIP [8], Mini-GPT4 [71])
and closed-source models (GPT-4V [40], Gemini [14],
Bard [13]) We leave details of how we access the model in
Appendix B.1. In our evaluation, each question is queried
independently, eliminating any biases from chat histories.
We also evaluate human performance through a user study
where users are presented with 300 questions in a random-
ized sequence. For any given pair of images, we consider a
pair of images to be correctly answered if both the questions
associated with the pair are answered accurately.

Human study confirms questions are straightforward.
As shown in Figure 4, human participants accurately answer
an average of 95.7% of the questions. This high accuracy
rate underscores the ease of the questions. More details can
be found in Appendix B.4.

Current MLLMs struggle with visual details. As
shown in Figure 4, there is a significant performance gap
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Is the dog facing left or right from the 
camera’s perspective?

(a) Left (b) Right

(b) (b) 

(a) (a) 

(b) (b) 

(a) (a) 

Is the needle pointing up or down?

(a) Up (b) Down

(b) (b) 

(a) (b) ✓

(a) (a) 

(a) (a) 

Is the cup placed on a surface or being held 
by hand?

(a) Placed on a 
surface

(b) Held by hand

(a) (a) 

(a) (b) ✓

(a) (a) 

(a) (b) ✓

Is the lock locked or unlocked?

(a) Locked (b) Unlocked

(a) (b) ✓

(a) (b) ✓

(a) (a) 

(a) (a) 

Is the snail in the picture facing the camera 
or away from the camera

(a) Away from the 
camera

(b) Facing the 
Camera

(b) (b) 

(a) (a) 

(b) (b) 

(a) (a) 

Are the ears of the dog erect or drooping?

(a) Erect (b) Drooping

(b) (b) 

(a) (a) 

(b) (b) 

(a) (a) 

In this image, how many eyes can you see on 
the animal?

(a) 1 (b) 2

(a) (a) 

(b) (b) 

(b) (b) 

(b) (b) 

Is this a hammerhead shark?

(a) Yes (b) No

(b) (b) 

(a) (b) ✓

(b) (b) 

(a) (a) 

Are there cookies stacked on top of other 
cookies?

(a) Yes (b) No

(b) (b) 

(a) (b) ✓

(a) (a) 

(b) (a) 

Is there a hand using the mouse in this 
image?

(a) Yes (b) No

(b) (b) 

(a) (b) ✓

(b) (b) 

(a) (b) ✓

Are there any clouds?

(a) Yes (b) No

(b) (b) 

(a) (b) ✓

(a) (b) ✓

(a) (b) ✓

Do you see any window in this image?

(a) Yes (b) No

(b) (b) 

(a) (b) ✓

(b) (b) 

(b) (a) 

Are the butterfly’s feet visible?

(a) Yes (b) No

(b) (a) 

(a) (b) ✓

(a) (b) ✓

(a) (a) 

Is the following statement correct: There are 
different colors of grapes in this image

(a) Correct (b) Incorrect

(a) (a) 

(a) (b) ✓

(a) (a) 

(a) (a) 

Is the following statement correct: There is 
no letter D on this image?

(a) Correct (b) Incorrect

(b) (b) 

(b) (b) 

(b) (b) 

(a) (a) 

GPT-4V Gemini Pro LLaVA-1.5 InstructBLIP

Figure 3. Examples of Questions in the MMVP benchmark. Incorrect answers are shaded in red . A model is considered correct only if
it answers both questions in a pair correctly. Both leading closed-source models (GPT-4V, Gemini) and open-source models (LLaVA-1.5,
InstructBLIP) fail these simple visual questions. (See Appendix B.2 for all the questions in MMVP benchmark.)

0 20 40 60 80 100
Accuracy (%)

Human
Gemini
GPT-4V

Random Guess
LLaVA-1.5

Bard
Bing Chat

InstructBLIP
mini-GPT4

LLaVA

95.7

40.7

38.7

25.0

24.7

19.0

17.3

16.7

12.7

6.0

Figure 4. Benchmark results of current SOTA MLLM models
and humans. We evaluate benchmark questions for current SOTA
MLLM models and human performances through user studies.

between human and MLLM models, despite the latter of-
ten demonstrating impressive results [6, 27]. Models ex-
cept GPT-4V and Gemini, scored below random guess level
(25%). Most advanced GPT-4V and Gemini also face chal-
lenges in addressing basic visual grounding questions. Fig-
ures 1 and 3 provide examples of errors made by models.
The outcomes suggest that irrespective of model size or
training data, struggle with visual details.

We have also conducted an ablation study, such as swap-
ping options and changing notations in the question formu-
lation (see Appendix B.3 for more details), to further con-
firm that this poor performance stems from visual incapa-
bility, not hallucination in the language models.

3. Systematic Failures in CLIP
In the previous section, we identify CLIP-blind pairs and
use them to find failures in MLLMs. Here, we delve deeper
into these pairs to investigate (i) systematic visual patterns
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Orientation and Direction

a rabbit 
facing right

a rabbit 
facing left

Presence of Specific Features

tulips

no tulips

State and Condition

butterfly 
with wings 

open

butterfly 
with wings 

closed

Quantity and Count

1 drink

2 drinks

Positional and Relational Context

glasses on 
the right of 
the slipper

glasses on 
the left of 
the slipper

Color and Appearance

light blue 
sky

dark blue 
sky

Structural Characteristics

some fruits 
cut in half

uncut fruits

Texts

“11:54”

“11:59”

Viewpoint and Perspective

flowers 
seen from 

above

flowers 
seen from 
the side

Model chooses the correct 
image based on the text

Model chooses the wrong 
image based on the text

MMVP-VLM Benchmark

Figure 5. Examples from MMVP-VLM. MMVP-VLM consists of image pairs across nine visual patterns. The examples in the figure are
from EVA01 ViT-g-14 model [54], one of the largest CLIP models that also fails to choose the right image given the text description.

emerged from CLIP-blind pairs (Section 3.1), (ii) whether
these visual patterns pose challenges for CLIP-based mod-
els with massive scaling up (Section 3.2), and (iii) the cor-
relation between failure patterns in CLIP models and those
in MLLMs (Section 3.3).

3.1. Visual Patterns in CLIP-blind Pairs

Having identified the CLIP-blind pairs, we summarize sys-
tematic visual patterns that the CLIP vision encoders might
consistently misinterpret. It is too abstract to directly cap-
ture systematic visual patterns in the CLIP-blind pairs.
Therefore, we turn to the questions and options from the
MMVP benchmark. With these questions, we transform ab-
stract visual patterns in images into clearer, language-based
descriptors that are easier to categorize.

In this work, we use GPT-4 [41] to categorize general
patterns by prompting it with the following:

User
I am analyzing an image embedding model. Can you go
through the questions and options, trying to figure out
some general patterns that the embedding model strug-
gles with? Please focus on the visual features and gener-
alize patterns that are important to vision models
[MMVP Questions and Options]

We identify 9 visual patterns:
☼ Orientation and Direction
Û Presence of Specific Features
L State and Condition
� Quantity and Count
, Positional and Relational Context
h Color and Appearance
Ô Structural and Physical Characteristics
k Text
� Viewpoint and Perspective

These visual patterns suggest that CLIP vision encoders

overly focus on high-level semantic understanding, over-
looking intricate details of the visual world. Full descrip-
tions of the visual patterns can be found in Appendix D.

3.2. The MMVP-VLM Benchmark

CLIP-based models have developed rapidly since the intro-
duction in the first paper [43]. We want to test whether these
visual patterns still impose challenges to the more recent
CLIP models [10, 54, 62, 66], which significantly scale up
in terms of training data and model size. In doing so, we in-
troduce a new benchmark: MMVP-VLM to systematically
study if CLIP models handle this visual pattern well.

We distill a subset of questions from the MMVP bench-
mark into simpler language descriptions and categorize
them into visual patterns. To maintain a balanced number
of questions for each visual pattern, we add a few questions,
if needed, to ensure that each visual pattern is represented
by 15 text-image pairs. Examples of pairs are shown in Fig-
ure 5. A pair is deemed correctly answered if the model can
accurately match both image-text combinations.

We evaluate MMVP-VLM on a variety of CLIP mod-
els [10, 43, 54, 62, 66]. These models vary in aspects like
size, training data, and methodology. As evidenced in Ta-
ble 1, increasing network size and training data only aids
in identifying two visual patterns – “color and appearance”
and “state and condition”. The rest of the visual patterns
continue to challenge all CLIP-based models. We also find
that the ImageNet-1k zero-shot accuracy is not a definitive
indicator of a model’s performance regarding visual pat-
terns. This underscores the necessity for additional evalua-
tion metrics, such as MMVP-VLM, to accurately assess the
model’s capabilities in areas beyond image classification.

3.3. How CLIP’s Errors Affect MLLMs

After analyzing the visual patterns that CLIP models strug-
gle with, we pose the following question: Is there a correla-
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Image
Size

Params
(M)

IN-1k
ZeroShot ☼ Û L � , h Ô k �

MMVP
Average

OpenAI ViT-L-14 [43] 2242 427.6 75.5 13.3 13.3 20.0 20.0 13.3 53.3 20.0 6.7 13.3 19.3
OpenAI ViT-L-14 [43] 3362 427.9 76.6 0.0 20.0 40.0 20.0 6.7 20.0 33.3 6.7 33.3 20.0
SigLIP ViT-SO-14 [66] 2242 877.4 82.0 26.7 20.0 53.3 40.0 20.0 66.7 40.0 20.0 53.3 37.8
SigLIP ViT-SO-14 [66] 3842 878.0 83.1 20.0 26.7 60.0 33.3 13.3 66.7 33.3 26.7 53.3 37.0
DFN ViT-H-14 [10] 2242 986.1 83.4 20.0 26.7 73.3 26.7 26.7 66.7 46.7 13.3 53.3 39.3
DFN ViT-H-14 [10] 3782 986.7 84.4 13.3 20.0 53.3 33.3 26.7 66.7 40.0 20.0 40.0 34.8
MetaCLIP ViT-L-14 [62] 2242 427.6 79.2 13.3 6.7 66.7 6.7 33.3 46.7 20.0 6.7 13.3 23.7
MetaCLIP ViT-H-14 [62] 2242 986.1 80.6 6.7 13.3 60.0 13.3 6.7 53.3 26.7 13.3 33.3 25.2
EVA01 ViT-g-14 [54] 2242 1136.4 78.5 6.7 26.7 40.0 6.7 13.3 66.7 13.3 13.3 20.0 23.0
EVA02 ViT-bigE-14+ [54] 2242 5044.9 82.0 13.3 20.0 66.7 26.7 26.7 66.7 26.7 20.0 33.3 33.3

Table 1. Performance of various CLIP based models on different visual patterns in MMVP-VLM benchmark. Models
scaled up in resolution show minimal improvement, whereas a slight advantage is observed when scaling up the network. For each

visual pattern, ImageNet-1k Zero-shot accuracy and MMVP average, we use light gray to highlight the best performance. For most of
the visual patterns, all CLIP-based methods show struggle, as evident from the scores. We use symbols for visual patterns due to space
limit: ☼: Orientation and Direction, Û: Presence of Specific Features, L: State and Condition, �: Quantity and Count, ,: Positional and
Relational Context, h: Color and Appearance, Ô: Structural and Physical Characteristics, k: Texts, �: Viewpoint and Perspective.
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Figure 6. CLIP and MLLM’s performance on visual patterns.
If CLIP performs poorly on a visual pattern such as “ ☼ orienta-
tion”, MLLMs also underperform on the visual pattern.

tion between the underperformance of CLIP and MLLMs’
visual incapability? To explore this, we categorize ques-
tions from MMVP into these visual patterns summarized
and calculate each MLLM’s performance on these patterns.

In Figure 6, we plot CLIP’s performance and MLLMs’
performance for each visual pattern. When the CLIP vi-
sion encoder underperforms on a certain visual pattern, the
MLLM tends to exhibit similar shortcomings. Open-source
models such as LLaVA 1.5 [30] and InstructBLIP [8] that
explicitly use the CLIP vision encoder display a strong cor-
relation in performance.

Further, we calculate the Pearson Correlation Coeffi-
cient between the CLIP model and MLLM’s performance
on each visual pattern. Results show that LLaVA 1.5 and
InstructBLIP all possess a coefficient score greater than 0.7.
This high score indicates a strong correlation that weak-
nesses in visual pattern recognition in the CLIP model are
transferred to MLLMs. More details on the Pearson Corre-
lation Coefficient can be found in Appendix C.

4. Mixture-of-Features (MoF) for MLLM
Based on our exploration in earlier sections, a natural ques-
tion arises: If open-sourced MLLM’s visual shortcomings
come from the CLIP vision encoder, how do we build a
more competent visual encoder? In this section, we take
initial steps to answer the question by studying Mixture-
of-Features (MoF). We start with additive MoF that mixes
CLIP features and vision-only SSL model features. Results
show that each encoder presents unique advantages and lim-
itations when employed as the pretrained model in MLLM
(Section 4.2). We subsequently propose Interleaved MoF
that integrates the features from both CLIP and SSL into
MLLM to enhance visual grounding without compromising
the model’s ability to follow instructions (Section 4.3).

4.1. Experiment Setting

We adopt LLaVA [30, 31] as the framework to study vi-
sual encoders in MLLM. LLaVA uses a pretrained CLIP
encoder and trains an adapter to align visual tokens with
language tokens in the LLM. (See left side of Figure 7). We
use DINOv2 [42] as the vision-only SSL model in our work
because it is currently the most scalable vision-only model.
Our exploration includes the use of two visual encoders:
CLIP-ViT-L-14 [43] and DINOV2-ViT-L-14 [42]. To en-
sure consistent and fair comparisons, we train and finetune
our model with the same experiment setting in LLaVA. We
include the additional experimental details in Appendix A.

4.2. Additive MoF

We add a pretrained DINOv2 encoder into MLLM and mix
the CLIP pretrained encoder with it. We use a coefficient α
to control the portion of CLIP features and 1 − α to con-
trol the amount of DINOv2 features and linearly add them
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Figure 7. Different Mixture-of-Feature (MoF) Strategies in MLLM. Left: Standard MLLM that uses CLIP as off-the-shelf pretrained vi-
sion encoder; Middle: Additive-MoF (A-MoF) MLLM: Linearly mixing CLIP and DINOv2 features before the adapter; Right: Interleaved-
MoF (I-MoF MLLM) Spatially interleaving CLIP visual tokens and DINOv2 visual tokens after the adapter.

together (See middle part of Figure 7 for visualization).
We evaluate the model’s visual grounding ability by

the MMVP proposed earlier in Section 2 and the model’s
instruction-following capability by LLaVA benchmark in-
troduced in Liu et al. [31]. Initially, we conduct
five experiments where we linearly transition from us-
ing 100% CLIP features to 100% DINOv2 features. In
these tests, the DINOv2 feature proportions are set at
{0.00, 0.25, 0.50, 0.75, 1.00}. To further verify the ob-
served trends, we introduce two additional experiments
with DINOv2 proportions of {0.625, 0.875}. Our findings,
presented in Table 2, reveal two insights:
1. As the proportion of DINOv2 features increases, MLLM

exhibits a decline in its instruction-following capability.
Notably, there is a sharp decrease when the DINOv2 pro-
portion reaches 87.5%.

2. A higher proportion of DINOv2 features enhances the
model’s visual grounding capability, but this advantage
diminishes when the DINOv2 proportion surpasses 0.75,
at which point instruction-following is notably impaired.

Hence, if we were to add DINOv2 features or completely re-
place CLIP with DINOv2, it would result in a trade-off be-
tween visual grounding and instruction-following. A higher
proportion of DINOv2 features improves the model’s visual
perception at the expense of its ability to follow linguistic
instructions, while CLIP features enhance language com-
prehension but reduce visual grounding.

4.3. Interleaved MoF

We propose interleaved MoF to leverage advantages from
both CLIP and DINOv2 embeddings to enhance image rep-
resentation. An image concurrently passes into CLIP and
DINOv2 encoders, and the resulting embeddings are indi-
vidually processed by adapters. We take the processed fea-
tures from CLIP and DINOv2 and interleave them while
maintaining their original spatial order. We then feed the
interleaved features to LLM (See right part of Figure 7).

method SSL ratio MMVP LLaVA

LLaVA 0.0 5.5 81.8

LLaVA
+ A-MoF

0.25 7.9 (+2.4) 79.4 (-2.4)

0.5 12.0 (+6.5) 78.6 (-3.2)

0.625 15.0 (+9.5) 76.4 (-5.4)

0.75 18.7 (+13.2) 75.8 (-6.0)

0.875 16.5 (+11.0) 69.3 (-12.5)

1.0 13.4 (+7.9) 68.5 (-13.3)

Table 2. Empirical Results of Additive MoF. We use DINOv2 as
the image SSL model in our work. With more DINOv2 features
added, there is an improvement in visual grounding, while a de-
cline in instruction following ability.

method res #tokens MMVP LLaVA POPE

LLaVA 2242 256 5.5 81.8 50.0
LLaVA 3362 576 6.0 81.4 50.1
LLaVA + I-MoF 2242 512 16.7 (+10.7) 82.8 51.0

LLaVA1.5 3362 576 24.7 84.7 85.9
LLaVA1.5 + I-MoF 2242 512 28.0 (+3.3) 82.7 86.3

Table 3. Empirical Results of Interleaved MoF. Interleaved MoF
improves visual grounding while maintaining same level of in-
struction following ability.

We summarize the results in Table 3. Under the
LLaVA setting, interleave MoF significantly enhances vi-
sual grounding, with a 10.7% increase observed in MMVP,
without compromising the model’s ability to follow instruc-
tions. This experiment is replicated with the LLaVA-1.5
setting and under various image resolution settings, yield-
ing similar enhancements in performance. We also eval-
uate on POPE [27] which is designed to test hallucina-
tion in visual grounding. Interleaved-MoF also shows con-
sistent improvement against the original LLaVA models.
Merely increasing the image resolution, and consequently,
the number of tokens does not boost visual grounding ca-
pabilities. Instead, it is the interleaving of MoF between
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vision-only SSL models and VLM models that leads to im-
proved performance in visual grounding tasks. We conduct
more experiments using MAE or MoCoV3 as vision-only
SSL models in I-MoF and show similar improvements in
visual grounding tasks in Appenfix E.1. We also evaluated
Interleaved MoF on additional benchmarks such as MM-
Bench [32] and GQA [21], finding that Interleaved MoF
achieves similar performance on these benchmarks. Please
refer to Appendix E.2 for more results on these benchmarks.

5. Related Works

Multimodal LLMs. We study the limitations of Multi-
modal LLMs [8, 13, 30, 31, 40] and explore possible ways
to improve these models. Multimodal LLMs build from
pretrained Large Language Models [3, 41, 58, 59, 69] and
CLIP vision encoder [43, 54]. These systems then use an
adapter, such as MLPs [30, 31], Q-Former [8, 26], and gated
attention [2, 25], to integrate the pretrained CLIP vision en-
coder into LLMs. More recently, instructBLIP [8], LLaVA-
1.5 [30] highlight the importance of high-quality training
data. Yet, there is a scarcity of research focusing on the im-
pact of visual encoders, which is an important gap our work
aims to address through a systematic study.
Evaluating Multimodal LLMs. MMVP assesses
MLLMs using a set of simple yet critical Visual Ques-
tion Answering (VQA) questions constructed from CLIP-
blind pairs. Previous benchmarks such as TextVQA [52],
VQAv2 [15], and GQA [21] have centered on traditional
VQA queries. Recently, there are works like MM-Vet [64],
POPE [27], and MM-Bench [32] designed to specifically
evaluate multimodal LLMs including hallucination, reason-
ing, and robustness. The previous benchmarks and evalu-
ations have shown that Multimodal LLMs can suffer from
hallucination [28, 29], catastrophic forgetting [67] and lack
of robustness [11]. In taking a step back to the fundamen-
tals, our work uncovers that even the most advanced multi-
modal LLMs, such as GPT-4V [40], Gemini [14], Bard [30],
and LLaVA-1.5 [30], are not immune to stumbling over el-
ementary visual questions. We also identified part of the
problem as being the incapable visual encoder.
Visual Encoders. MMVP-VLM provides a detailed anal-
ysis of the visual capabilities of various CLIP variants [43,
54, 62, 66]. These models mostly follow the method pro-
posed in Radford et al. [43] that uses contrastive loss to
train on large volumes of image-text pairs. They differ
in training data [62], training recipes [54], and objective
functions [66]. Nonetheless, our studies show that all of
these CLIP variants struggle with simple visual patterns
such as “orientation”, “count”, “presence of specific fea-
tures”, etc. Another line of research focuses on vision-only
self-supervised learning (SSL). This category includes con-
trastive SSL [5, 7, 16, 17] and mask-based SSL [4, 18, 70].
SLIP [39] explores the synergy between CLIP and con-

trastive SSL, but focusing primarily on standard classifica-
tion tasks. In fact, a common practice to evaluate the qual-
ity of these vision models is through linear probing or fine-
tuning on ImageNet [45, 47]. Although current evaluation
methods provide a basic level of assessment on represen-
tation quality, our findings indicate a growing detachment
from the needs of recent use cases. As demonstrated in
the MoF experiments in Section 4, the CLIP vision model
and the vision-only SSL models learn complementary fea-
tures. However, the linear probing accuracy on ImageNet
alone provides a limited understanding of feature utility in
MLLMs. This observation suggests the need for more di-
verse evaluations [61] in visual representation learning, to
better align with current and emerging applications.
Ambiguities in Embedding Models. Our work exploits
CLIP-blind pairs within the CLIP vision embedding space
to generate examples of failures in CLIP models and subse-
quently MLLMs. This concept has ties to previous research
focused on documenting failure modes in text embedding
models [12, 36, 55]. More recently, Thrush et al. [56], Yuk-
sekgonul et al. [65] and Hsieh et al. [19] study the binding
problems CLIP faces in processing text queries, noting that
CLIP models treat text input as a bag of words. Tong et al.
[57] examines the implications for downstream text-guided
generative models. Tschannen et al. [60] suggests image
captioners as promising alternatives to CLIP for improving
attribute binding. Our work focuses on the visual patterns.

6. Discussion
Circling back to the very first question we ask: is vision
good enough for language? Perhaps not yet, as our study
shows that vision models might become a bottleneck in
multimodal systems. MLLMs fail in simple questions be-
cause their pre-trained CLIP vision encoders overlook cru-
cial visual details in images, and systematically fail to sort
important visual patterns. Yet, CLIP-type models remain
the most scalable and widely used vision models today.
Contrary to the popular belief that data and model scaling
is a panacea, our research demonstrates that scaling alone
does not rectify the inherent deficiencies in CLIP models.

Our study reveals that popular visual representation
learning models – vision-and-language models and vision-
only self-supervised learning models – excel in different
aspects. The distinction in their capabilities go beyond
conventional benchmarks such as linear probing or zero-
shot accuracy on ImageNet. Although a carefully de-
signed Mixture-of-Features approach could alleviate visual
limitations and utilize the strengths of these two learning
paradigms, it is necessary to develop new evaluation met-
rics to facilitate the development of new visual representa-
tion learning algorithms. We hope our work can motivate
further innovation in vision models.
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[6] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Jo-
hannes Gehrke, Eric Horvitz, Ece Kamar, Peter Lee, Yin Tat
Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial
general intelligence: Early experiments with gpt-4. arXiv
preprint arXiv:2303.12712, 2023.

[7] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In ICML, 2020.

[8] Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat
Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale
Fung, and Steven Hoi. Instructblip: Towards general-
purpose vision-language models with instruction tuning,
2023.

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In ICML, 2021.

[10] Alex Fang, Albin Madappally Jose, Amit Jain, Ludwig
Schmidt, Alexander Toshev, and Vaishaal Shankar. Data fil-
tering networks. arXiv preprint arXiv:2309.17425, 2023.

[11] Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin,
Mengdan Zhang, Xu Lin, Zhenyu Qiu, Wei Lin, Jinrui Yang,
Xiawu Zheng, et al. Mme: A comprehensive evaluation
benchmark for multimodal large language models. arXiv
preprint arXiv:2306.13394, 2023.

[12] Hila Gonen and Yoav Goldberg. Lipstick on a pig: Debiasing
methods cover up systematic gender biases in word embed-
dings but do not remove them. In NAACL, 2019.

[13] Google. Bard, 2023.
[14] Google. Gemini, 2023.
[15] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Ba-

tra, and Devi Parikh. Making the V in VQA matter: El-
evating the role of image understanding in visual question
answering. In CVPR, 2017.

[16] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
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