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Abstract

From content moderation to wildlife conservation, the
number of applications that require models to recognize
nuanced or subjective visual concepts is growing. Tradi-
tionally, developing classifiers for such concepts requires
substantial manual effort measured in hours, days, or even
months to identify and annotate data needed for train-
ing. Even with recently proposed Agile Modeling tech-
niques, which enable rapid bootstrapping of image classi-
fiers, users are still required to spend 30 minutes or more
of monotonous, repetitive data labeling just to train a sin-
gle classifier. Drawing on Fiske’s Cognitive Miser theory,
we propose a new framework that alleviates manual effort
by replacing human labeling with natural language inter-
actions, reducing the total effort required to define a con-
cept by an order of magnitude: from labeling 2,000 images
to only 100 plus some natural language interactions. Our
framework leverages recent advances in foundation mod-
els, both large language models and vision-language mod-
els, to carve out the concept space through conversation
and by automatically labeling training data points. Most
importantly, our framework eliminates the need for crowd-
sourced annotations. Moreover, our framework ultimately
produces lightweight classification models that are deploy-
able in cost-sensitive scenarios. Across 15 subjective con-
cepts and across 2 public image classification datasets, our
trained models outperform traditional Agile Modeling as
well as state-of-the-art zero-shot classification models like
ALIGN, CLIP, CuPL, and large visual question answering
models like PaLI-X.

1. Introduction
The field of computer vision has primarily focused on

recognizing concepts that are objectively agreed upon, such
∗This work was done during an internship at Google.
†This work was done during working at Google.

Modeling Collaborator (Ours)
Decision: Positive
Reasons: The image shows a plate of food with chopsticks on 
it. The food is a salad with tuna, pineapple, avocado, and 
sesame seeds. The salad is on a plate with chopsticks on 
it. The dish is gourmet and contains tuna.

PaLI-X (baseline)

Prompt: Is this tuna gourmet? 
Justify your answer.
PaLI: No, this tuna is not 
gourmet. It is a simple salad with 
tuna, sesame seeds, and 
vegetables. It is not a fancy or 
elaborate dish.

Prompt: Could this be an image of 
gourmet tuna?
PaLI: Yes, this could be an image 
of gourmet tuna.

Prompt: Is this tuna gourmet? Are 
you sure?
PaLI: I'm not sure if this tuna is 
gourmet. It looks like it could 
be, but it's hard to say for sure 
without tasting it.

Figure 1. We introduce Modeling Collaborator: a framework
that allows anyone to train vision models using natural lan-
guage interactions and minimal effort. We show that today’s
best models (e.g. PaLI-X [6]) change their answers depending on
the prompt when classifying subjective concepts like gourmet
tuna. Meanwhile, Modeling Collaborator uses LLMs and tool-
use to train vision models by interacting with users to carve out
the concept space.

as dogs, cats, or cars [11, 28, 30]. Even research on fine-
grained recognition (e.g. “black footed albatross”) and
compositional concepts (e.g., “red car next to a motorcy-
cle”) have universal consensus [22, 27, 32, 35]. However,
many practical real-world vision applications frequently in-
volve recognizing subjective concepts that suffer from sig-
nificant disagreements amongst individuals. Applications
include predicting emotions, measuring aesthetic appeal, or
content moderation [10, 25, 26, 45]. A content moderator
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needs a model to identify unsafe content according to their
definition of what constitutes as unsafe; a food critic might
not consider a tuna sandwich to be gourmet while others
might (Figure 1). To operationalize these applications, we
need user-centric training frameworks that enable anyone to
train subjective vision models.

Recently, Agile Modeling formalized the process for
turning any visual concept into a vision model through a
user-in-the-loop framework [51]. Their work concluded
that crowd workers struggled to produce labels that were
consistent with the user’s concept definition. Instead, they
proposed an active learning algorithm, where the user itera-
tively labels a series of training images themselves. Unfor-
tunately, this process is tedious, repetitive, and labor inten-
sive; users had to label ∼ 2000 images, which on average
took 30 minutes to train a binary classifier.

Existing processes fall short because they do not lever-
age a key capability that humans possess. People are adept
at breaking down complex subjective concepts into more
manageable and objective components by applying first-
order logic [14, 36]. This ability can be explained using
Susan Fiske’s Cognitive Miser Theory: people decompose
complex work to avoid high cognitive load [13]. People
apply the same process to define complex concepts such
as “unsafe” and “gourmet”. For instance, one food critic
might decompose the subjective concept of “gourmet” as
images that need to at least contain “tuna”; if it is “ahi tuna”,
then it is likely gourmet; if it is “canned”, then it is un-
likely to be gourmet; if the dish is a “sandwich”, then it is
still not gourmet. This decomposition of the subject con-
cept “gourmet” into conjunction clauses of objective con-
cepts “ahi tuna”, “canned”, and “sandwich” is a simple non-
laborious, cognitively effortless conversion.

With this grounding, we deliver Modeling Collabora-
tor which empowers users to build classifiers while min-
imizing manual effort. Instead of asking users to anno-
tate thousands of images [51], Modeling Collaborator re-
quires 100, along with a few natural language interac-
tions that help decompose subjective concepts into its con-
stituent sub-components. To enable Modeling Collabora-
tor, we leverage advancements in large language models
(LLMs) [2, 3, 9, 12, 37] and in particular, their ability to use
vision-language models (VLMs) [6–8] and other tools [19].
When users have a concept in mind and use Modeling Col-
laborator, it employs an LLM, which breaks the concept
into questions that are digestible for a Visual Question An-
swering (VQA) model [8]. The LLM then summarizes the
answers provided by the VQA model and performs reason-
ing through chain-of-thought [57] to classify new images
as positive or negative examples of the concept. Users are
only asked to manually label a small 100 image validation
set. Finally, Modeling Collaborator labels a large amount of
unlabeled images available online and uses it as distillation

data to train a light-weight deployment-ready vision model.
Our method is shown to outperform existing zero-shot

methods (CLIP [43], CuPL [41] and PaLI-X [6]), especially
on harder subjective concepts. When compared to the orig-
inal Agile Modeling [51] our system exceeds the quality
of crowd-raters on hard concepts while simultaneously re-
ducing the need for manual user-provided ground-truth by
orders of magnitude. By reducing the barriers of manual
effort and resulting costs needed to develop classification
models, it will empower users to rapidly convert their ideas
into reality. This, in turn, has the potential to usher in a new
wave of end-user applications.

2. Related work
Our work draws on advances in VLMs and LLMs and

provides an improved solution to the recently introduced
Agile Modeling problem.
Agile Modeling. Inspired by agile software development,
Agile Modeling [51] focuses on rapid development of im-
age classification models. In addition to speed, Agile Mod-
eling aims to tackle the challenges posed by subjective vi-
sion models. As classification tasks become more nuanced,
user interaction becomes increasingly crucial. However, it
is important to note that the human-in-the-loop approach
can be expensive due to the need of continuous human in-
volvement and expertise. While this work aims at reducing
time users spend on tuning their classification models, we
propose an assisted method to automate parts of the pipeline
and eliminate crowd-rater involvement.
Vision-language models (VLMs). In the rapidly evolving
domain of VLMs, two primary streams have emerged: con-
trastive and generative models. Contrastive models, such as
CLIP [43] and ALIGN [23], leverage large-scale datasets
to directly learn visual concepts from raw text, enabling
high-accuracy zero-shot classification on open vocabular-
ies [11, 17]. Generative models such as PaLI [6–8, 56] and
GPT-V [37, 38] focus on generating text from a combina-
tion of visual and text inputs. For instance, PaLI, trained on
a vast collection of image-text pairs in various languages,
achieves top performance across a range of vision and lan-
guage tasks. Similarly, GPT-V allows the processing of
image inputs, thereby enhancing the applicability of lan-
guage models to multimodal tasks. Other methods such as
CoCa [54, 63] proposed a hybrid approach for simultane-
ously learning with generative and contrastive objectives.
Despite their strength, VLMs capture visual data semantics,
often prioritizing salient image features over nuanced vi-
sual cues. For instance, CLIP embeddings are intentionally
compressed to encapsulate its most prominent subject [49].
Additionally, PaLI may struggle to provide detailed descrip-
tions of complex scenes with numerous objects, as its train-
ing data predominantly lacks detailed annotations. In con-
trast, our proposed method is more stable and less sensitive
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Positive Questions
- Does the dish contain 

tuna?
- Is the dish gourmet?
- Is the tuna in the 

image a gourmet tuna?
- Is the dish a photo of 

the fish tuna itself?
Negative Questions
- None

Positive Questions
- Yes

- Yes
- Yes

- No

Negative Questions
- N/A

Input Image A. LLM Questions B. VQA Answers
The image shows two 
bowls of food. One 
bowl contains 
noodles, lettuce, 
and avocado. The 
other bowl contains 
tuna, lettuce, and 
avocado.

C. Captioning

Name: Gourmet Tuna
Description: Photos of gourmet dishes (i.e. fancy, elegant) that must contain tuna. This includes sushi, sashimi, 
seared tuna, a fancy ahi tuna salad. This does not include canned tuna, tuna sandwich, a photo of the fish tuna itself.

Concept

LLM Chain-of- 
thought reasoning

Decision: Positive
Reasons: The image 
contains tuna and 
is gourmet.

D. Final
Annotation

✨

Figure 2. Modeling Collaborator Annotator system. For a given image, concept name, and description, the Annotator outputs a positive or
negative label. Based on the name and description of the concept, the LLM generates relevant atomic questions to ask a VQA model (PaLI
VQA in our case) (step A). These questions are fed into the VQA model that typically outputs a yes/no short answer (Step B). Additionally,
we use a captioning version of PaLI (Step C) to generate a detailed description capturing as much detail as possible from the image. Finally,
the LLM goes through a chain-of-thought reasoning process to output a decision and rationale (Step D).

to question phrasing as observed in Fig. 1.
Large language models (LLMs) and tool-use. Large Lan-
guage Models (LLMs) have revolutionized the landscape of
artificial intelligence [1,3,12,40,55], particularly in the field
of natural language processing (NLP) and cognitive reason-
ing. By leveraging advanced methodologies such as chain-
of-thought reasoning [57], few-shot learning [4, 39], and
tool-use [21,46], these models demonstrate exceptional per-
formance across a wide spectrum of downstream tasks [44].
They can operate across various modalities and a broad
range of applications while maintaining high performance
without the need for additional training. Recent progress
in integrating external tools with LLMs [5, 20, 21, 29, 62]
has yielded systems like Toolformer [46]. This approach
makes intelligent decisions about which APIs to invoke,
optimizing the timing, arguments passed, and the subse-
quent assimilation of the results into future token predic-
tions. This enhances zero-shot performance across a variety
of tasks, establishing a solid foundation for LLMs to operate
beyond their inherent capabilities. For fine-grained VQA,
AVIS [20] introduces an autonomous information-seeking
mechanism. By dynamically leveraging an LLM in tan-
dem with external tools, it adeptly traverses a combinatorial
search space. This is achieved through its unique approach
of mimicking human decision-making processes, crafting a
transition graph that guides the LLM’s strategic decisions.
Another tool-use enabled LLM system is ViperGPT [52],
which embodies an innovative approach to tackling visual
queries. It leverages a code-generation strategy that en-
ables the seamless integration of vision-and-language mod-
els through the generation of Python code. This method,

along with other similar methods (MMReact [61], Hug-
gingGPT [50], Chameleon [34], and Visual ChatGPT [58])
circumvents the need for extended training and ensures re-
silience across a diverse set of visual tasks. Collectively,
these systems highlight the burgeoning synergy between
LLMs and external tool use, pushing the frontiers of what
LLMs can achieve. In our work, we adopt and extend ideas
from these approaches to tackle subjective classification.
Customized prompts via language models. Customized
Prompts via Language models (CuPL) [41] leverages
CLIP’s capabilities [43] to achieve zero-shot image classifi-
cation. CuPL measures the similarity between an image and
each visual class to perform classification. Typically, the
classes are passed into CLIP’s text encoder within a tem-
plate such as “photo of a bird” for the class bird. CuPL em-
ploys GPT [3] to generate more comprehensive text descrip-
tions for each class before feeding into CLIP. This straight-
forward and zero-shot approach yields improved accuracy
across various zero-shot image classification benchmarks.
However, its evaluation has been limited to objective classi-
fication tasks and not on nuanced or subjective visual clas-
sification tasks. This approach for automatically annotating
data improves upon CLIP but suffers from the same limita-
tions compared to our work.

3. Method

We propose an end-to-end system that streamlines the
development of classifiers for nuanced visual concepts, ad-
dressing the limitations of traditional classifier development
methods. The system consists of three core components, de-
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scribed in detail in the following subsections: (a) data min-
ing, (b) annotation, (c) model training with active learning.

To build a classifier for a new concept, the user first pro-
vides a concept name and an optional description. The sys-
tem then automatically mines images relevant to the con-
cept and annotates them using a mixture of Large Lan-
guage Models (LLM), Vision-Language Models (VLM),
and Visual-Question-Answering (VQA) models. The anno-
tated images are used to train a basis classification model,
which is further refined through multiple rounds of active
learning, resulting in a highly accurate classifier.

This setup mirrors the workflow of traditional classifier
development, but it eliminates the need for costly and time-
consuming human annotation which is a significant bottle-
neck in traditional methods. The Modeling Collaborator
Annotator component, powered by LLMs and VLMs, en-
ables zero-shot image labeling and drastically minimizes
our dependence on user annotations.

3.1. Data mining

Mining quality data for training has traditionally been a
labor-intensive process. This process begins with the clear
definition of a concept, followed by the hunt for relevant
images, and ends in the manual annotation of each of these
images [11, 30]. Particularly for nuanced visual tasks, there
is a possibility that certain subtle visual patterns might be
overlooked during data collection. Consequently, to ensure
a comprehensive capture of all visual patterns, multiple it-
erations of refinement may be needed. In traditional Ag-
ile Modeling [51] this challenge is addressed by soliciting
users to annotate data or generate new search queries to find
more image examples. Each query results in a new seman-
tic image search algorithm [23, 43] to gather other similar
positive image examples for annotation from the public do-
main (LAION Dataset) [47]. Even with user intervention,
user queries may overlook essential cues, potentially lead-
ing to a deficit of hard negatives or a lack of coverage in
specific visual modes. Additionally, the labels can vary be-
tween users, leading to potential human biases.

To address human bias and minimize manual effort, we
propose a data mining algorithm based on LLM chain-of-
thought reasoning. While LLMs are not inherently unbi-
ased [15] and may reflect biases present in their training
data, they can assess a wider range of concepts at large
scales from their extensive knowledge base, thus identify-
ing a broader array of potential examples more efficiently.
First, we prompt the LLM to generate multiple positive and
negative queries based on a concept’s name and its descrip-
tion. Note that we do not directly assign images as positive
or negative based on the query; rather, the goal is obtain rep-
resentative images spanning both positive and hard-negative
examples. To increase coverage and diversity, we expand
the queries by instructing the LLM to apply various mu-

tations. For example, we may ask the LLM to iteratively
come up with broader or narrower versions of the queries,
or come up with variations for specific parts of the queries.
Drawing parallels to Agile Modeling, we use each query to
extract image samples from the public domain [47].

3.2. Modeling Collaborator Annotator

Fig. 2 describes the image annotation process. Our sys-
tem effectively orchestrates the annotation process leverag-
ing LLM’s ability to invoke VLMs and other tools. It com-
prises three primary AI-driven modules: an LLM, a Cap-
tioning VLM [56], and a VQA VLM [6]. The automated
annotation process is structured as follows:
Concept initialization: Initially, our system receives a con-
cept name (e.g., gourmet tuna), and optionally a con-
cept description. If a concept description is absent, the LLM
generates an initial description. This template can be modi-
fied by the user to cover all specifications and carve-outs.
Attribute Extraction: Based on the concept specifications,
the LLM identifies objective attributes associated with the
concept, such as “image contains tuna”, “is tuna sandwich”,
and “is tuna steak”.
Attribute decomposition: The LLM decomposes complex
attributes into more granular and atomic attributes.
Question generation: The LLM then formulates a series
of questions tailored for the VQA model. Examples include
“does the image contain food”, “is the food tuna”, and “is it
tuna steak”.
Visual assessment: When an image is input, the VQA
model processes these questions, yielding concise answers
for each. Concurrently, the Captioning VLM provides a
comprehensive description of the image.
Final annotation: With the textual data from the VLMs and
the user’s initial concept specification, the LLM employs
chain-of-thought reasoning. It annotates the image as either
positive or negative, also offering insights into its decision-
making process.

Our approach utilizes the strengths of VLM, VQA, and
LLM models while simultaneously avoiding their short-
comings. For example, VLMs, despite their capabilities, of-
ten struggle with nuanced and subjective concepts in classi-
fication tasks. Their performance hinges on the breadth and
quality of training data, potentially leading to biases or gaps
in understanding [53]. Ambiguities in language and the
inherent subjectivity of certain questions can further chal-
lenge their accuracy [33]. Moreover, these models, lacking
real-world context and experiential understanding, might
miss deeper cultural or emotional nuances [16]. Thus, while
powerful, VLMs have inherent limitations in addressing in-
tricate or subjective visual-linguistic tasks. Fig. 1 shows an
example VLMs’ (PaLI-X [6]) sensitivity to prompts.

VLMs are primarily designed for understanding and an-
swering questions related to visual content, rather than
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Decision: Positive
Reasons: ... The dish is 
gourmet because it is made 
with high-quality 
ingredients and is prepared 
in a sophisticated manner.

Decision: Negative
Reasons: The image shows a 
plate of stuffed 
tomatoes... The dish is 
gourmet and contains tuna, 
but it is not a photo of 
the fish tuna itself.

Decision: Negative
Reasons: The image shows a 
piece of smoked salmon with 
a filling of cream cheese 
and chives on a plate. The 
dish does not contain tuna.

Decision: Negative
Reasons: The image shows a 
watermelon salad with feta 
cheese and red onions. The 
dish is gourmet, but it 
does not contain tuna.

Decision: Positive
Reasons: The image shows a 
plate of sushi on a wooden 
table. The sushi roll contains 
tuna and rice. The dish is 
gourmet and the tuna is a 
gourmet tuna.

Decision: Negative
Reasons: The object in the 
image is not a stop sign. It 
is a stop sign drawn on a 
piece of paper.

Decision: Negative
Reasons: The image shows a 
traffic cone, not a stop 
sign. The traffic cone is 
not in the real world, it 
is a toy.

Decision: Positive
Reasons: The image 
contains a stop sign in 
the real world. The stop 
sign is official.

Decision: Negative
Reasons: The stop sign is 
not in the real world. It 
is a drawing of a stop 
sign.

Decision: Negative
Reasons: The object in the 
image is a pillow, not a 
stop sign...

Figure 3. Modeling Collaborator Annotator examples for the concepts gourmet tuna (first row) and stop sign (second row). Hard
negatives mined from the LAION dataset are shown in addition to some actual positives for the visual concept. The Modeling Collaborator
Annotator is able to label the images as positive or negative as well as provide rationale. In some instances, the rationale could be incorrect
(highlighted in red) due to error in VQA responses or hallucinations from the LLMs. Some of the reasons have been truncated for brevity.

performing deep chain-of-thought reasoning typical of ad-
vanced LLMs [33,42,53,59]. While VLMs can comprehend
simpler questions about images, they usually operate in a
single-shot manner, providing answers based on the imme-
diate visual and textual inputs without extended reasoning.
On the other hand, LLM question answering quality can be
significantly improved through chain-of-thought reasoning,
maintaining a coherent line of thought across extended text.
Other techniques such as prompt chaining involve using a
model’s output as part of the subsequent input, simulating
a sustained dialogue or iterative reasoning. Additionally,
to extract deeper insights, users can guide LLMs with spe-
cific instructions, such as asking the model to think step-by-
step [60] or weigh pros and cons, thus simulating a more
deliberate reasoning process [3].

3.3. Training and active learning

While one could directly use the annotator as a model,
this is prohibitive in many scenarios because of the high
inference cost. For this reason, we adopt an approach
similar to [51] for model training and active learning.
Specifically, we first extract image features from a foun-
dation vision model (CLIP or ALIGN) [23, 24]. We then
train a shallow multi-layer perceptron (MLP) with layer
sizes (128, 128, 128) to perform binary classification for the
given concept. This can also be viewed as student-teacher
distillation [18] where we use the LLM-based annotator as
the teacher model. We use a learning rate of 3 × 10−4, a

batch size of 512, and optimize using AdamW [31].
After the initial model is trained, we perform multiple

rounds of active learning. Each active-learning iteration
consists of three stages. First, the lightweight classifica-
tion model is applied to a large database of unlabeled im-
ages (LAION [47]). Then, we perform stratified sampling
to acquire candidate images for further AL rounds [51]. The
intention is to capture hard negatives and hard positives that
will boost precision and recall respectively. Second, our
LLM-based annotator is autonomously applied to the se-
lected images, providing additional training ground-truth.
Thirdly, the student classifier is retrained, leveraging all the
extant labeled data. We experiment with both margin sam-
pling and stratified sampling techniques [48] to mine ex-
amples during this active learning phase. The overall sys-
tem thus adeptly balances between exploration (achieved
via data mining through text search queries and expansion)
and exploitation (achieved via active learning to mine visual
modes that reduce model uncertainties).

3.4. Implementation details

As a large language model, we use PaLM 2 [2, 9] which
was trained on a variety of different tasks, all of which helps
PaLM 2 learn different aspects of language. Additionally,
we use both the VQA and MMIT (multimodal instruction-
tuned [56]) variants of PaLI-X [6]. The particular choice
of foundation models is based on their SOTA performance
at the time of writing. These models have not been further
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trained or fine-tuned in this work.

4. Experiments
We present our experimental setup and results with three

takeaways. First, we show that Modeling Collaborator An-
notator outperforms other zero-shot methods (CLIP [43],
CuPL [41] and PaLI-X [6]). Second, while Modeling Col-
laborator Annotator is able to beat state-of-the-art methods
in both easy and hard concepts, we see much larger gains on
harder and more subjective concepts. Finally, when using
our end to end system, we can produce deployable models
of competitive quality with minimal user annotations (100
annotations vs. 2,000 in traditional Agile Modeling).
Datasets. In addition to the LAION dataset used for data
mining in our system, we evaluate our methods on the pub-
lic Hateful Memes dataset [26]. For evaluation and user-
study, we use the Agile Modeling dataset [51] that is com-
prised of 14 concepts, each with positive and negative im-
ages mined from the LAION dataset. This dataset is split
into easy and hard concepts depending on the zero-shot per-
formance on each concept using CLIP as described in [51].
Models. We benchmark Modeling Collaborator Annotator
against state-of-the-art zero-shot and open-vocabulary clas-
sifiers: CLIP [43], CuPL [41], and PaLI-X (55B) [6] as a
generative VQA model. We evaluate CLIP by embedding
the name of the concept and measuring the cosine similarity
to each image embedding. CuPL uses the same technique
but instead of embedding the concept name directly, we em-
bed a description of the concept generated by an LLM. Both
GPT3 and PaLM 2 models were experimented with but we
chose PaLM 2 since it produced superior results. In the case
of CLIP and CuPL, we select an operating point using a grid
search maximizing the F1 score on a subset of the training
set. We use PaLI-X VQA variant as a classifier by prompt-
ing it “Is this an image of X?” and we assign a positive or
negative prediction based on its answer.
Annotator Adaptation. While testing the system, we ob-
served some amount of concept-dependent variability in the
Annotator. For example, for simple concepts like “cat” a
VLM might already have state-of-the-art performance and
our system can even degrade quality in these cases. To ad-
dress this we implemented six different Annotator strate-
gies. While developing a classifier for a particular concept,
we have the concept owner build an on-the-fly validation set
of 100 images which is then used to select the best perform-
ing strategy for that particular concept. Different param-
eters describing these configurations are explained in the
Supplementary Materials.
Users, Crowd, and Modeling Collaborator. We measure
the agreement/alignment with the user for both the crowd
and automatic annotation methods. The user is the source
of ground-truth and the person manually annotating the test
set. Crowd annotators are given a description and exam-

ples by the user and asked to annotate images at a larger
scale. Modeling Collaborator Annotator is able to scale
up the annotation process further due to its autonomy and
can encapsulate an image set of higher diversity in visual
modes. We measure the annotator alignment by comparing
the performance (auPR) on the distilled model trained on
data annotated by different human and machine annotators.

4.1. Modeling Collaborator Annotator

Modeling Collaborator Annotator outperforms other
zero-shot methods. We show the results of these experi-
ments in Tab. 1. We measure the alignment with the user
on the held-out test set of the Agile Modeling dataset us-
ing agreement scores (precision, recall, and F1). CLIP and
CuPL contrastive models suffer from very low precision in
favor of high recall. PaLI-X outperforms contrastive mod-
els, making it more suitable as a baseline for our proposed
Annotator. We achieve significant gains for subjective
(hard) concepts while maintaining equivalent perfor-
mance for less subjective (easy) concepts. Tab. 1 shows
a significant skew in concept improvement: over 25% of
the concepts showed an F1 score gain of 4% or higher, in-
cluding hateful memes [26] at 15%, healthy-dish
at 6%, and stop-sign at 5%, exhibiting substantial im-
provements in areas requiring more subjective classifica-
tions. This trend indicates that our model is particularly
effective for complex or subjective concepts, but may of-
fer only marginal benefits for concepts that PaLI-X is al-
ready good at. Regardless, a Wilcoxon Signed-Rank Test on
the F1 scores comparing our system against PaLI-X yields
a statistically significant improvement across all concepts
(p < 0.01). In addition to classification, our system outputs
rationales shown in Fig. 3.

4.2. Human-machine alignment

Modeling Collaborator can produce deployable models
of competitive quality with minimal user annotations.
We measure the effect of using varying levels of human and
automated annotation in Tab. 2. We note that, while our
model cannot exceed the distilled user model performance
(distilled on 100% accurate annotations), we can outper-
form crowd-raters. Our Annotator system significantly out-
performs crowd-raters on harder more nuanced concepts
(different of 6%). Whereas it slightly under-performs on
easy concepts. This is likely due to prediction errors from
automated VQA models (PaLI-X) where humans show bet-
ter performance. In comparison to using other state-of-the-
art open-vocabulary zero-shot annotators (CLIP, CuPL and
PaLI-X), our system outperforms these methods on both
easy and hard concepts. Our fully automated system suc-
cessfully generates distilled models that match the quality
of ones crafted with classical Agile Modeling, with per-
formance within a 2% margin of the user’s output. Fig. 4
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PaLI-X [6] CLIP [43] CuPL [41] Ours
Concept Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1
Easy concepts

arts-and-crafts 0.71 0.97 0.82 0.68 0.86 0.76 0.68 0.90 0.77 0.96 0.75 0.84
dance 0.57 0.87 0.69 0.51 0.95 0.66 0.52 0.89 0.66 0.67 0.95 0.79
emergency-service 0.67 0.88 0.76 0.53 0.87 0.65 0.54 0.91 0.67 0.88 0.73 0.76
hair-coloring 0.76 0.97 0.85 0.70 0.99 0.82 0.70 0.99 0.82 0.76 0.97 0.85
in-ear-headphones 0.70 0.96 0.81 0.43 0.95 0.59 0.44 0.96 0.60 0.82 0.86 0.82
pie-chart 0.80 0.96 0.88 0.52 0.80 0.63 0.50 0.92 0.65 0.80 0.96 0.88
single-sneaker 0.65 0.92 0.76 0.51 0.99 0.67 0.51 1.00 0.67 0.70 0.88 0.78

Easy concepts average 0.69 0.93 0.80 0.55 0.92 0.68 0.56 0.94 0.69 0.80 0.87 0.82
∆ +11% -6% +2%
Hard concepts

astronaut 0.61 0.87 0.71 0.40 0.95 0.56 0.42 0.95 0.58 0.72 0.79 0.72
block-tower 0.45 0.97 0.62 0.38 0.99 0.55 0.37 0.98 0.54 0.89 0.68 0.66
gourmet-tuna 0.52 0.95 0.67 0.29 1.00 0.45 0.29 1.00 0.45 0.52 0.95 0.67
hand-pointing 0.56 0.99 0.71 0.39 0.87 0.54 0.39 0.94 0.55 0.89 0.79 0.74
healthy-dish 0.38 1.00 0.55 0.37 0.99 0.54 0.38 1.00 0.55 0.84 0.61 0.61
home-fragrance 0.57 0.51 0.54 0.40 0.95 0.56 0.40 0.96 0.57 0.57 0.51 0.54
stop-sign 0.61 0.99 0.76 0.48 1.00 0.65 0.49 0.99 0.65 0.83 0.83 0.81

Hard concepts average 0.53 0.90 0.65 0.39 0.96 0.55 0.39 0.97 0.56 0.75 0.74 0.68
∆ +22% -16% +3%
Overall average 0.61 0.92 0.72 0.47 0.94 0.62 0.47 0.96 0.62 0.78 0.79 0.74
∆ +17% -13% +2%
Hateful memes [26] 0.66 0.42 0.51 0.49 0.98 0.66 0.50 0.87 0.64 0.58 0.77 0.66
∆ -8% +35% +15%

Table 1. Teacher performance (Precision, Recall, and F1 scores). Modeling Collaborator outperforms state-of-the-art zero-shot methods
including CLIP, CuPL, and visual query answering models (PaLI-X). Underlined results represent the baseline (PaLI-X) with which our
performance is compared to (deltas). We bold the best precision, recall, and F1 for easy concepts, hard concepts and Hateful memes
dataset.
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Figure 4. Comparing the contribution of increasingly more training examples annotated by crowd-annotators vs. Modeling Collaborator
Annotator (fully automated). The y-axis shows the performance of the final distilled model. When user feedback is minimal (100 anno-
tated examples), more crowd-annotators examples improve the final distilled model despite the noisy prediction. Modeling Collaborator
Annotator provides similar improvement of performance without any human interactions and can be scaled better to annotate a lot more
examples due to its autonomy.

shows that both crowd-annotators and Modeling Collabo-
rator Annotator can improve the performance of the dis-
tilled model, even when user feedback is minimal. How-
ever, Modeling Collaborator Annotator has the advantage
of being fully automated and can scale to a larger number

of examples.

Modeling Collaborator and other zero-shot and classical
methods fail in complex visual tasks that require com-
plex understanding and reasoning. The effectiveness of
our method on identifying hateful memes [26], as demon-
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Human Annotators Machine Annotators
Concept User Crowd Crowd CuPL PaLI-X Ours
Dataset size (per concept) ∼600 ∼600 ∼3000 ∼3000 ∼3000 ∼3000
Easy concepts
arts-and-crafts 0.77 0.73 0.86 0.78 0.77 0.78
dance 0.69 0.70 0.81 0.72 0.68 0.68
emergency-service 0.75 0.71 0.78 0.59 0.66 0.72
hair-coloring 0.85 0.85 0.83 0.77 0.58 0.80
in-ear-headphones 0.73 0.66 0.67 0.65 0.73 0.72
pie-chart 0.77 0.76 0.76 0.72 0.82 0.82
single-sneaker 0.74 0.64 0.68 0.51 0.61 0.56
Easy concepts average 0.76 0.72 0.77 0.68 0.69 0.73 (+1%)
Hard concepts
astronaut 0.67 0.71 0.66 0.60 0.65 0.65
block-tower 0.59 0.58 0.45 0.48 0.49 0.50
gourmet-tuna 0.50 0.51 0.35 0.54 0.52 0.52
hand-pointing 0.50 0.56 0.58 0.56 0.81 0.81
healthy-dish 0.59 0.49 0.47 0.42 0.45 0.53
home-fragrance 0.62 0.60 0.69 0.56 0.53 0.53
stop-sign 0.70 0.57 0.55 0.62 0.51 0.64
Hard concepts average 0.60 0.57 0.54 0.54 0.57 0.60 (+3%)
Overall average 0.68 0.65 0.65 0.61 0.63 0.66 (+1%)

Table 2. Quality comparison of different annotators (or teacher models) using the final distilled model performance (auPR). Concept
owners provide the highest quality annotations because of their deep understanding of the nuanced concept. Modeling Collaborator
annotator provides better quality labels compared with labor-intensive annotations from crowd raters, and compared to other automated
methods.

Method Labeler # Ex. F1 Acc Pre Rec
Ours (Teacher) - - 0.66 0.61 0.58 0.77
CLIP [43] - - 0.57 0.53 0.51 0.65
CuPL [41] - - 0.51 0.64 0.50 0.87
PaLI-X [6] - - 0.51 0.61 0.66 0.42
Ours (Student) MC 7K 0.56 0.52 0.50 0.64
CLIP+MLP Human 8.5K 0.48 0.60 0.65 0.38

Table 3. Performance of our method (both Annotator and distilled
models) on the Hateful Memes [26] public dataset. Zero-shot and
VQA methods are used for comparison.

strated in Tab. 3, is further highlighted by its ability to match
fully-trained models without relying on labeled data. Both
the teacher and student models outperform the traditional
training approach without using any of the training datasets.
However, the performance is still low, demonstrating the
limitations of our approach.

5. Limitations
As our system is an orchestration of LLMs and VLMs,

it can suffer from some of the limitations of its atomic com-
ponents (PaLM 2, PaLI-X, and CLIP). For example, we ob-
served that providing verbose and overly-complex descrip-
tions of simple concepts (cats, dogs, etc.) can actually de-

grade performance in comparison to simply using PaLI-X.
Another issue is that for certain concepts, the CLIP features
can lead to poor distilled model quality. One example is
stop sign (where the stop sign is expected to be a real
stop sign in traffic), where the CLIP feature could capture
the overall semantics of stop signs, but could not easily dis-
criminate between physical instances vs depictions.

6. Conclusion

In this paper, we presented Modeling Collaborator, a
novel framework that alleviates the manual effort required
to develop classifiers for subjective and nuanced visual con-
cepts. Our framework leverages advancements in large lan-
guage models (LLMs) and vision-language models (VLMs)
to carve out the concept space through conversation and by
automatically labeling training data points. We demonstrate
the effectiveness of our framework through a set of exper-
iments, showing that it can quickly build visual classifiers
for nuanced concepts and outperform both traditional Agile
Modeling and state-of-the-art zero-shot classification mod-
els. Our work has the potential to significantly reduce the
time and effort required to develop classifiers for a wide
range of applications including content moderation and aes-
thetic classification.
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