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Figure 1. We introduce VOODOO 3D: a high- ﬁdehty 3D-aware one-shot head reenactment technique. Our method
transfers the expression of a driver to a source and produces view consistent renderings for holographic displays.

Abstract

We present a 3D-aware one-shot head reenactment
method based on a fully volumetric neural disentanglement
framework for source appearance and driver expressions.
Our method is real-time and produces high-fidelity and
view-consistent output, suitable for 3D teleconferencing
systems based on holographic displays. Existing cutting-
edge 3D-aware reenactment methods often use neural ra-
diance fields or 3D meshes to produce view-consistent ap-
pearance encoding, but, at the same time, they rely on lin-
ear face models, such as 3DMM, to achieve its disentan-
glement with facial expressions. As a result, their reenact-
ment results often exhibit identity leakage from the driver
or have unnatural expressions. To address these problems,
we propose a neural self-supervised disentanglement ap-
proach that lifts both the source image and driver video
frame into a shared 3D volumetric representation based on
tri-planes. This representation can then be freely manipu-
lated with expression tri-planes extracted from the driving
images and rendered from an arbitrary view using neural
radiance fields. We achieve this disentanglement via self-

supervised learning on a large in-the-wild video dataset.
We further introduce a highly effective fine-tuning approach
to improve the generalizability of the 3D lifting using the
same real-world data. We demonstrate state-of-the-art per-
formance on a wide range of datasets, and also showcase
high-quality 3D-aware head reenactment on highly chal-
lenging and diverse subjects, including non-frontal head
poses and complex expressions for both source and driver.

1. Introduction

Creating 3D head avatars from a single photo is a core ca-
pability in making a wide range of consumer AR/VR and
telepresence applications more accessible, and user expe-
riences more engaging. Graphics engine-based 3D avatar
digitization methods [9, 14, 33, 37, 46, 47, 49, 57] are suit-
able for today’s video games and virtual worlds, and many
commercial solutions exist (AvatarNeo [5], AvatarSDK [1],
ReadyPlayerMe [6], in3D [2], etc.). However, the photo-
realism achieved by modern neural head reenactment tech-
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niques is becoming increasingly appealing for advanced ef-
fects in video sharing apps and visual effects. For immer-
sive telepresence systems that use AR/VR headsets, facial
expression capture is typically achieved using tiny video
cameras built into HMDs [29, 50, 55, 64, 69] , while the
identity of the source subject recorded using a separate pro-
cess. However, the teleconferencing solutions based on
holographic 3D displays (LookingGlass [4], LEIA [3], etc.)
use regular webcams [81] or depth sensors [48]. As opposed
to a video-based setting, head reenactment for immersive
applications needs to be 3D-aware, meaning that in addi-
tion to generating the correct poses and expressions from a
photo, multi-view consistency is critical.

While impressive facial reenactments results have been
demonstrated using 2D approaches [26, 27, 83, 97, 102,
103], they typically struggle with preserving the likeness
of the source and exhibit significant identity changes when
varying the camera pose. More recently, 3D-aware one-shot
head reenactment methods [36, 43, 53, 54, 59, 99] have
used either 3D meshes or tri-plane neural radiance fields as
a fast and memory efficient volumetric data representations
for neural rendering. However, the expression and identity
disentanglement in these methods is based on variants of
linear face and expression models [15, 52] which lack ex-
pressiveness and high-frequency details. While these meth-
ods can achieve view consistency, facial expressions are of-
ten uncanny, and preserving the likeness of the input source
portrait is challenging, especially for views different than
the source image. Hence, input sources with extreme ex-
pressions and non-frontal poses are often avoided.

In this paper, we introduce the first 3D aware one-shot
head reenactment technique that disentangles source iden-
tities and the target expressions fully volumetrically, and
without the use of explicit linear face models. Our method
is real-time and designed with holographic displays in mind,
where a large number of views (up to 45) can be rendered
in parallel based on their viewing angle. We leverage the
fact that real-time 3D lifting for human heads has recently
been made possible [81] with the help of Vision Trans-
formers (ViT) [25], which avoids the need for inefficient
optimization-based GAN-inversion process [68]. In par-
ticular, 3D lifting allows us to map 2D face images into a
canonical tri-plane representation for both source and target
subjects and treat identity and expression disentanglement
independently from the head pose.

Once the source image and driver frame are lifted into
a pose-normalized tri-plane representation, we extract ap-
pearance features from the source subject and expressions
from the driver. The pose of the driver is estimated sepa-
rately using a 3D face tracker and used as input to a neural
renderer. Tri-plane-based feature extraction ensures view-
consistent rendering, while facial appearance and driver ex-
pression feature use frontalized views from the 3D lifting

to enable robust and high-fidelity facial disentanglement.

To handle highly diverse portraits (variations in facial ap-

pearance, hairstyle, head covering, eyewear, etc.), we pro-

pose a new method for fine-tuning Lp3D on real datasets
by introducing a mixed loss function based on real and syn-
thetic datasets. Our volumetric disentanglement and render-
ing framework is trained only using in-the-wild videos from
the CelebV-HQ dataset [112] in a self-supervised fashion.

We not only demonstrate that our volumetric face dis-
entanglement approach produces qualitative superior head
reenactments than existing ones, but also show on a wide
and diverse set of source images how non-frontal poses
and extreme expressions can be handled. We have quan-
titatively assessed our method on multiple benchmarks and
outperform existing 2D and 3D state-of-the-art techniques
in terms of fidelity, expression, and likeness accuracy met-
rics. Our 3D aware head reenactment technique is there-
fore suitable for AR/VR-based immersive applications, and
we also showcase a teleconferencing system using a holo-
graphic display from LookingGlass [4]. We summarize the
main contributions as follows:

* First fully volumetric disentanglement approach for real-
time 3D aware head reenactment from a single photo.
This method combines 3D lifting into a canonical tri-
plane representation and formalized facial appearance
and expression feature extraction.

* A 3D lifting network that is fine-tuned on unconstrained
real-world data instead of only generating synthetic ones.

* We demonstrate superior fidelity, identity preservation,
and robustness w.r.t. current state-of-the-art methods for
facial reenactment on a wide range of public datasets. We
plan to release our code to the public.

2. Related Work

2D Neural Head Reenactment. The problem of generat-
ing animations of photorealistic human heads given images
or video inputs has been thoroughly explored using various
neural rendering techniques in the past few years, outper-
forming traditional 3DMM-based methods [8, 26, 31, 44,
63, 66, 78,79, 96] which often appear uncanny due to their
compressed linear space. These approaches can be cate-
gorized into one-shot and multi-shot ones. While multi-
shot methods generally achieve high-fidelity results, they
are not suitable for many consumer applications as they typ-
ically require an extensive amount of training data, such as
a monocular video capture [10, 11, 18, 21, 30, 34, 93, 108—
110, 113], and sometimes even a calibrated multi-view
stereo setup [13, 29, 55, 58, 69]. More recently, few-shot
techniques [104] have also been introduced.

To maximize accessibility, a considerable number of
methods [17, 26, 27, 32, 35, 39, 66, 72-74, 76, 77, 83, 86,
87, 89, 97, 101-103, 107] use a single portrait as input by
leveraging advanced generative modeling techniques based
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on in-the-wild video training data. While most methods rely
on linear face models to extract facial expressions, the head
reenactment technique from Drobyshev et al. [27] directly
extract expression features from cropped 2D face regions,
allowing them to obtain better face disentanglements, which
results in higher fidelity face synthesis. While similar to our
proposed approach in avoiding the use of low dimensional
linear face models, their method is purely 2D and strug-
gly with ensuring identity and expression consistency when
novel views are synthesized.

3D-Aware One-Shot Head Reenactment. Due to poten-
tial inconsistencies when rendering from different views or
poses, a number of 3D-aware single shot head reenactment
techniques [7, 19, 20, 24, 62, 65, 70, 75, 88, 92, 94, 95]
have been introduced. These methods generally use an ef-
ficient 3D representation, such as neural radiance fields or
3D mesh, to geometrically constraint the neural rendering
and improve view consistency. ROME [43] for instance is
a mesh-based method using FLAME blendshapes [51] and
neural textures. While view-consistent results can be pro-
duced for both face and hair regions, the use of low resolu-
tion polygonal meshes hinders the neural renderer to gener-
ate high-fidelity geometric and appearance details.

Implicit representations such as HeadNeRF [36] and
MofaNeRF [38] use a NeRF-based parametric model which
supports direct control of the head pose of the generated
images. While real-time rendering is possible, these meth-
ods require intensive test-time optimization and often fail to
preserve the identity of the source due to the use of com-
pact latent vectors. Most recent methods [53, 54, 99] adopt
the highly efficient tri-plane-based neural fields representa-
tion [20] to encode the 3D structure and appearance of the
avatars head. Compared to the previous works on view-
consistent neural avatars [36, 43, 53, 54, 59, 99], we refrain
from depending on parametric head models for motion syn-
thesis and, instead, learn the volumetric motion model from
the training data. This methodology enables us to narrow
the identity gap between the source and generated images
and yield a superior fidelity of the generated motion com-
pared to competing approaches, and hence a higher quality
disentanglement for reenactment.

3D GAN Inversion. When training a whole reconstruc-
tion and disentangled reenactment model end-to-end on fa-
cial performance videos, one can introduce substantial over-
fitting and reduce the quality of the results. To address this
problems, we focus our training approach to an inversion of
pre-trained 3D-aware generative models for human heads.
We use tri-plane-based generative network EG3D [20]
as the foundational generator, due to its proficiency in pro-
ducing high-fidelity and view-consistent synthesis of hu-
man heads. For a given image, an effective 3D GAN inver-

sion method should leverage these properties for estimat-
ing latent representations, which can be decoded into out-
puts that maintain view consistency and faithfully replicate
the contents of the input. One naive approach is to adapt
GAN inversion methods that were initially designed for 2D
GANSs to the EG3D pre-trained network. These methods
either do a time consuming but more precise optimization
[42, 68] or train a fast but less accurate encoder network
[67, 80] to obtain the corresponding latent vectors. They
often produce incorrect depth prediction, leading to clear
artifacts in novel view synthesis. Hence, some methods
are specifically designed for inverting 3D GANs, which ei-
ther do multi-view optimization [45, 91] or predict residual
features/tri-plane maps for refining the initial inversion re-
sults [12, 81, 98, 100].

In this work, we rely on the state-of-the-art EG3D inver-
sion method Lp3D [81]. While achieving excellent novel-
view synthesis results, it lacks disentanglement between the
appearance and expression of the provided image and is
unable to impose various driving expressions onto the in-
put. To address this limitation, we propose a new method
that introduces appearance-expression disentanglement in
the latent space of tri-planes using our new self and cross-
reenactment training pipeline while relying on a pre-trained
but fine-tuned Lp3D network for regularization which en-
ables highly consistent view synthesis.

3. 3D-Aware Head Reenactment

As illustrated in Fig. 2, our head reenactment pipeline con-
sists of three stages: 1) 3D Lifting, 2) Volumetric Disen-
tanglement, and 3) Tri-plane Rendering. Given a pair of
source and driver images, we first frontalize them using a
pre-trained but fine-tuned tri-plane-based 3D lifting module
[81]. This driver alignment step is crucial and allows our
model to disentangle the expressions from the head pose,
which prevents overfitting. Then, the frontalized faces are
fed into two separate convolutional encoders to extract the
face features F; and F,;. These extracted features are con-
catenated with the ones extracted from the tri-planes of the
source, and all are fed together into several transformer
blocks [90] to produce the expression tri-plane residual,
which is added to the tri-planes of the source image. The fi-
nal target image can be rendered from the new tri-planes us-
ing a pre-trained tri-plane renderer using the driver’s pose.

3.1. Fine-Tuned 3D Lifting

We adopt Lp3d [81] as a 3D face-lifting module, which pre-
dicts the radiance field of any given face image in real-time.
Instead of using an implicit multi-layer perceptron [61] or
sparse voxels [28, 71] for the radiance field, Lp3D [81] uses
tri-planes [20], which can be computed using a single for-
ward of a deep learning network. Specifically, for a given
source image xs, we first extract the tri-planes 7' using a
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Figure 2. Given a pair of source and driver images, our method processes them in three steps: 3D Lifting into tri-plane representations,
Volumetric Disentanglement, which consists of source and driver frontalization and tri-plane residual generation, and Tri-plane Render-

ing via volumetric ray marching with subsequent super-resolution.

transformer-based appearance encoder Ep:

Eup(zs) =T € R>IWXC — (T T} (1)

The color ¢ and density o of each point p = (z,y, 2) in
the radiance field can be obtained by projecting p onto the
three planes and by summing up the features at the projected
positions:

C7G:D(ny+Fyz+Fzm)a 2

where D is a shallow MLP decoder for the tri-plane ren-
dering, I, F, ., and I, are the feature vectors at the pro-
jected positions on zy, yz, and zx planes, respectively, cal-
culated using bilinear interpolation. The rendered 128 x 128
image is then upsampled using a super-resolution module to
produce a high-resolution output. To train the encoder E,pp,
Lp3D [81] uses synthetic data generated from a 3D-aware
face generative model [20]. While these synthetic data have
ground truth camera poses, they are limited to the face dis-
tribution of the generative model. As a result, Lp3D can
fail to generalize to in-the-wild images as shown in Fig. 5.
To prevent this, we fine-tune the pre-trained Lp3D on a
large-scale real-world dataset. We also replace the origi-
nal super-resolution module in Lp3D with a pre-trained GF-
PGAN [85], which is then fine-tuned together with Lp3D
(see Sec. 3.4).

3.2. Disentangling Appearance and Expression

Separating facial expression from the identity appearance
in a 3D radiance field is very challenging especially when
source and driver subjects have misaligned expressions. In
order to simplify the problem, we use our 3D lifting ap-
proach to bring both source and driver heads into a pose-
oriented space where faces are frontalized. Here, we denote
frontalized source and driver images as 2/ and :175, respec-
tively. These images are then fed into two separate convo-
lutional source and driver encoders E¢ and E,; to produce

coarse feature maps F, = E,(x]) and F; = Ed(xg). Since
we already have the source’s tri-plane, which encodes the
3D shape of the source, we use another encoder to encode
this tri-plane and concatenate it together with the coarse
frontalized feature maps of the images to produce expres-
sion feature F":

F, = E,/(T)
F=F,a&FoF

Even though face frontalization aligns the source and the
driver, there is still some misalignment between the two
faces, e.g., the positions of the eyes may be different, or one
mouth is open while the other is closed. Therefore, we feed
the concatenation of the feature maps into several trans-
former blocks to produce the final residual tri-plane E,, (F').
This residual is then added back to the source’s tri-planes
to change the source’s expression to the driver’s expression
T =T + E,(F). Unlike LPR [54], we do not use a 3D
face model to compute the expression but instead use the
RGB images of the source and the driver directly, allowing
the model to learn high-fidelity and realistic expressions.

3.3. Tri-Plane Rendering

The resulting tri-planes are then volumetrically rendered
into one or multiple output images using pose parame-
ters and viewing angles in the case of a holographic dis-
play. Following EG3D [20], we use a neural radiance fields
(NeRFs)-based volumetric ray marching approach [60].
However, instead of encoding each point in space via po-
sitional encodings [60], the features of the points along rays
are calculated using their projections onto tri-planes. Since
tri-planes are aligned with the frontal face, we can compute
these rays directly using camera extrinsics Pgyiver predicted
by an off-the-shelf 3D head pose estimator [23].

While the renderings are highly view-consistent, the
large number of points evaluated for each ray still limits
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the ouput resolution for real-time performance. We there-
fore follow [54] and employ a 2D upsampling network [84]
based on StyleGAN2 [41], which in our experiments pro-
duced higher quality results than the upsampling approach
in EG3D [20]. Finally, for holographic displays, we gen-
erate a number of renderings based on their viewing an-
gles and simply using the head pose parameter. Real-time
performance is achieved using efficient inference libraries
such as TensorRT, half-precision, and batched inference
over multiple GPUs.

3.4. Training Strategy

Fine-Tuning Lp3D. To make Lp3D work with in-the-
wild images, we fine-tune it on a large-scale real-world
video dataset [111]. Unlike the use of synthetic data, real-
world data do not have ground-truth camera parameters and
facial expressions in monocular videos are typically incon-
sistent over time. While the camera parameters can be es-
timated using standard 3D pose estimators, the expression
diferences are difficult to determine. However, we found
that we can ignore this expression difference and fine-tune
Lp3D using real data together with continuous training on
synthetic data. In particular, our experiments indicate that
the fine-tuned model can still faithfully reconstruct 3D faces
from the input without changing expressions and still gen-
eralize successfully on in-the-wild images. Specifically, on
real video data, we sample two frames 27, and ), and es-
timate their camera paramters P} and Pj. Similar to [20],
we assume a fixed intrinsics for standard portraits for all
images. Then we use F,,, from Lp3D to calculate the tri-
planes of 7, render it using the two poses, and calculate
reconstruction losses on the two rendered images:
Lreat = [Lp3D(z, Py) — aql| + [Lp3D(x, i) — ¢,

S

where Lp3D(z, P) is the face in z re-rendered using camera
pose P and L., is the loss for real images. Simultaneously,
we render two synthetic images employing an identical la-
tent code but through varying camera views and calculate
the synthetic loss Lgyn:

Lyn = |Lp3D(a, Ff) — xjl| + [Lp3D(az, F7) — 7]
Lui = || Bapp(2]) = T,

where T is the ground-truth tri-planes returned by EG3D
[20] and Ly; is the tri-plane loss adopted directly from
Lp3D. The final loss Ly, for fine-tuning Lp3D can be for-
mulated as:

Lapp = Lreal + Asynﬁsyn + AtriLtri

where Agyy and Ay are tunable hyperparameters.

Disentangling Appearance and Expressions. In this
stage, we also use real-world videos as training data. For a

pair of source and driver images x s and x4 sampled from the
same video, we apply the reconstruction 108s Lyecon Which is
a combination of L1, perceptual [105], and identity losses,
between the reenacted image xs_,4 and the corresponding
ground-truth x4:

Crecon - ||xs~>d - l'd”l + ¢ (l's%dv xd)
+ Leos (ID(xs—ni)a ID(-Td)) )

where ¢ is the perceptual loss, ID(-) is a pretrained face
recognizer [82], and L. is the cosine similarity loss:

<u,v >
maz(|lull, €) x maz(|[v]], €)

Leos((u,v) =

Here € is a small constant to void division by 0. Simi-
lar to other works that use RGB images directly to cal-
culate expressions [27], our proposed encoder also suffers
from an “identity leaking” issue. Since there is no cross-
reenactment dataset, the expression module is trained with
self-reenactment video data. Therefore, without proper aug-
mentation and regularization, the expression module can
leak identity information from the driver to the output,
making the model fail to generalize to cross-reenactment
tasks. Hence, we introduce a Cross Identity Regularization.
Specifically, we further sample an additional driver frame
x4 from another video. We incorporate a GAN loss where
real samples are Lp3D(z5, Pd) and fake samples are x5, 4.
This GAN loss is also conditioned on the identity vector of
the source ID(x,). Following [27], we also apply strong
augmentation (random warping and color jittering) and ad-
ditionally mask the border of the driver randomly to fur-
ther reduce potential identity leaks. The loss for expression
training can be summarized as:

Eexp = Erecon + )\CIRECIRv

where Lcr and Acr are cross identity regularization and
its hyperparameter, respectively.

Global Fine-Tuning. After training both Lp3D and the
expression module, we iteratively fine-tune the two modules
using the same losses as the previous sections. Specifically,
for every 10000 iterations, we freeze one module and fine-
tune the other and vice versa. In addition, we add a GAN
loss on the super-resolution output of the Lp3D module.

4. Experiments

Implementation Details. We train our model on CelebV-
HQ dataset [112] using 7 NVIDIA RTX A6000 ADA (50Gb
memory each). We use AdamW [56] to optimize the param-
eters with a learning rate of 10~* and batch size of 28. The
Lp3D finetuning takes 5 days for 500K iterations to con-
verge. Training the expression module takes 2 days, and the
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Source Driver Ref View Novel View Wrinkles Geometry

Figure 3. Expression dependent high-fidelity details, incl. eye and forehead wrinkles, as well as nasolabial folds (see zoom-ins)

Source Driver HeadNeRF StyleHEAT MegaPortraits ROME Ours

Figure 4. A qualitative comparison with the baselines on in-the-wild photos. Notice that our method is capable of producing a variety of
facial expressions, and handle highly diverse subjects, with and without accessories, as well as extreme head poses, such as rows 3 and 4.
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Self-reenactment

Cross-reenactment

Cross-reenactment

Method PSNR1 SSIM{ LPIPS, NAKD| ECMD| FID||CSIM{ ECMD/| FID| Method CSIMt ECMD| FID|
ROME [43] 1846 0488 0351 0.030 0.594 138 | 0507 0.740 72 ROME [43] 0519 0.91 526
StyleHeat [97] 1973 0689 0278 0.035 0748  89.8 | 0.398 0744 955 HeadNeRF [36] 0.346 0.88 113
OTAvatar [59] 1928 0749  0.289 0.035 0.651 670 | 0462 0901 724 StyleHeat [97] 0.467 0.85 50.2
MegaPortraits [27] | 21.10 0731  0.291 0.022 0755 520 | 0.729 0771 617 MegaPortraits [27] | 0.647 0.77 292
Ours 2283 0768  0.168 0.012 0426 405 | 0754 0754 364 Ours 0.608 0.79 23.6

Table 1. Evaluation on HDTF [106] dataset. Our method outperforms the competitors across
almost all of the metrics for both self- and cross-reenactment scenarios.

| CSIMt ECMD |

Lp3D 0.548 0.82
Lp3D-FT 0.670 0.76
w/o frontal | 0.668 1.01
w/o CIR 0.570 0.97
Ours 0.608 0.79
Table 3. Ablation studies

conducted on CelebA-HQ [40]
dataset. FT is a fine-tuned
version of Lp3D, and “frontal”
denotes frontalization of the
source and driver.

Input image wio finetuning wi finetuning

Figure 5. Our implementation
of Lp3D [81] before and after
CelebV-HQ [112] fine-tuning.

W/o CIR Ours
Figure 6. Ablation study for source and driver frontalization and
cross identity regularization (CIR).

Source Driver WI/o Frontalization

Source Expr driver
Figure 7. Qualitative comparison with LPR [54] method on the
samples from HDTF [106] dataset.

iterative fine-tuning takes another 5 days. More training de-
tails, such as hyperparameter fine-tuning or architecture of
the networks, can be found in the supplementary materials.

Unlike Lp3D, our method reenacts faces without re-
lifting in 3D for every frame. The tri-plane encoding and
frontalization of the source image are only performed once.
For each driver, we perform a single frontalization for the
driver image (0.0115 ms), one expression encoding (0.0034
s), one tri-plane rendering at 128 x 128 resolution (0.0071
s), and one neural upsampling (0.0099 s). Each view runs at
31.9 fps on an Nvidia RTX 4090 GPU including I/O. More
details are provided in the supplemental materials.

Table 2. Evaluation on CelebA-HQ [40]
dataset.

We compare our method with state-of-the-art 3D-
based [36, 43, 59] and 2D-based [27, 97] models. For
MegaPortraits [27], we use our own implementation that
was trained on the CelebV-HQ dataset. Similar to previous
works, we evaluate our method using public benchmarks,
including CelebA-HQ [40] and HDTF [106]. For CelebA-
HQ, we split the data into two equal sets. Each set contains
around 15K images. Then, we use one set as the source and
the rest as driver images. For the HDTF dataset, we perform
cross-reenactment by using the first frame of each video as
source and 200 first frames of other videos as drivers, which
is more than 60K data pairs. Similarly, to evaluate self-
reenactment, we also use the first frames of each video as
sources and the rest of the same video as the driver. Further-
more, we also collected 100 face images on the internet and
around 100 high-quality videos for qualitative comparisons.
Video results are provided in the supplementary materials.

Evaluation. Given a source image x, a driver image x4,
and reenacted output x,_,4 we use EMOCAV2 [22] to ex-
tract the FLAME [52] expression coefficients of the predic-
tion and the driver, as well as the shape coefficients of the
source. We then compute 2 FLAME meshes using the pre-
dicted shape coefficients in world coordinates, one with the
expression coefficients of the driver and one with the ex-
pression coefficients of the reenacted output. We measure
the distance between the 2 meshes and denote this expres-
sion metric as ECMD. Moreover, we also use cosine sim-
ilarity between the embeddings of a face recognition net-
work (CSIM) [101], normalized average keypoint distance
(NAKD) [16], perceptual image similarity (LPIPS) [105],
peak signal-to-noise ratio (PSNR), and structure similarity
index measure (SSIM).

We provide quantitative comparisons on HDTF and
CelebA-HQ datasets in Tab. 1 and Tab. 2, respectively,
and show that our method outperforms existing methods
on both datasets. We also note that our FID and CSIM
scores are significantly more reliable than the others, while
expression-based metrics such as NAKD and ECMD are ei-
ther better or very close to the best baseline, w.r.t output
quality, expression accuracy, and identity consistency.

We showcase the qualitative results of cross-identity
reenactment on in-the-wild images in Fig. 4 and Fig. 3.
Compared to the baselines [27, 36, 43, 97], our reenact-
ment faithfully reconstructs intricate and complex elements,
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Source Driver Output Source Driver Output

Figure 8. Failure cases of our method include side views in
the source, extreme expressions, modeling of cartoonish charac-
ters and paintings, as well as modeling the reflections and semi-
transparency of the eyewear.

such as hairstyle, facial hair, glasses, and facial makeups.
Furthermore, our method effectively generates realistic and
fine-scale dynamic details that mach the driver’s expres-
sions including substantial head pose rotations. We also
conduct a comparative analysis of our results with the cur-
rent state-of-the-art 3D-aware method LPR [54] in Fig. 7.
Compared to LPR, our method achieves superior identity
consistency. We further refer to the supplemental video for
a live demonstration of our holographic telepresence system
and animated head reenactment results and comparisons,
with and without disentangled poses.

Ablation Study. We compare Lp3D with and without
fine-tuning on the CelebA-HQ dataset in Tab. 3 and show
several examples in Fig. 5. Without fine-tuning on real data,
our implementation of Lp3D fails to preserve the identity
of the input image, resulting in a considerably lower CSIM
score. We also try without any facial frontalization in the
expression module and instead use the source and driver
images directly to calculate the expression tri-plane resid-
ual. We observe in Fig. 6 that without face frontalization,
the model completely ignores the expression of the driver
and keeps the expression of the input source instead. We
show in Tab. 3, that facial frontalization leads to much bet-
ter ECMD score. We then measure the effectiveness of the
GAN-based cross-identity regularization on the CelebA-
HQ dataset, Lcr. Without this loss, identity characteristics
(hairstyle or color) can leak from the driver to the output.
See column 4 in Fig. 6. Tab. 3 also shows that cross-identity
regularization can reduce identity leaking and improve the
CSIM score. Lastly, we have also attempted to train our
model end-to-end using the same losses and optimization
process instead of our proposed iterative fine-tuning. Even
with a lower learning rate and the use of pre-trained Lp3D
weights, we were unable to succeed.

Limitations. Limitations of our approach are illustrated
in Figure 8. For source images that are extremely side ways
(i.e., over 90°), our method can produce a plausible frontal
face, but the likeness cannot be guaranteed due to insuf-
ficient visibility. For very highly stylized portraits, such
as cartoons, our framework often produces photorealistic
facial elements such as teeth which can be inconsistent in

style. Due to the dependence on training data volume and
diversity, accessories such as dental braces or glasses may
disappear or look different during synthesis. We believe that
providing more and better training data can further improve
the performance of our algorithm.

5. Discussion

We have demonstrated that a fully volumetric disentan-
glement of facial appearance and expressions is possible
through a shared canonical tri-plane representation. In par-
ticular, an improved disentanglement also leads to higher
fidelity and more robust head reenactment, when compared
to existing methods that use linear face models for expres-
sions, especially for non-frontal poses. A critical insight
of our approach is that head frontalization via 3D lifting
is particularly effective for extracting features that can en-
code fine details and expressions such as wrinkles and folds.
The resulting reenactment is also highly view-consistent for
large angles, making our solution suitable for holographic
displays. We have also shown that the 3D lifting model can
still be successfully trained with real data despite the fact
that different frames with the same subject have varying fa-
cial expressions. Without a fine-tuned 3D lifting model, our
3D-aware reenactment framework would struggle with pre-
serving the identity of the source, especially for side views.
Our experiments indicate that our results achieve better vi-
sual quality and are more robust to extreme poses, validated
via an extensive evaluation on multiple datasets.

Risks and Potential Misuse. The proposed method is in-
tended to promote avatar-based 3D communication. Never-
theless, our Al-based reenactment solution produces syn-
thetic but highly realistic face videos from only a single
photo, which could be hard to distinguish from a real per-
son. Like deepfakes and other facial manipulation methods,
potential misuse is possible and hence, we refer to the sup-
plemental material for more discussions.

Future Work. We are also interested in expanding our
work to upper and full body reenactment, where hand ges-
tures can be used for more engaging communication. To
this end, we plan to investigate the use of canonical repre-
sentations for human bodies, such as T-poses. As our pri-
mary motivation, we have showcased a solution using holo-
graphic displays for immersive 3D teleconferencing. How-
ever, we believe that our approach can also be extended to
AR/VR HMD-based settings where full 360° head views
are possible. The recent work by An et al. [7] is a promis-
ing avenue for future exploration.
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