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Figure 1. Left: Our results. The split view in the middle demonstrates the high degree of agreement between our 2D rendering and

corresponding 3D geometry. Our method can learn fine-grained 3D details (e.g., eyeglass frame and cat’s fur) that are geometrically well-

aligned to 2D images without multiview or 3D scan data. Right: Comparison with EG3D [7]. Our tight SDF prior provides smooth and

detailed surfaces on the face and hat while EG3D exhibits geometry artifacts and discrepancies between geometry and rendering. Please

see Fig. 5 and the accompanying video for more examples, and Fig. 6 for comparison to other baselines.

Abstract

3D-aware Generative Adversarial Networks (GANs)

have shown remarkable progress in learning to generate

multi-view-consistent images and 3D geometries of scenes

from collections of 2D images via neural volume render-

ing. Yet, the significant memory and computational costs of

dense sampling in volume rendering have forced 3D GANs

to adopt patch-based training or employ low-resolution ren-

dering with post-processing 2D super resolution, which

sacrifices multiview consistency and the quality of resolved

geometry. Consequently, 3D GANs have not yet been able

to fully resolve the rich 3D geometry present in 2D images.

In this work, we propose techniques to scale neural vol-

ume rendering to the much higher resolution of native 2D

images, thereby resolving fine-grained 3D geometry with

*This project was initiated and substantially carried out during an in-

ternship at NVIDIA.

unprecedented detail. Our approach employs learning-

based samplers for accelerating neural rendering for 3D

GAN training using up to 5 times fewer depth samples.

This enables us to explicitly ”render every pixel” of the

full-resolution image during training and inference without

post-processing superresolution in 2D. Together with our

strategy to learn high-quality surface geometry, our method

synthesizes high-resolution 3D geometry and strictly view-

consistent images while maintaining image quality on par

with baselines relying on post-processing super resolution.

We demonstrate state-of-the-art 3D gemetric quality on

FFHQ and AFHQ, setting a new standard for unsupervised

learning of 3D shapes in 3D GANs.

1. Introduction

Training 3D generative models from the abundance of 2D

images allows the creation of 3D representations of real-

world objects for content creation and novel view synthe-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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sis [59]. Recently, 3D-aware generative adversarial net-

works (3D GANs) [6, 7, 19, 43, 45, 49, 53, 69, 70, 74, 76]

have emerged as a powerful way to learn 3D representations

from collections of 2D images in an unsupervised fashion.

These methods employ differentiable rendering to compare

rendered 3D scenes with 2D data using adversarial train-

ing [18]. Among the various 3D representations, Neural

Radiance Fields (NeRF) [38] have become a popular choice

among recent successful 3D GANs. However, the signifi-

cant computational and memory cost of volume rendering

has prevented 3D GANs from scaling to high-resolution

output. For instance, generating a single 512x512 image via

volume rendering requires evaluating as many as 25 million

depth samples, if 96 depth samples are used per ray using

importance sampling [7, 10, 38, 53]. Given that GAN train-

ing typically requires rendering tens of millions of images,

the training process could require evaluating hundreds of

trillions of depth samples.

During training, all intermediate operations must be

stored in GPU memory for every depth sample for the back-

ward pass. Therefore, existing methods resort to working

on patches [10, 49, 53] or adopting a low resolution neural

rendering combined with post-processing 2D super resolu-

tion (SR) [7, 19, 43, 45, 70]. However, patch-based methods

have limited receptive fields over scenes, leading to unsatis-

factory results, and the hybrid low-resolution rendering and

SR scheme inevitably sacrifices the multiview consistency

and the accuracy of 3D geometry. While many techniques

have been developed to improve the image quality of 3D

GANs to match that of 2D GANs, the challenge of resolv-

ing the corresponding high-resolution 3D geometry remains

unsolved (see Figs. 1 and 6 for our results and comparison

to the current state-of-the-art).

Scaling 3D GANs to operate natively at the 2D pixel res-

olution requires a novel approach for sampling. Fig. 2 com-

pares the state-of-the-art 3D GAN, EG3D model, trained

with and without1 SR. EG3D employs 96 dense depth sam-

ples in total using two-pass importance sampling [38] dur-

ing training, which requires half a terabyte of GPU memory

at 256 × 256 resolution, making scaling to higher resolu-

tions infeasible. Furthermore, Fig. 2 demonstrates that us-

ing 96 dense samples still results in undersampling, as evi-

denced by the speckle noise patterns visible in the zoomed-

in view, leading to considerably worse FID (inset in Fig. 2).

3D GANs relying on post-processing SR layers can repair

these undersampling artifacts at the cost of a high-fidelity

3D representation.

In this work, we address the challenge of scaling neural

volume rendering to high resolutions by explicitly rendering

every pixel, ensuring that “what you see in 2D, is what you

get in 3D” — generating an unprecedented level of geomet-

ric details as well as strictly multiview-consistent images.

Our contributions are the following:

• We introduce an SDF-based 3D GAN to represent high-

1Triplane resolution is doubled to compensate for the loss of capacity

from removing the SR layers.

Figure 2. Samples from EG3D 256 model. Right: Volume render-

ing with 48 coarse samples and 48 fine samples per ray with two-

pass importance sampling [38] results in undersampling, leading

to noticeable noisy artifacts. Left: These artifacts are repaired by

super resolution (SR). An unsharp mask has been applied to the

zoomed views for presentation purposes.

frequency geometry with spatially-varying surface tight-

ness that increases throughout training (subsection 4.1

and 4.5), in turn facilitating low sample rendering.

• We propose a generalizable learned sampler conditioned

on cheap low-resolution information to enable full-

resolution rendering during training for the first time

(subsection 4.2 and 4.3).

• We show a robust sampling strategy for the learned sam-

pler (subsection 4.4) that produces stable neural rendering

using significantly fewer depth samples (see Fig. 8). Our

sampler can operate with just 20 samples per ray com-

pared to existing 3D GANs which must use at least 96

samples per ray.

• Together, our contributions result in the state-of-the-art

geometry for 3D GANs while rendering with quality on

par with SR baselines (see Fig. 1). For more results, see

Fig. 5 and for comparison to other baselines, see Fig. 6.

2. Related Work

We begin by reviewing the prior-arts of 3D generative mod-

els and their current shortcomings. We then cover founda-

tional techniques for 3D geometry representation and neural

rendering from which we take inspiration. We then discuss

existing methods for accelerating neural volume rendering,

which usually operate per-scene.

2.1. 3D Generative Models

Just like 2D GANs, 3D-aware GANs train from a collection

of 2D images, but employ a 3D representation and differen-

tiable rendering to learn 3D scenes without requiring multi-

view images or ground truth 3D scans. Some of the most

successful works use a neural field [68] in combination with

a feature grid [7] as their 3D representation, and use neural

volume rendering [38] as the differentiable renderer.
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However, due to the significant memory and compu-

tational cost of neural volume rendering, many previous

works perform rendering at low-resolution and rely on a

2D post-processing CNN [7, 19, 43, 45, 70], which hal-

lucinates the high-frequency details in a view-inconsistent

manner while sacrificing 3D consistency and the quality of

the resolved 3D geometry.

To ensure strict 3D consistency, other previous works

seek to render at high-resolutions and propose techniques

to address the prohibitive computational costs. One line

of work leverages the sparse nature of 3D scenes to speed

up rendering, in particular, structures such as 2D manifolds

[14, 67], multiplane images [75] and sparse voxels [50]. Al-

though they are more efficient, sparse representations pro-

vide only coarse [50] or category-specific [14, 67] accel-

eration structures, which poses constraints on the diversity

and viewing angles of the generated scenes. Our sampling-

based method, on the other hand, generalizes to every new

scene and adaptively accelerates rendering on a per ray

basis. Another line of work enables high-resolution ren-

dering with patch-based training [10, 53]. In particular,

Mimic3D [10] achieves significantly improved 2D image

quality, but the patch-based training limits the receptive

fields, and the generated geometry does not faithfully repre-

sent the 2D data due to the patch-wise perceptual loss. Our

method renders the entire image at once and the resulting

geometry is aligned with the rendering (see Figs. 1 and 6).

Recently, a new family of generative approaches us-

ing diffusion models has been proposed to tackle condi-

tional tasks including novel view synthesis [8, 58] and text-

based 3D generation[63]. Most of these 3D-aware diffu-

sion models combine a 3D inductive bias modeled via neu-

ral field representations and a 2D image denoising objec-

tive to learn 3D scene generation. While these models en-

able unconditional 3D generation, they require multiview

images [24, 55, 63] or 3D data, such as a point cloud [42].

Score Distillation Sampling [47] may be used for distil-

lation from a pre-trained 2D diffusion model when only

monocular 2D data is available, but diffusion models incur

significant computational costs due to their iterative nature

and most of the existing methods require optimization per

scene [9, 20, 33, 61, 66].

2.2. Learning High­Fidelity Geometry

Prior works on 3D GANs have typically represented the ge-

ometry as a radiance field [38], which lacks a concrete defi-

nition for where the surface geometry resides in the field, re-

sulting in bumpy surfaces. A number of works [44, 62, 71]

have proposed alternate representations based on implicit

surfaces (such as signed distance functions, or SDFs) that

can be used with neural volume rendering. In these works,

the implicit surface is typically softened by a parameter for

volume rendering.

Other works [32, 64] improve on these implicit surface

representations by leveraging feature grids for higher com-

putational efficiency and resolution. Adaptive Shells [65]

further improve on quality by making the softness parame-

ter spatially-varying, as many objects have hard boundaries

only in certain parts. We use an implicit surface repre-

sentation based on VolSDF [72], and leverage a spatially-

varying parameter similar to Adaptive Shells [65] to control

the softness of the surface, as humans and animals benefit

from both hard surfaces (e.g. skin, eyes) and soft, volumet-

ric representations (e.g. hair). Although other works such

as StyleSDF [45] have similarly leveraged implicit surfaces

in a 3D GAN framework, the lack of spatial-variance and

high-resolution rendering led to over-smoothed geometry

not faithful to the rendered images.

2.3. Accelerating Neural Volume Rendering

As mentioned in Section 2.1, accelerating 3D GANs typi-

cally relies on acceleration structures such as octrees [31,

56, 73], which in generative settings [50] are limited due to

computational requirements. In another direction, GRAM-

based methods [14, 67] are limited due to sharing one struc-

ture across all samples. Instead, we look to a class of meth-

ods that do not rely on an acceleration structure. Some

of these works learn a per-scene sampling prior on a per-

ray basis using a binary classifier [41], a density estima-

tor [30, 46], a coarse proxy from a 3D cost volume [34],

or an interval length estimator [35] on discrete depth re-

gions along the ray. Other works use importance sam-

pling [21, 38] to sample additional points. We take inspi-

ration from works on density estimators [30] and propose

to learn a scene-conditional proposal network that gener-

alizes across scenes instead of being category-specific or

optimized per-scene.

There are also other methods to accelerate rendering by

utilizing more efficient representations, such as gaussian

splats [29] and light field networks [52]. More efficient

feature grids [40, 57] based on hashing can also be used

to accelerate rendering. However, mapping to these repre-

sentations in a GAN framework is not straightforward. In

contrast, our sampling strategy can be used for any NeRF

representation.

3. Background

We begin with background on the methodology of the state-

of-the-art 3D-aware GANs as our method relies on a simi-

lar backbone for mapping to 3D representations. 3D GANs

typically utilize a StyleGAN-like [27] architecture to map

from a simple Gaussian prior to the conditioning of a NeRF,

whether that be an MLP [19, 45], MPI [75], 3D feature

grid [50], manifolds [14, 67] or triplane [7, 10, 53]. We in-

herit the latter triplane conditioning for its high expressivity

and efficiency, in which three axis-aligned 2D feature grids

(fxy, fxz, fyz), provide NeRF conditioning by orthogonal

projection and interpolation. As in the previous methods,

the mapping and synthesis networks from StyleGAN2 can

easily be adapted to create the 2D triplane representation

from noise z ∈ R
512. Specifically, w = Mapping(z) con-

ditions the creation of the triplane T (w) ∈ R
3×32×512×512
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Figure 3. Here we show our proposed pipeline and its intermediate outputs. Beginning from the triplane T , we trace uniform samples to

probe the scene, yielding low-resolution I128 and weights P128. These are fed to a CNN which produces high-resolution proposal weights

P̂512 (weights are visualized as uniform level sets). We perform robust sampling and volume render to get the final image I512 and the

surface variance B.

from a Synthesis network, corresponding to three axis-

aligned 2D feature grids of spatial resolution 512×512 and

feature size 32.

To create high-fidelity geometry, our method builds upon

VolSDF [72]: Instead of directly outputting the opacity σ of

a point x ∈ R
3, an SDF value s is output and transformed

to σ using a Laplacian CDF:

  \label {equation:laplace} \sigma = \frac {1}{\beta } \begin {cases} \frac {1}{2} \exp \left (\frac {s}{\beta }\right ) & \text {if } s \leq 0 \\ 1 - \frac {1}{2} \exp \left (-\frac {s}{\beta }\right ) & \text {if } s > 0 \end {cases} 






















  













  
(1)

where β is the variance of the Laplacian distribution govern-

ing the “tightness” of the representation. One distinct bene-

fit of an SDF-based representation is the ease of extracting

the surface. StyleSDF [45] also utilizes this intermediate

geometry representation without a triplane, enforcing the

usual Eikonal constraint.

Using the triplane conditioning and Eq. 1, we can as-

sign each point in the volume with its opacity σ and radi-

ance c using a lightweight MLP. For a given camera ray

r(t) = o + td, we approximate the volumetric rendering

integral C(r) [36] by sampling ray distances ti with their

corresponding σi and ci before computing

  \label {equation:vr} \begin {aligned} \hat {C}(r) = \sum _{i=1}^{N} w_i c_i \text { ~where~ } w_i = T_i (1 - \exp (-\sigma _i \delta _i)), \\ T_i = \exp \left (-\sum _{j=1}^{i-1} \sigma _j \delta _j\right ) \text { and } \delta _i = t_{i+1} - t_{i}. \end {aligned} 






    

 














     

(2)

Here, Ti denotes the accumulated transmittance and δi is

the distance between adjacent samples along the ray.

It is possible to develop a more efficient estimator for

this sum with fewer samples by using importance sampling

techniques in computer graphics. Typically, one computes

a piecewise constant probability distribution pj =
ŵj∑
j
ŵj

,

where j refers to the jth bin or region, and ŵj is an estimate

of wj for that region, for example obtained by explicitly

tracing coarse samples. For a given t, we first find the region

j(t) and then set p(t) = pj . From this, one can compute a

(piecewise linear) cumulative distribution function or CDF

Φ(t) which has a range from 0 to 1. We can then perform

inverse CDF sampling to define the sample points,

  \label {equation:inverse_cdf} t_i = \Phi ^{-1}(u_i),    (3)

where ui is a random number from 0 to 1 (sorted to be an

increasing sequence).

Discussion We improve on previous works such as

NeRF [38] and EG3D [7] by stratifying2 the random num-

bers ui during training; this leads to significantly lower ren-

dering variance, especially at low sample counts N [39].

We also develop a neural method to predict a good distribu-

tion pj (and hence Φ) for importance sampling at high spa-

tial resolution, without needing to exhaustively step through

the ray.

4. Method

In this section, we describe our method beginning with

our SDF-based NeRF parametrization (subsection 4.1). We

then overview how we render at high-resolution in three

stages: first, a low-resolution probe into the 3D scene (sub-

section 4.2); second a high-resolution CNN proposal net-

work (subsection 4.3); and third a robust sampling method

for the resultant proposals (subsection 4.4). Next we de-

scribe regularizations (subsection 4.5) for stable training,

and finally our entire training pipeline (subsection 4.6).

4.1. Mapping to a 3D Representation

Beginning from a noise vector z, we synthesize the initial

triplane T ′ with StyleGAN [25] layers as detailed in Sec. 3.

In contrast to previous methods, we then generate more ex-

pressive triplane features T with an extra synthesis block for

each orthogonal plane: fij = SynthesisBlock(f ′
ij) where

ij ∈ {xy, xz, yz} and f ′ are the features of T ′. This de-

sign choice allows disentanglement between the intermedi-

ate triplane features as plane-specific kernels can attend to

the features in each separate plane.

Given the triplane T (the left side of Fig. 3) and a point

x ∈ R
3, we utilize an MLP to map to the SDF value s,

variance β and geometry features fgeo:

  (s,\beta ,f_{geo}) = \text {MLP}_\text {SDF} (\text {PosEnc}(x), T_x)       (4)

2dividing the unit interval into bins and taking a sample from each bin.
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where PosEnc is the positional encoding from NeRF [38]

and Tx are the features corresponding to x gathered from T

by projecting x to each of the axis-aligned planes and taking

the Hadamard product of the three resultant vectors [16].

We initialize the ReLU MLPSDF as in SAL [4] to ensure an

approximately spherical SDF in the early part of training.

Additionally note that β varies spatially in the volume un-

like [45, 72], allowing us to regularize its values later on.

Using Eq. 1, we transform s and β into opacity σ. We

can now predict the radiance with a separate MLPc condi-

tioned on the geometry features and viewing direction v as

  \label {equation:MLP_c} c = \text {MLP}_\text {c}(\text {PosEnc}(v), f_{geo}).    (5)

Note that unlike EG3D [7], we condition radiance on

the viewing direction, allowing a more expressive genera-

tor. Thus, given a triplane, we can render any pixel by com-

puting σ and c for points along the ray to approximate the

volumetric rendering integral as described in Sec. 3.

4.2. High­Resolution Proposal Network

We now have our mapping from a latent code z to a 3D

NeRF representation. However, volumetric rendering of

NeRFs at higher resolutions requires extremely large num-

bers of samples, and thus both memory and time. Instead

of naive dense sampling at a high resolution, we propose

to leverage low-resolution renderings to cheaply probe the

3D representation (visualized on the left of Fig. 3) for the

creation of proposal distributions at high-resolution. Given

a target camera and triplane T , we first trace 192 coarse

samples at low-resolution (128 × 128) to compute a low-

resolution RGB image I128 ∈ R
3×128×128 and a tensor

of weights P128 ∈ R
192×128×128 (visualized after low-

resolution rendering in Fig. 3). Each 192-dimensional vec-

tor corresponds to a piecewise constant PDF with CDF Φ as

seen in Eq. 3.

Conditioned on the low-resolution probe, we predict a

tensor of proposal volume rendering weights at the high-

resolution (512× 512):

  \hat P_{512} = \text {Softmax}(\text {CNN}(P_{128}, I_{128})) \in \mathbb {R}^{192 \times 512 \times 512},     
 (6)

where CNN is a lightweight network that up-samples the

low-resolution weights, Softmax produces discrete distribu-

tions along each ray, and the ˆ denotes that this is an esti-

mated quantity. This corresponds to the Proposal in Fig. 3

and the yellow distribution in Fig. 4. Note that allocating

192 samples at 128× 128 is equivalent to allocating just 12
at 512× 512.

4.3. Supervising the Proposal Network

Having described the input and output of our high-

resolution proposal network, we now show its supervision.

From the target camera, we can also trace 192 coarse sam-

ples at high resolution for a small 64 × 64 patch, giv-

ing us a ground truth tensor of volume rendering weights

Ppatch ∈ R
192×64×64. We then prepare this tensor for super-

vision by computing:

  \bar P_{\text {patch}} = \text {Normalize}( \text {Suppress} ( \text {Blur} (P_{\text {patch}})))    (7)

where Blur applies a 1D Gaussian kernel to the input dis-

tributions, Suppress(x) = x if x ≥ 5e − 3 and 0 other-

wise, and Normalize is L1 normalization to create a valid

distribution. This corresponds to the patch loss in Fig. 3

and the purple distribution in Fig. 4. These operations cre-

ate less noisy distributions to facilitate accurate learning of

the high-frequency integrand which may be undersampled

in the coarse pass.

We can then compare the predicted and cleaned ground

truth distributions with a cross-entropy loss:

  L_\text {sampler} = \text {CrossEntropy}(\bar P_{\text {patch}}, \hat P_{\text {patch}})      (8)

where P̂patch is the corresponding patch of weights in P̂512

and CrossEntropy denotes the average cross-entropy be-

tween all pairs of pixelwise discrete distributions; for each

pair (p̄, p̂), we compute
∑

−p̄j log p̂j . Since we only need

to compute this supervision for a small patch, the overhead

of sampler training is not significant.

4.4. Robustly Sampling from the Proposal Network

Having shown how to train and predict high-resolution dis-

tributions, we now overview how to sample the resultant

proposals. As seen in Fig. 4, the proposals are often slightly

off; this is due to the high frequency nature of the underly-

ing integrand in blue.

In order to utilize the information from the sampler,

we propose to filter predicted PDFs for better estimation.

Specifically, for each discrete predicted PDF p̂, we com-

pute the smallest set of bins whose probability exceeds a

threshold τ = 0.98: We find the smallest subset I ⊆
{1, 2, ..., 192} such that

  \sum _{i\in I} \hat p_i \geq \tau . 



   (9)

This operation resembles nucleus sampling in NLP [23].

We define our sampling PDF q with probability qi = 1

|I|

if i ∈ I and 0 otherwise (the green distribution in Fig. 4).

For each PDF q, we compute its CDF Φ and perform

stratified inverse transform sampling to create the samples

(illustrated as adaptive sampling near the surface in Fig. 3).

We refer to these samples as robust stratified samples. In

practice, on top of the 12 samples from the coarse probe

(for the high-resolution image), we take an additional 18
samples per pixel adaptively based on the variance of the

predicted distributions. The details are given in the supple-

ment.

4.5. Regularization for High­Resolution Training

In order to render accurately under low sample budget per

ray, we desire the surface to be tight, i.e., the set of points
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Figure 4. We visualize the volume rendering PDFs for the green

pixel in the images on the right along with sampling methods. The

ground truth distribution in blue is bimodal due to the discontinu-

ous depth. Without stratification, the samples from the predicted

yellow PDF completely miss the second mode. Stratification re-

duces the variance, yet also misses the second mode. Our robust

stratified samples hit both modes despite the inaccurate predic-

tions. The supervision PDF is visualized in purple as well.

along the ray, which contribute to the accumulated radiance

to be small. To accomplish this, we introduce a regular-

ization for the spatially-varying β values. Replacing the ci
with the intermediate βi in Eq. 2, we can volume render

an image of scalars, B ∈ R
512×512 (seen on the right of

Fig. 3). During training, we regularize B to be small so that

the surface tightens:

  \label {equation:beta} L_\text {surface} = \sum _{hw}(B_{hw} - B_\text {target})^2, 





 (10)

where Btarget is a scalar quantity annealed towards ϵ > 0
during optimization. Note that this results in significantly

more pronounced and smooth geometry (see Fig. 7).

During training with the proposal network, the rendering

networks only receive gradients for points very near the sur-

face (which have high density). We find that this can lead to

undesirable density growing from the background into the

foreground. In order to combat this, we leverage the low-

resolution information from I128, which is computed for

uniform samples along the ray, and thus not concentrated

at the surface. Considering the SDF values intermediately

computed for rendering, S = S128 ∈ R
192×128×128, we

enforce the SDF decision boundary by minimizing the SDF

likelihood under a Laplacian distribution similar to [45, 51]:

  L_{\text {dec}} = \sum _{zhw} \exp {\left ( - 2|S_{zhw}| \right )}. 




  (11)

4.6. The Training Pipeline

In order to begin making use of the learned sampler for

high-resolution rendering, we need a good NeRF represen-

tation from which to train it. Concurrently, we also need a

good sampler in order to allow NeRF to render at 512×512,

the input resolution to the discriminator D.

To solve this issue, in the early stages of training, we

first learn a low-resolution (e.g., 64× 64) 3D GAN through

the standard NeRF sampling techniques. We bilinearly up-

sample our low-resolution renderings to 512×512 and blur

the real images to the same level. After converging at the

lower resolution, we introduce the sampler training (sub-

section 4.3). Concretely, we not only render low-resolution

images with standard sampling, but also render sampler in-

puts P128 and supervision patches Ppatch. This results in a

good initialization for the sampler.

Having learned an initial low-resolution 3D GAN and

high-resolution sampler, we transition to rendering with the

sampler predictions. The high-resolution proposals P̂512 are

downsampled to the current rendering resolution, which is

progressively increased to the full 512×512 resolution dur-

ing training. After introducing all losses, we optimize the

parameters of the generator G to minimize the following:

  L = L_\text {adv} + \lambda _\text {sampler}L_\text {sampler} +\lambda _\text {surface}L_\text {surface} + \lambda _\text {dec}L_\text {dec}   (12)

where Ladv is the standard GAN loss [18]

Softplus(−D(G(z)). Note that we do not enforce the

Eikonal constraint as we did not see a benefit. The discrim-

inator D is trained with R1 gradient regularization [37]

whose weight is adapted as the resolution changes. Gener-

ator and discriminator pose conditioning follow EG3D [7].

The details of all hyperparameters and schedules are

presented in the supplementary material.

5. Results

Datasets. We benchmark on two standard datasets for 3D

GANs: FFHQ [25] and AFHQv2 Cats [11, 28] both at res-

olution 512× 512. We use the camera parameters extracted

by EG3D [7] for conditioning and rendering. Our AFHQ

model is finetuned from our FFHQ model using adaptive

data augmentation [26]. For more results, please see the

accompanying video.

5.1. Comparisons

Baselines. We compare our methods against state-of-

the-art 3D GAN methods including those that use low-

resolution neural rendering and 2D post-processing CNN

super resolution: EG3D [7], MVCGAN [74], and

StyleSDF [45]; and methods that operate entirely based on

neural rendering: Mimic3D [10], Epigraf [53], GMPI [75],

and GramHD [67].

Qualitative results Fig. 5 shows the curated samples gen-

erated by our method with FFHQ and AFHQ, demonstrat-

ing photorealistic rendering as well as high-resolution de-

tails that align with the 2D images. Fig 6 provides qual-

itative comparisons to baselines. EG3D shows significant

artifacts and cannot resolve high-resolution geometry since

it performs neural rendering at only 128 × 128. Mimic3D
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Figure 5. Curated samples on FFHQ and AFHQ. Our method can resolve high-fidelity geometry (e.g., eyeglasses) and fine-grained details

(e.g., cat’s fur) as seen in the geometry and normal map.

Figure 6. Qualitative comparisons on FFHQ with EG3D [7], Mimic3D [10] and Epigraf [53]. EG3D performs neural rendering at resolution

128× 128 and relies on 4× super resolution to generate images. On the right, Mimic3D and Epigraf directly generate the image via neural

rendering. While all other baselines use up to 192 dense depth samples per ray, our method can operate at 30 samples per ray.

Figure 7. Ablation study on the effect of beta regularization.

and Epigraf render all pixels with neural rendering, but the

patch-based nature of these methods harm the overall 3D

geometry (e.g., distorted face and missing ear). Our method

provides both high-fidelity 3D shape (e.g., well-defined ears

and isolated clothing collar) and high-resolution details.

Quantitative results. Tabs. 1 and 2 provide quantitative

comparisons against baselines. We measure the image qual-

ity with Fréchet Inception Distance (FID) [22]. We assess

the quality of the learned geometry with a face-specific Nor-

mal FID (FID-N) [15]. We render 10.79k normal maps

from the NPHM [17] dataset by solving for the approxi-

mate alignment between the average FFHQ 2D landmarks

and the provided 3D landmarks. Examples are given in

the supplement. For each mesh, we render two views with

approximately 20 degrees of pitch variation relative to the

front of the face. These views are processed to remove the

background with facer [13]. For each baseline, we render

10k normal maps and remove their background using the

predicted mask from facer on the rendered image. We com-

pute the FID between the two sets of images. Finally, we

also evaluate the flatness of the learned representations with

non-flatness score (NFS) [54].

Our results show the state-of-the-art image quality

among the methods that operate only with neural rendering,

while achieving FID comparable to the state-of-the-art SR-

based method, EG3D. Our geometry quality outperforms all

existing methods as indicated by our state-of-the-art FID-

N. Additionally, our high NFS scores show the 3D aspect

of our geometry. However, since NFS simply measures the

variations of depth as a measure of non-flatness, it does not

quantify the quality of geometry above a certain threshold.

5.2. Ablation Study

Without our surface tightness regularization (Eq. 10), the

SDF surface may get fuzzy, resulting in a less clean surface
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Method FID ↓ FID-N↓ NFS↑
F

F
H

Q
-5

1
2

w
/o

S
R

Epigraf [7] 9.92† 67.33 33.95

Mimic3D [10] 5.37 64.97 16.76

GRAM-HD [67] 12.2†∗ - -

Ours 4.97 60.76 29.35

w
S

R EG3D [7] 4.70 63.02 17.54

StyleSDF [45] 11.19† 87.42 22.75

MVCGAN [74] 13.4†∗ - -

Table 1. Quantitative comparison with baselines with and without

super resolution (SR) on the FFHQ dataset. † as reported in the

previous works. * indicates FID evaluated on 20k images.

Method FID ↓ NFS↑

A
F

H
Q

-5
1

2

w
/o

S
R

GRAM-HD [67] 7.67† -

GMPI [45] 7.79† -

Mimic3D [10] 4.29 12.67

Ours 4.23 21.89

w
S

R EG3D [7] 2.77 14.14

StyleSDF [45] 7.91 33.89

Table 2. Quantitative results on AFHQv2 Cats. † as reported in the

previous works.

Method FID ↓ FID-N ↓ NFS ↑

- Learned Sampler 38.29 93.88 30.95

- Stratification 5.60 86.02 5.97

- Robust Sampling 5.67 60.78 24.79

- Beta Regularization 5.27 64.25 28.88

Ours 4.97 60.76 29.35

Table 3. Ablation study.

(see Fig. 7) and worse geometry scores (see Tab. 3). With-

out our sampler or stratification during sampling, the model

cannot learn meaningful 3D geometry with limited depth

budgets, creating degenerated 3D geometry as can be seen

in Fig. 8 and significantly worse FID-N. Without our robust

sampling strategy, the sampling becomes more susceptible

to slight errors in the sampler due to the high-frequency na-

ture of the PDF (see Fig. 4), resulting in a noticeable drop

in FID and occasionally creating floater geometry artifacts

(see Fig. 8), while geometry scores remain similar.

6. Discussion

Limitations and future work. While our method demon-

strates significant improvements in 3D geometry genera-

tion, it may still exhibit artifacts such as dents in the pres-

ence of specularities, and cannot handle transparent objects

such as lenses well. Future work may incorporate more ad-

vanced material formulations [5] and surface normal reg-

ularization [60]. While 3D GANs can learn 3D represen-

Figure 8. Qualitative comparisons for ablation study.

tations from single-view image collections such as FFHQ

and AFHQ with casual camera labels [7], the frontal bias

and inaccurate labels can result in geometry artifacts, espe-

cially on the side of the faces. Fruitful future directions may

include training 3D GANs with large-scale Internet data as

well as incorporating a more advanced form of regulariza-

tion [47] and auto-camera calibration [3] to extend the gen-

erations to 360 degrees. Finally, our sampling-based accel-

eration method may be applied to other NeRFs.

Ethical considerations. While existing methods have

demonstrated effective capabilities in detecting unseen

GANs [12], our contribution may remove certain charac-

teristics from generated images, potentially making the task

of detection more challenging. Viable solutions include the

authentication of synthetic media [1, 2, 48].

Conclusion. We proposed a sampler-based method to ac-

celerate 3D GANs to resolve 3D representations at the

native resolution of 2D data, creating strictly multi-view-

consistent images as well as highly detailed 3D geometry

learned from a collection of in-the-wild 2D images. We

believe our work opens up new possibilities for generating

high-quality 3D models and synthetic data that capture in-

the-wild variations and for enabling new applications such

as conditional view synthesis.
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