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Abstract

Pose refinement is an interesting and practically rele-
vant research direction. Pose refinement can be used to
(1) obtain a more accurate pose estimate from an initial
prior (e.g., from retrieval), (2) as pre-processing, i.e., to
provide a better starting point to a more expensive pose
estimator, (3) as post-processing of a more accurate local-
izer. Existing approaches focus on learning features / scene
representations for the pose refinement task. This involves
training an implicit scene representation or learning fea-
tures while optimizing a camera pose-based loss. A natural
question is whether training specific features / representa-
tions is truly necessary or whether similar results can be al-
ready achieved with more generic features. In this work, we
present a simple approach that combines pre-trained fea-
tures with a particle filter and a renderable representation
of the scene. Despite its simplicity, it achieves state-of-the-
art results, demonstrating that one can easily build a pose
refiner without the need for specific training. The code is at
https://github.com/ga1i13o/mcloc_poseref

1. Introduction

Visual localization estimates the position and the rotation
of a camera in a given scene. It is essential in a wide range
of applications such a Simultaneous Localization and Map-
ping (SLAM) [5, 30], Structure-from-Motion (SfM) [97,
98], autonomous navigation [25, 77], robotics [35, 36], and
Augmented-Virtual Reality (AR/VR) [41, 86].
State-of-the-art methods follow a structure-based ap-
proach [89, 90] where a 3D map of the scene is available
and a query image is localized against it by deriving 2D-
3D matches. Such 2D-3D correspondences are obtained by
matching local features [26, 31, 88] between the query im-
age and the 3D points in the map, typically an SfM [97, 98]
sparse point cloud. These matches are used to estimate the
camera pose with minimal solvers [42, 82] integrated with

Figure 1. MCLoc localizes images with a render&compare strat-
egy. Given a starting hypothesis, a particle filter is used to perturb
it and sample new candidates, which are rendered, and compared
to the query using generic pre-trained features.

robust optimization [24, 34]. Generating the point cloud via
SfM involves local feature detection and description on a set
of reference images, feature matching, and triangulation of
image points that are co-visible in several images [42, 97].
The resulting 3D points are then associated with visual de-
scriptors from the reference images.
While SfM-based point clouds enable robust and accurate
localization [90, 91, 96, 105], they remain unflexible as they
are tied to the specific features used for the reconstruction
and their use is limited to the localization task [10, 78, 80].
A feature-agnostic alternative to the previous map repre-
sentations are meshes [80, 81, 112], as they support dif-
ferent tasks in the ecosystem of pose estimation, such as
SLAM [10, 78, 104, 120], tracking [58], path planning [45],
and relocalization [4, 112] while providing the 3D informa-
tion necessary for visual localization. Such models are eas-
ily obtained [15, 50, 74], and are rendered rather efficiently
(e.g., 1 ms or less) even for large, textured models [80], re-
lying on mature graphics primitives.
A different approach to visual localization is to refine an ini-
tial pose estimate. This strategy can either be applied to re-
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fine a pose estimate obtained from 2D-3D matches, or to ob-
tain a more accurate pose starting from an initial hypothesis
provided by image retrieval [47, 89]. As such, these meth-
ods are to a large degree complementary to the matching-
based methods described above. These approaches typi-
cally follow a render&compare framework [58, 64]: in each
iteration, a rendering (either an image [58, 115, 117] or the
projection of a sparse set of features [40, 92, 114]) of the
scene obtained from the current pose estimate is compared
to the actual image. Based on this comparison, an update is
computed for the pose in order to better align the query with
the scene representation. Existing approaches learn specific
features for this task [20, 40, 73, 92], potentially optimized
together with the scene representation [19, 67, 72].
We argue that in a render&compare framework, the main
requirement is being able to evaluate the visual similarity of
a synthetic view versus a real image. It has been shown re-
peatedly that generic deep features are a reliable estimator
of this measure [39, 54, 116], and that this property of dense
features makes them suitable to re-rank poses [106]. This is
in contrast with the aforementioned refinement approaches,
which rely on sparse features that need to be optimized for
the task, and it leads us to the research question of whether
it is truly essential to train specialized features for localiza-
tion, or if analogous results can be attained exploiting the
properties of dense features from generally available, off-
the-shelf architectures.
Opting out of feature optimization also removes the need to
articulate a differentiable feature-to-pose pipeline, required
to compute gradients. Instead, to refine the pose, we adopt
a simple particle filter-based optimizer [57, 109] that effi-
ciently explores the hypothesis space [22]. Despite its sim-
plicity, our MCLoc approach outperforms modern pose re-
gressors [19, 72] and is comparable or better than refine-
ment pipelines based on implicit fields [20, 40, 73], even
though both these families of methods are optimized per-
scene. Unlike them, our method also scales to large scenes.
While matching-based methods still hold the state-of-the-
art, our method brings complementary strengths, in that it
can be used to improve the performance of matching-based
approaches as a post- or pre-processing step. We demon-
strate these strengths through extensive experiments, both
indoor and outdoor, as well as large scale scenarios, provid-
ing evidence that it is possible to construct a pose refiner
that generalizes across different domains and representa-
tions, without the need for specialized training.

Contributions:

• A simple yet powerful particle-filter based optimization
which can be applied to different scene representations
and scoring functions

• We provide an analysis on the effectiveness of general,
pre-trained features at different layers of deep networks
as a robust cost function

• We show a versatile pose-refinement approach which
does not entail per-scene training or fine-tuning, that can
be used either standalone, or to obtain a better pose prior,
or to refine previous pose estimates

• The code, which allows to experiment with differ-
ent backbones, scoring functions and scene representa-
tions, is available at https://github.com/ga1i13o/
mcloc_poseref

2. Related works

Visual Localization. Visual Localization aims at estimat-
ing the camera pose of a given query within a known envi-
ronment. A popular strategy is to rely on sparse 3D mod-
els, obtained from SfM [97], to represent the scene. These
point clouds associate to each 3D location features trian-
gulated from the available database. For inference, local
features are used to find matches between a query and the
3D model [15, 63, 90, 91, 94, 95, 99, 106, 107]. Once
2D-3D matches are obtained, the query pose can be esti-
mated via a PnP solver [59]. To avoid matching against
the entire database, it is common to apply a hierarchical ap-
proach [46, 47, 89], where a network for Place Recognition
[9, 84] selects database images with potentially covisible
regions [3, 8, 111]. There also exist methods that replace
the SfM model in favor of more versatile dense representa-
tion, either point clouds from Multi-View stereo or LIDAR
[98, 101, 106] a mesh [15, 80, 117], or NeRFs [67, 71, 115].
In this work we show that by relying on a renderable repre-
sentation of the scene, it is possible to align the query pose
by comparing features pixelwise, without resorting to ex-
haustive feature matching. While matching-based methods
retain state-of-the-art performances, our method has com-
plementary strengths: it can be effortlessly applied either to
refine initial poses or final estimates, improving matching
results while adding little computational overhead.

Implicit representations for Visual Localization. Both
sparse and dense models store explicit information about
the geometry of a scene. On the other hand, a parallel line
of research has focused on implicit representations, that em-
bed information about the scene into the weights of a neu-
ral network. Traditionally this was done either by training
models to regress the camera pose [27, 51, 72, 102], or with
Scene Coordinate Regressors, which encode for each image
patch the corresponding 3D points[11, 13, 17, 18]. More re-
cently, neural radiance fields gained popularity [7, 71, 76].
These methods map each point of the scene to a view-
dependent color and density values, through a MLP-based
network. These representations can be exploited for local-
ization by embedding features in the implicit representation
[40, 67, 73] or by inverting the neural field [66, 115]. Im-
plicit representations have also been used as data augmen-
tation to generate samples to train pose regressors [19, 72].
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Figure 2. Architecture of MCLoc. It exemplifies our iterative pose refinement. Given an initial pose estimate, we perturb it and render
new candidates. Candidates are ranked based on dense, pixelwise feature similarity. As optimization progresses, we exploit the hierarchical
properties of deep features by switching to shallower features, which are better for fine-grained comparison.

Pose refinement and image alignment. Pose refinement is
a relevant area of research, in which the main idea is to iter-
atively refine the pose estimate by minimizing an objective
function. In this family, a longstanding approach is repre-
sented by Direct Alignment methods, which minimize dif-
ferences in pixel intensities when projecting the scene into
the current estimate [6, 33], using gradient-based optimiz-
ers such as Levenberg-Marquardt [61, 70] or Gauss-Newton
methods. These approaches are popular in SLAM scenar-
ios [1, 100], and typically rely on photometric error, hardly
robust to appearance variations. They have been applied
on learned features as well [92, 113, 114]. Indirect meth-
ods define geometric correspondences in order to minimize
the reprojection error [83]. Among direct methods, a no-
table example is PixLoc [92], which trains features end-to-
end from pixels to camera pose. Inference is performed via
feature-metric alignment relying on the SfM model. Lately,
pose refinement methods based on implicit representations
have gained popularity. [115] learns a radiance field that is
used to render candidates, for which a photometric errors is
computed and backpropagated. Alternatively, implicit rep-
resentations can be used to model a feature field, rather than
appearance. Within these methods, FQN [40] relies on re-
projection error, whereas [20, 73] match the rendered fea-
tures and then invert the descriptor field by backpropagat-
ing errors. These approaches require to train features per-
scene, and are only applicable for small scenes, given the
limited scalability of implicit models. Our method relies
on general, pre-trained features, which work on any dataset.
Moreover, being agnostic to the scene representation, it can
scale to arbitrarily large scenes where a mesh can be easily
obtained [80]. Our findings also relate to [116], that showed
how deep learning models are surprisingly good at eval-
uating image similarities, outperforming all “handcrafted”
metrics. We extend this analysis beyond perceptual sim-
ilarity and show how generic features can discern among
fine-grained pose discrepancies.
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Figure 3. Convergence Basin in Optimization Space at Multi-
ple Scales. We perturb rotation and translation for a query from
Aachen and compute the dense, pixelwise feature distance at dif-
ferent depths. First row: rotating along yaw and pitch axis. Second
row: moving away from the GT along 3 random directions.

Localization with Particle filters. Our work is not the first
to employ a particle filter for localization [85]. A similar
optimization technique to ours is adopted in [66, 69], al-
though both these methods require a radiance field of the
scene, thus sharing the limitations listed above, and rely on
the less-than-robust pixel error.
Such approaches are popular also in mobile robotics, where
they have been used for localization[37, 48, 49] and visual-
tracking [23]. They have also been used in remote-sensing
to localize against satellite images [44]. Theoretical proper-
ties of particle filters have been studied in [16, 22, 56, 57].

3. MCLoc

Overview. MCLoc localizes a query image within a render-
and-compare framework, powered by Monte Carlo simu-
lation. Localization is performed through iterative pose-
refinement, as exemplified in Fig. 2. Given a query, and
an initial hypothesis of its pose (which can be obtained in
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several different ways), we perturb it with some noise and
rely on a renderable representation of the scene to generate
the corresponding views. A simple, generic feature extrac-
tor is used as a cost function to evaluate which candidates
are more similar to the query. The pose estimates are mod-
eled and perturbed with a particle filter [109], which serves
as a stochastic optimizer.
Our method is agnostic to the scene representation used to
render candidates, and we show that a general purpose fea-
ture extractor is suited to evaluate pose alignment, with no
need for fine-tuning or per-scene training.

Motivation. This work aims at answering the following
research question: do we really need to train specialized
descriptors or can generic features be used for localiza-
tion?. This question is rooted in the observation that ac-
tivations of deep network are extremely reliable estimators
of perceptual similarity [39, 116], being also robust to do-
main changes, blur and distortion [54]. Intuitively, percep-
tual similarity seems a promising metric for measuring pose
similarity via a render & compare approach. We show that
this property, coupled with the natural spatial structure of
feature maps, yields a simple and effective tool to measure
pose discrepancies using perceptual similarity as a way to
measure pose similarity. To this end, we integrate a percep-
tual metric into a particle-filter-based optimizer [23, 109],
that is used to generate new pose hypothesis to be then ren-
dered & compared.

Problem setting. Our objective is, for a given query im-
age Iq , to estimate its 6-DoF pose. Following [47, 52],
we parametrize the pose as Tq = (c,q), where c ∈ R3

represents the camera center and q ∈ R4 is a unit quater-
nion. Quaternion-based parametrizations provide a frame-
work for manipulating rotations which is numerically sta-
ble, compact and avoids gimbal lock [60]. This formula-
tion decouples translation and rotations updates, lying on
the manifold of SO(3)× T(3) [16, 66].
We cast the problem as the following optimization:

T̂q = argmin
T∈SO(3)×T(3)

LFθ
(T |Iq, IT ) (1)

where Iq, IT are the query image and the rendered candidate
with pose T , Fθ is a feature extractor, and the loss function
is the distance between query and rendered candidate in fea-
ture space, i.e., LFθ

(T |Iq, IT ) = ||Fθ(Iq)−Fθ(IT )||2. We
optimize this loss via a particle filter-based approach.

3.1. Pose alignment with Pre-trained features

To evaluate the loss in Eq. (1) associated with a candidate
pose w.r.t. the query, we forward both through an off-the-
shelf CNN. More details on the specific architecture will be
discussed later on. We obtain a hierarchy of feature vol-
umes, Fl ∈ RCl×Hl×Wl , for each level l ∈ {1..L}. These
feature pyramids have decreasing resolution, and encode

increasingly richer semantic clues as the receptive field of
each neuron grows. It has been demonstrated as an emer-
gent property [38, 116] that such hierarchies of features can
measure perceptual similarities at different conceptual lev-
els [2]; to the best of our knowledge no previous works
leverage this property of dense feature maps to assess pose
similarity in a pose refinement algorithm.
We employ a simple scoring function that exploits this prop-
erty; at a given step s of our optimization, we choose level
l(s) to compute the score of a candidate IT against query Iq
as follows:

S(h,w|l) =

∥∥∥∥∥ Fh,w
l (Iq)

||Fh,w
l (Iq)||2

−
Fh,w
l (IT )

||Fh,w
l (IT )||2

∥∥∥∥∥
2

LFθ
(T |Iq, IT , l) =

1

hlwl

∑
h,w

S(h,w|l)
(2)

where Fh,w
l ∈ RCl . In practice, we compare pixelwise

dense, normalized descriptors, obtaining a spatial similar-
ity map S ∈ RHl×Wl , which is then averaged.
In the early stages of the optimization, we need to deal
with large baselines as initial hypothesis might be far off
from the ground truth. Thus, to increase the convergence
basin, we adopt a hierarchical Coarse-to-Fine approach.
Initially we rely on deeper features: their receptive fields are
larger, hence even if the poses deviate significantly, there is
a higher chance for two receptive fields of a pixel position
to overlap, providing a meaningful signal. Moreover, since
their features are semantically richer, they are more prone
to ignore low-level details, transient objects and artifacts in-
troduced by the scene representation. This allows to handle
misalignment to a certain degree. As the optimization con-
verges towards more accurate poses, the focus becomes dis-
cerning fine-grained details and small orientation displace-
ments. At this stage, shallower features are more suited, as
we can exploit their smaller receptive fields and higher spa-
tial resolution. We discover that pre-trained features, across
different architectures and training methods, are unreason-
ably effective, as deemed in [116], meaning that they present
a nicely shaped convex basin around each pose. We exper-
imentally demonstrate this finding in Fig. 3, which also il-
lustrates how moving up the hierarchy we can control the
width of the basin, and that shallower features are able to
precisely discern among even the finer differences.

3.2. Particle filter optimization

Overview. Particle filters are a set of Monte Carlo methods
that estimate the state of a system based on observations
and dynamics of the system [57, 109]. Such algorithms can
approximate a wide range of distributions, and are compu-
tationally efficient since they focus on regions of the state
space with high likelihood [37]. The application of particle
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Figure 4. Robustness of the Convergence Basin to the Ren-
dering Domain. We render images rotating along the yaw axis,
using different meshes:Textured, Colored and Raw Geometry, and
evaluate the feature distance at different depths. The domain shift
affects absolute values but not the basin shape.

filters for visual localization is not novel, and their effec-
tiveness has been demonstrated in [49, 66, 69, 85].
The basic idea is that, given a starting hypothesis, by per-
turbing the initial state we can obtain new state hypothesis,
evaluate the cost function and refine the estimate iteratively.
In our case, the state variable is the camera pose T and the
scoring function to evaluate an hypothesis is the perceptual
similarity. Specifically, at each step the particle filter mod-
els the posterior distribution p(Tq|Zi) of the query pose Tq ,
with a set of particles Zi = {(T 1

i , π
1
i ), ..(T

n
i , π

n
i )}. Parti-

cles have a weight πn
i that represents their likelihood, es-

timated via Eq. (1). Since the particles states T 1
i , . . . , T

n
i

are parameterized on the SO(3) × T(3) manifold, we can
perturb them using their Lie algebra, as it was proven
by [22, 23, 56] that particle filtering on Lie groups is
coordinate-invariant, i.e., same perturbation on different
states (poses) results in the same motion.

Our approach. In general, the loss function in Eq. (1) is
not convex over the 7D optimization space, and the con-
vergence basin is highly affected by initialization. Thus
the main challenges are: exploring efficiently the other-
wise large hypothesis space, and increasing the convergence
basin. To address the former, we rely on multi-hypothesis
tracking [23] of multiple beams. With beam we denote a
set of particles that evolves and is optimized independently
from other beams. This is equivalent to having separate op-
timization threads. It allows to explore in breadth the state
space [29], and if some threads get stuck in local minima,
it does not affect the others. The beams are optimized in
parallel, to augment the probability that some of them will
move in the right direction. Additionally, to minimize the

cost of these initial steps, candidates can be rendered at
low resolution (256 × 340), as fine-grained details are not
needed at this stage. Every N0 iterations, a resampling step
is performed. The best candidates are pooled among all the
beams, and each of them is used to initialize a new beam
that is optimized independently again for N0 steps. In this
way we avoid pursuing unpromising hypothesis as beams
that do not converge to good poses are halted.
To enhance convergence probability, the Coarse-to-Fine
strategy discussed in Sec. 3.1 is adopted. Following this rea-
soning, after N1 resampling steps, we switch to shallower
feature maps in our feature extractor. Additionally, over the
iterations image resolution is gradually increased, while the
number of beams and particles in each beam is decreased.
This strategy enables to keep computational cost low, while
balancing the need to explore in breadth the sample space
in the beginning, and to have fine-grained comparisons as
we refine further the pose. More details on these hyperpa-
rameters are given in Sec. 4.1, and the pseudo-code of the
algorithm is provided in the Supplementary. The code will
be publicly released upon acceptance.

3.3. Adapting to different domains

Given that our framework entails comparing query im-
ages against rendered candidates, it raises the question of
whether we might need an adaptation technique to bridge
the gap between domains. Recently, this issue was ad-
dressed in [80, 117], showing that matching performances
are not hindered by the rendering domain. We extend their
analysis since in our setup we compare dense feature maps,
which is different than matching local descriptors.
We test different rendering domains (textured, colored, raw
geometry) and find that these shifts indeed cause a discrep-
ancy in the extracted features, meaning that the distance be-
tween a query and the rendered ground truth pose will not
be 0. Nevertheless, we are not interested in absolute values,
as the only requirement for our optimization to converge
is that relative differences in pose are reflected by relative
changes in similarity. Figure 4 exemplifies this effect.
We show that in practice this assumption holds, and differ-
ent domains only affect absolute values, preserving relative
differences, since the rendered images domain is uniform.
This finding highlights an advantage of our formulation, be-
ing agnostic to the scene representation.

4. Experiments

Datasets. We evaluate our pose refinement approach on
multiple datasets. Aachen Day-Night v1.1 [93, 96, 117] is a
common benchmark for large-scale localization [90, 92]; it
contains 6,697 day-time database images and 1,015 queries,
collected by handheld devices. Beyond the large area
that it covers, it contains night queries and strong view-
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Figure 5. Optimization trajectory. Behavior of median errors
over the iterations for 2 scenes from Cambridge Landmarks.

point changes between the database and query images. We
also evaluate on smaller datasets widely used in the litera-
ture, namely Cambridge Landmarks [52] and 7scenes [103].
They contain respectively 5 outdoor and 7 indoor scenes. In
both datasets query sequences are captured along different
trajectories w.r.t. the available database. Following com-
mon practices, we report for Aachen the recall at thresholds
(25cm, 2°), (50cm, 5°), and (5m, 10°) [90, 96], while for
the remaining datasets we evaluate median translation (m)
and rotation (°) errors [67, 72, 73].

Coarse Features Fine Features ShopFacade OldHospital

ResNet-18
CosPlace [8] ImageNet 12 / 0.45 39 / 0.73
ImageNet ImageNet 12 / 0.55 46 / 0.80
SimCLR [21] SimCLR [21] 18 / 0.62 50 / 0.83

ALIKED [118] ALIKED [118] 17 / 0.64 49 / 0.84
AlexNet [55] AlexNet [55] 15 / 0.74 53 / 0.88

Table 1. Ablation on feature extractors, shows that the property
of dense features being robust estimators of visual similarity holds
across architectures and training protocols. Errors in cm, °.

4.1. Implementation details

For our main experiments, we adopt a lightweight ResNet-
18 [43] trained for Place Recognition in [8]. This network
was fine-tuned from conv3, freezing earlier layers. Thus
when in our optimization we switch to conv2, we are ac-
tually using ImageNet features. We find that this network
slightly improves results over vanilla ImageNet (see Tab. 1).
We hypothesize that being trained for Place Recognition,
deeper layers have learnt to focus on buildings and land-
marks, ignoring transient objects, which is useful also for
localization. After N1 steps, we switch to conv2 features,
pre-trained only on ImageNet; finally, the last refinement
steps (after N2 iterations), are performed with conv1. The
choice of N1, N2 is not critical to achieve good results; what
matters is that initial steps are carried out with coarser fea-
tures, and the very last with finer ones, as conv1 features
present a narrower converge basin. In the Supplementary
we report experiments to demonstrate robustness to these
hyperparameters, and a convergence analysis. Their values
also depend on the use-case: when using our algorithm as

post-processing, there is no need to start from Coarse fea-
tures; viceversa when acting as pre-processing we do not
use the shallower features. For the standalone experiments
starting from retrieval poses, we set N1 to 30 for all datasets,
and N2 to Nt − 10, i.e. the last 10 steps are with conv1.
In Tab. 1, we ablate the choice of network, showing that
our method works with any off-the-shelf architecture. For
perturbing the camera center, we use Gaussian noise, with
the only precaution that the standard deviation on the ver-
tical axis is reduced to 1/10 wrt the other directions. This
comes from the prior knowledge that while we need to ex-
plore the scene in breadth, as initialization can be far off,
height variations are typically limited to human size, thus
we can avoid wasting resources exploring the vertical axis.
We perturb the rotation around a random axis, with uniform
noise. The magnitude of the noise is reduced linearly, and
every N0 = 20 steps it is reset. This start-and-stop schedul-
ing is akin to the CosineAnnealing strategy [68].

Renderable scene representations. The only require-
ment for our method is to have a renderable model of the
scene; i.e. that allows to generate a view given any pose
(R, t) ∈ SE(3). Recently, [80, 81] highlighted the advan-
tages of 3D meshes and how they can be obtained. Specifi-
cally, these advantages are flexibility of supporting different
tasks, and efficient rendering, thanks to rendering pipelines
being tailored to meshes for decades. As an alternative to
meshes, modern neural radiance fields [71, 108] offer pho-
torealistic renderings, at the cost of being typically slower.
Although several efforts greatly cut down on NeRF render-
ing times [75, 87], they remain at least 1 order of magnitude
slower than mesh-based rendering. In light of this, we ex-
periment with Gaussian Splatting [53], which offers high-
quality images and matches the speed of a mesh. In our
experiments we find that a low-detail, compressed mesh is
sufficient to achieve good results. On the large scale scene
of Aachen [93, 96, 117], we use the models provided by
[80]. Thanks to the mesh being compressed, and the low
resolutions that we adopt, a textured image can be rendered
efficiently in 500µs. For smaller scenes of Cambridge
Landmarks [52] and 7scenes [103], starting from the point
cloud of the dataset we optimize a set of 3D Gaussians fol-
lowing [53], which requires only 10min, and can then be
rendered in 600 − 900µs, depending on the scene. Times
were measured on a RTX 4090 GPU.

4.2. Experimental results

In this section, we perform an ablative study to support our
choices and the motivations of the paper, together with visu-
alizations to highlight salient aspects. We then validate our
results on against state-of-the-art (sota) matching methods,
pose regressors and implicit features-based refiners.

Ablation studies. Tab. 1 ablates different architectural
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Method
Cambridge Landmarks

King’s Hospital Shop St. Mary’s

Retrieval
DenseVLAD [110] - 2.8/5.7 4.0/7.1 1.1/7.6 2.3/8.0
CosPlace [8] - 3.1/4.4 4.5/6.7 2.1/6.2 3.2/7.2

SOTA
AS [95]† - 0.13/0.22 0.20/0.36 0.04/0.21 0.08/0.25
hloc [90] TL 0.12/0.20 0.15/0.30 0.04/0.20 0.07/0.21
DSAC* [12] TS 0.15 / 0.3 0.21 / 0.4 0.05 / 0.3 0.13 / 0.4
HACNet [62] TS 0.18 / 0.3 0.19 / 0.3 0.06 / 0.3 0.09 / 0.3
PixLoc [92] TL 0.14/0.24 0.16/0.32 0.05/0.23 0.10/0.34

Pose Regressors
MS-Transformer [102] TS 0.83 / 1.47 1.81 / 2.39 0.86 / 3.07 1.62 / 3.99
DFNet [19] TS 0.73 / 2.37 2 / 2.98 0.67 / 2.21 1.37 / 4.03
LENS [72] TS 0.33 / 0.5 0.44 / 0.9 0.25 / 1.6 0.53 / 1.6

Pose Refiners
FQN [40] TS 0.28 / 0.4 0.54 / 0.8 0.13 / 0.6 0.58 / 2.0
CROSSFIRE [73] TS 0.47 / 0.7 0.43 / 0.7 0.2 / 1.2 0.39 / 1.4
NeFeS (DFNet) [20] TS 0.37 / 0.62 0.55 / 0.9 0.14 / 0.47 0.32 / 0.99
MCLoc (ours) - 0.31 / 0.42 0.39 / 0.73 0.12 / 0.45 0.26 / 0.88

Table 2. Results on the Cambridge Landmarks dataset. We
show that our simple approach outperforms methods that train per-
scene descriptors. TM marks methods trained for feature match-
ing, TL trained for localization, TS trained per scene.

Method Aachen Day-Night v1.1

Day Night

Retrieval
NetVLAD [3] 0.0 / 0.2 / 18.9 0.0 / 0.0 / 14.3
CosPlace [8] 0.0 / 0.4 / 27.1 0.0 / 0.0 / 24.1

Pose Refiners
Pixloc [92] 63.2 / 67.8 / 75.5 38.7 / 47.1 / 60.7
MCLoc (ours) 55.8 / 73.3 / 89.7 42.4 / 66.5 / 86.9

Matching based
AS [95] 85.3 / 92.2 / 97.9 39.8 / 49.0 / 64.3
hloc [90] 87.4 / 95.0 / 98.1 71.7 / 88.5 / 97.9
+ PixLoc refine 86.2 / 94.9 / 98.1 70.8 / 88.5 / 97.9
+ (ours) refine 87.9 / 94.9 / 98.9 73.8 / 88.5 / 97.9

Table 3. Large scale Visual localization on Aachen v1.1 dataset.
We show competitive results against PixLoc refinement, and how
our method can be coupled with sota pipelines to improve results.

choices. For all architectures, we extract dense features and
use them as in Eq. (2). While CosPlace+ImageNet achieves
slightly superior results, our method works regardless of
the architecture, training protocol and/or dataset. These
results expand on the findings of the LPIPS paper [116],
proving the unreasonable effectiveness of generic features
not only for perceptual similarity, but for pose similarity
as well. In particular, Tab. 1 shows that dense features,
trained either on supervised or unsupervised objectives, for
generic classification, place recognition or feature matching
(ALIKED [118]), show the same property that is visualized
in Fig. 3. That is, ability to estimate image alignment, with
high precision in shallower layers, and with wider baselines
in deeper features. These findings also align with the foun-
dation behind transfer learning [28], a cornerstone of mod-
ern computer vision, which can be summarized in very sim-

ple words as ”a good feature is a good feature anywhere”
[116]. These networks, regardless of the architecture or the
pre-training task, learned how to extract generic features,
and we can exploit the natural spatial structure of the feature
maps to discriminate pose variations. In the Supplementary
we also provide an ablation on different scoring functions,
showing that a simple, dense pixelwise comparison is all
you need, against more elaborate formulations.

Baselines. To evaluate whether the generic features that we
adopt are competitive, we benchmark against methods that
train per-scene.
• Pose Regressors: These method train a network to di-

rectly predict the camera pose. We consider DFNet [19],
LENS [72] and MS-Transformer [102]

• Pose Refiners: These are the closest to our method.
Among them, FQN [40], NeFeS [20] and CROSSFIRE
[73] optimize per-scene descriptors in an implicit field
and as such are limited to small scenes. PixLoc [92] trains
features specific for localization on MegaDepth [65].
Their localization pipeline minimizes a feature-metric ob-
jective with first order methods (FQN/NeFeS/Crossfire)
or second order optimizers (PixLoc), whereas we rely on
a simple MonteCarlo algorithm

• Matching based: These methods represent the state-of-
the-art. We show how our method can be coupled with
them to further improve performances

MeshLoc [80] pipeline Top K
Matched Aachen Night v1.1

Textured Mesh
LoFTR [105] 50 73.3 / 89.0 / 95.8
LoFTR [105] 20 71.2 / 89.0 / 94.8
LoFTR [105] 10 70.7 / 86.4 / 94.8
(ours) + LoFTR [105] 20 74.3 / 91.1 / 99.5
(ours) + LoFTR [105] 10 73.8 / 91.1 / 99.1

Raw Geometry
P2P[119] + SG [91] 50 8.4 / 27.7 / 60.7
P2P[119] + SG [91] 10 6.8 / 20.4 / 52.4
(ours) + P2P[119] + SG [91] 1 16.8 / 37.7 / 66.0

Table 4. Preprocessing on Aachen Night: MCLoc can improve
initial poses from retrieval, before a more expensive localizer.

Comparison with methods trained per-scene. In Tab. 2
we compare our method mainly against other refinement
methods [20, 40, 73] and pose regressors [19, 72] on the
Cambridge Landmarks benchmark [52]. The main ratio-
nale of this set of experiments is to compare against ap-
proaches that train scene-specific descriptors and/or repre-
sentations for localization. While pose regressors surely
achieve the faster inference time, they generally perform
worse. Despite the absence of any kind of fine-tuning,
we outperform all implicit feature-based refiners, except a
small gap on King’s College were FQN is slightly better. On
these datasets, our optimization converges in 80 refinement
steps, although satisfying results are achieved much earlier.
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Fig. 5 shows the optimization trajectory on 2 distinct scenes.
Overall, we conclude that to achieve satisfying results there
is no need to fine-tune per-scene, or at all. Among methods
that train per-scene, Scene Coordinate Regressors [12, 62]
perform best.

Method
7 scenes: DSLAM ground truths

median error in (cm/°) ↓
Chess Fire Heads Office Pumpkin Kitchen Stairs

Retrieval
DenseVLAD [110] 21/12.5 33/13.8 15/14.9 28/11.2 31/11.3 30/12.3 25/15.8
CosPlace [8] 31 / 11.4 45 / 14.6 23 / 13.7 43 / 11.2 52 / 11.4 48 / 11.1 46 / 14.8

SOTA
AS [95] 3/0.87 2/1.01 1/0.82 4/1.15 7/1.69 5/1.72 4/1.01
DSAC [13] 2/1.10 2/1.24 1/1.82 3/1.15 4/1.34 4/1.68 3/1.16
HACNet [62] 2/0.7 2/0.9 1/0.9 3/0.8 4/1.0 4/1.2 3/0.8
hloc [90] 2/0.85 2/0.94 1/0.75 3/0.92 5/1.30 4/1.40 5/1.47

Pose Regressors
MS-Transf. [102] 11 / 4.7 24 / 9.6 14 / 12.2 17 / 5.66 18 / 4.4 17 / 6.0 17 / 5.9
DFNet[19] 5 / 1.9 17 / 6.5 6 / 3.6 8 / 2.5 10 / 2.8 22 / 5.5 16 / 2.4
LENS [72] 3 / 1.3 10 / 3.7 7 / 5.8 7 / 1.9 8 / 2.2 9 / 2.2 14 / 3.6

Pose Refiners
FQN-PnP [40] 4 / 1.3 10 / 3.0 4 / 2.4 10 / 3.0 9 / 2.4 16 / 4.4 140 / 34.7
CROSSFIRE [73] 1 / 0.4 5 / 1.9 3 / 2.3 5 / 1.6 3 / 0.8 2 / 0.8 12 / 1.9
MCLoc (ours) 5 / 1.8 4 / 2.0 4 / 1.9 10 / 3.6 10 / 3.7 8 / 3.1 10 / 2.5

SFM ground truths [14]
MS-Transf. [102] 11 / 6.4 23 / 11.5 13 / 13.0 18 / 8.1 17 / 8.4 16 / 8.9 29 / 10.3
DFNet [19] 3 / 1.1 6 / 2.3 4 / 2.3 6 / 1.5 7 / 1.9 7 / 1.7 12 / 2.6
NeFeS [20] 2 / 0.8 2 / 0.8 2 / 1.4 2 / 0.6 2 / 0.6 2 / 0.6 5 / 1.3
MCLoc (ours) 2 / 0.8 3 / 1.4 3 / 1.3 4 / 1.3 5 / 1.6 6 / 1.6 6 / 2.0
(ours) w. DINOv2 [79] 3 / 0.9 4 / 1.8 3 / 1.5 6 / 1.4 7 / 2.1 8 / 1.8 9 / 2.2
(ours) w. RoMa [32] 2 / 0.7 3 / 1.2 2 / 1.0 3 / 1.1 4 / 1.0 5 / 1.4 6 / 1.5

Table 5. Indoor localization. Indoor scenarios are challenging for
our algorithm. Despite this, we achieve competitive results.

Large Scale Localization. Tab. 3 reports results on the
large scale benchmark of Aachen v1.1 [93, 96, 117]. The
objective of these experiments is to demonstrate the applica-
bility of our method in this scenario in which the previously
considered competitors in Tab. 2, namely pose regressors
and refiners based on implicit fields, fail to scale. In this
setting we mainly compare against PixLoc [92], which is
another refinement methods based on a similar idea to our
render&compare framework, with a feature-metric error.
We first report results starting from retrieval initialization,
showing that our algorithm performs better (except on the
finer threshold for Day queries), despite PixLoc trains end-
to-end specialized features for localization. In the Supp.
Mat. we further discuss trade-offs and similarities of our
method with PixLoc, as well as computational cost.
Additionally, the table shows how our method can comple-
ment sota matching-based methods from hloc [90]. In this
setup, we first run localization using the hloc pipeline. We
use the estimated poses as an initialization for our method.
Results show that we are able to obtain more accurate poses
with just 5 refinement steps, adding little overhead.
Tab. 4 reports another use-case for our method. Recently,
MeshLoc [80] has shown a localization pipeline for match-
ing methods using rendered images and a mesh. Depth
maps are used to lift the 2D-2D matches to 2D-3D, instead

of relying on the SfM point cloud. We use our method to
refine the initial estimate from retrieval; in this way we can
provide our refined poses as initialization to a more accu-
rate localizer. The table shows that, starting from our re-
fined poses, it is possible to achieve a boost in performances
while reducing the number of top-K candidates considered.

Indoor Localization. On 7scenes [103], as for Cam-
bridge Landmarks, we compare against method that train on
each scene. Indoor scenarios are more challenging for our
method, since it is common to have repetitive, textureless
surfaces (e.g. walls, floor), which don’t provide a mean-
ingful signal for perceptual similarity. Despite this, we
achieve comparable performances, at the cost of increas-
ing the number of iterations. Another factor that affects the
evaluation on 7scenes is Ground Truth (GT) accuracy. [14]
demonstrated that the original DSLAM labels are inaccu-
rate, and relased an updated version, named SFM labels.
On these more accurate GTs, our results are more compet-
itive. We also test our approach with DINOv2 [79], which
leads to comparable precision wrt ImageNet features. This
is due to the fact that ViT-based models have a fixed patch
size and thus coarser, less-localizable features. To this end,
we test the approach from RoMA [32], which refines DINO
features, and found that they surpass or match other special-
ized pose refiners. However, RoMA was trained for feature
matching, an essential step for pose estimation. The im-
provement suggests that task-specific training can of course
improve performance, opening up interesting directions for
test-time optimization. More details on these methods are
discussed in the Supp. Mat..

5. Conclusion

In this work, we investigated whether generic pre-trained
features can be transferred to the localization task, thus re-
moving the burden of training dedicated descriptors. Build-
ing on the notion that dense feature are robust estimators of
perceptual similarity, we showed a connection between the
latter and pose similarity. We demonstrated that this link
can be exploited to construct a refinement algorithm within
a render & compare framework, paired with MonteCarlo
sampling. Experimental results exhibit that our MCLoc can
be applied in both large and small scenes, either as a stan-
dalone refiner or paired with more accurate localizers, and
that it can outperform several competitor approaches that
optimize dedicated descriptors, especially in outdoor sce-
narios.
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schemes for particle filtering. In ISPA 2005. Proceedings
of the 4th International Symposium on Image and Signal
Processing and Analysis, 2005., pages 64–69. IEEE, 2005.
5

[30] Hugh Durrant-Whyte and Tim Bailey. Simultaneous local-
ization and mapping: part i. IEEE robotics & automation
magazine, 13(2):99–110, 2006. 1

[31] Mihai Dusmanu, Ignacio Rocco, Tomas Pajdla, Marc Polle-
feys, Josef Sivic, Akihiko Torii, and Torsten Sattler. D2-
Net: A trainable CNN for joint detection and description of
local features. In CVPR, 2019. 1

[32] Johan Edstedt, Qiyu Sun, Georg Bökman, Mårten
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