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Abstract

Inherent ambiguity in layout annotations poses signifi-

cant challenges to developing accurate 360◦ room layout

estimation models. To address this issue, we propose a novel

Bi-Layout model capable of predicting two distinct layout

types. One stops at ambiguous regions, while the other ex-

tends to encompass all visible areas. Our model employs

two global context embeddings, where each embedding is

designed to capture specific contextual information for each

layout type. With our novel feature guidance module, the

image feature retrieves relevant context from these embed-

dings, generating layout-aware features for precise bi-layout

predictions. A unique property of our Bi-Layout model is its

ability to inherently detect ambiguous regions by compar-

ing the two predictions. To circumvent the need for manual

correction of ambiguous annotations during testing, we also

introduce a new metric for disambiguating ground truth

layouts. Our method demonstrates superior performance

on benchmark datasets, notably outperforming leading ap-

proaches. Specifically, on the MatterportLayout dataset, it

improves 3DIoU from 81.70% to 82.57% across the full

test set and notably from 54.80% to 59.97% in subsets with

significant ambiguity.

1. Introduction

Room layout estimation from a single 360◦ image has re-

ceived significant attention due to the availability of cheap

360◦ cameras and the demonstration of visually pleasing

room pop-ups. It also plays a vital role in indoor 3D scene

understanding [3, 15, 32, 38] as the room layout constrains

the space where objects are placed and interact. Its perfor-

mance has improved significantly over the years, where the

gain comes from better algorithms design [17, 29, 31, 34],

and more challenging data collected [7, 45]. Despite the

progress, the task formulation of predicting a single layout

*Equal contribution

(a) Enclosed Type Annotation

(b) Extended Type Annotation
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Figure 1. Inherent ambiguity in the MatterportLayout [45]. Blue

and Green represent ground truth annotations and predictions from

the SoTA models, respectively. The layout boundaries are shown on

the left, and their bird’s-eye view projections are on the right. We

define two types of layout annotation: (a) enclosed type encloses

the room. (b) extended type extends to all visible areas. The dashed

lines underscore the ambiguity in the dataset labels.

given a single 360◦ image has never been changed.

Annotating a single layout for each 360◦ image is, in fact,

an ambiguous task. For instance, consider the two images

with openings in Fig. 1, where the ground truth (GT) anno-

tation stops at openings and encloses the nearest room in

Fig. 1(a) while extending to all visible areas inside the open-

ing in Fig. 1(b). Notably, even within the same dataset, there

are variations in how opening regions are annotated. We

observe that this ambiguity issue in annotation is prevalent

across most datasets, and there is a lack of a clear definition

of how to annotate ambiguous regions. Furthermore, state-of-

the-art (SoTA) methods often overlook this ambiguity issue,

leading to inherent inaccuracy during training. As a result,

existing methods may predict in a manner opposite to the GT,

as shown in Fig. 1. In this paper, we define two main types

of layout annotations: enclosed and extended. The former

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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SoTA Prediction Our Extended PredictionOur Enclosed Prediction

Figure 2. Comparions of our Bi-Layout model and the SoTA models. Blue and Green indicate ground truth labels and predictions,

respectively. For each image, the layout boundaries are shown on the left, while their bird’s-eye view projections are shown on the right. Our

Bi-Layout model can predict two extremely different types of layouts (enclosed and extended), addressing the ambiguity issue that the SoTA

methods struggle with.

stops at ambiguous regions and encloses the room, whereas

the latter extends to all visible areas inside the opening.

To address the confusion arising from the ambiguity issue

in model training, as shown in Fig. 3, we propose a novel

Bi-Layout model to simultaneously predict both enclosed

and extended layouts for each image. Our model consists of

three components: a shared feature extractor, two separate

global context embeddings, and a shared feature guidance

module. Two separate global context embeddings are learned

to encode all context information related to the correspond-

ing layout type. The shared feature guidance module guides

the fusion of the shared image feature with our two embed-

dings separately through cross-attention. Specifically, we

use the image feature as the query and each global context

embedding as the key and value. When queried by the im-

age feature, the global context embedding can inject layout

type-related context information into the image feature. This

results in enhanced alignment of the image feature with the

corresponding layout prediction type.

Our model design introduces two key innovations. First,

contrary to the standard Query-Key-Value setting employed

in DETR [2] and other high-level tasks [4, 5, 20, 30, 37, 42],

where embeddings serve as queries to retrieve relevant infor-

mation from the image feature, we invert this relationship

and employ our image feature as the queries. This uncon-

ventional design allows the image feature to be guided by

our embedding, which represents the global information of a

specific layout type. To the best of our knowledge, we are the

first to develop a query-based model for room layout estima-

tion, inherently designed for predicting multiple layouts. The

second innovation lies in the efficiency of our model, which

can predict two layouts with minimal additional model size

overhead. For bi-layout estimations, naive approaches either

train two distinct models with identical architectures on dif-

ferent labels or train a single model by sharing the feature

extractor but separating other components. However, the for-

mer method doubles the model size and training time, while

the latter lacks compactness and grapples with interference

in simultaneously learning two layout types. In contrast, our

model is not only the smallest, achieved by sharing both

the feature extractor and the guidance module, but it also

avoids interference issues by employing separate global con-

text embeddings to guide feature fusion for different layout

types. As shown in Fig. 2, our model is able to predict two

extremely different layouts.

We also introduce a new metric termed as disambiguate

metric to resolve ambiguities in the annotations of test data.

It calculates the Intersection over Unions (IoU) of both pre-

dicted layouts with the ground truth and selects the higher

IoU for evaluation. This is an effective way to quantitatively

measure the benefit of our Bi-Layout estimation without

manually correcting ambiguous annotations during testing.

Another noteworthy feature of our Bi-Layout model is its

ability to detect ambiguous regions with reasonable precision

and recall by comparing two predictions. Our method ex-

hibits superior performance on benchmark datasets, surpass-

ing SoTA methods. On MatterportLayout [45], it enhances

3DIoU from 81.70% to 82.57% on the entire test set and

notably from 54.80% to 59.97% in subsets with substantial

ambiguity.

The main contributions of this work are:

• We clearly identify layout ambiguity issues in existing

datasets and propose a disambiguate metric to measure the

accuracy with multiple predictions effectively.

• We propose a novel Bi-Layout model that utilizes two

global context embeddings with a shared feature guidance

module to generate multiple layout predictions while keep-

ing the model compact.

• We evaluate our method with extensive experiments and

prove it outperforms SoTA methods in all settings, show-

ing that our Bi-Layout model effectively resolves the lay-

out ambiguity issues.

2. Related Work

360◦ room layout estimation. In 360◦ room layout es-

timation, prior methods follow the Manhattan World as-
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Figure 3. Our Bi-Layout network architecture. (a) Feature extractor: It processes a panoramic image I using ResNet-50 to extract

multi-scale features Fl, and then feed those feature into the Simplified Height Compression Module (SHCM) to produce the final compressed

feature Fc. (b) Global Context Embedding: It consists of two learnable embeddings Ek, each designed to capture and encode the contextual

information inherent in the corresponding type of layout labels. (c) Shared Feature Guidance Module: It consists of two components:

Guided Cross-Attention and SWG Self-Attention. It guides the fusion of compressed feature Fc with the global context embedding Ek to

generate feature F k
g (k ∈ [extended, enclosed]) more aligned for the corresponding layout type. Finally, we use fully connected (FC) layers

to map F k
g to horizon-depth and room height, which are further converted to boundary layouts (Pextended and Penclosed).

sumption [6]. For instance, LayoutNet [44] predicts corner

and boundary probability maps directly from panoramas.

Dula-Net [36] predicts 2D-floor plane semantic masks from

equirectangular and perspective views of ceilings. Zou et al.

presents improved versions, LayoutNet v2, and Dula-Net

v2 [45], demonstrating enhanced performance on cuboid

datasets. Fernandez et al. adopts equirectangular convolu-

tions (EquiConvs) [8] for generating corner and edge proba-

bility maps. HorizonNet [31] and HoHoNet [32] simplify lay-

out estimation by employing 1D representations and employ-

ing Bi-LSTM [14, 27] and multi-head self-attention mech-

anisms [33] to establish long-range dependencies. LED2-

Net [34] reformulates layout estimation as predicting the

depth of walls in the horizontal direction. AtlantaNet [24]

predicts room layouts by combining projections of the floor

and ceiling planes. DMH-Net [41] transforms panorama into

cubemap [9] and predicts the position of intersection lines

with learnable Hough Transform Block [40]. LGT-Net [17]

employs self-attention transformers [33] to learn geometric

relationships and capture long-range dependencies. DOP-

Net [29] disentangles 1D feature by segmenting features

into orthogonal plane representation, and uses GCN [18] and

transformer [33] to refine the features.

These methods are designed only to predict a single lay-

out, which often encounters challenges posed by the inherent

ambiguity in dataset labels, resulting in suboptimal perfor-

mance. In contrast, our Bi-Layout model addresses this issue

by generating two distinct layout predictions through the

innovative integration of global context embeddings and our

shared feature guidance module design.

Multiple layout hypotheses. Several prior studies [10, 12,

13, 19, 25, 26, 28, 35, 39] have employed multiple hypothe-

ses in their methods for estimating room layouts. The fun-

damental concept behind these methods involves leveraging

vanishing points, edges, or other pertinent information to

generate several rays or boxes as potential layout hypothe-

ses. Through various scoring function designs, one of the

hypotheses can be selected as the prediction that best fits

the room. In contrast, our method generates two distinct

layout predictions, which can also be viewed as having two

hypotheses. However, the key disparity lies in the fact that

the previous methods only have one hypothesis defining the

correct geometry. On the contrary, both of our predictions

are meaningful and offer two different geometries, extended

and enclosed layouts, allowing for flexibility in choosing the

suitable one based on the specific requirements of different

use cases.

Query-based vision transformer. Transformers [33] have

exhibited considerable efficacy in various high-level com-

puter vision tasks, including object detection [2, 43], seg-

mentation [4, 5], tracking [20, 42], and floorplan reconstruc-

tion [30, 37]. The standard transformer decoder utilizes fea-

ture embeddings as queries to extract relevant features from

the image feature, which acts as both the key and value.

Unlike the standard query-based transformer, our proposed

design utilizes the image feature as the query with our global

context embedding as the key and value. This unique design

allows our model to predict two distinct layouts, a departure

from prior methods that predict only a single layout.

3. Inherent Ambiguity in Labeled Data

We systematically examine instances of low IoU in the SoTA

methods [17, 29, 34] using MatterportLayout dataset [45].

Our analysis identifies two types of ambiguity. First, when a

enclosed type GT label is given, the SoTA methods predict re-

gions located outside of that designated room (See Fig. 1(a)).

Conversely, when a extended type GT label is given, the

SoTA methods concentrate on the room where the camera is

positioned (See Fig. 1(b)). These findings underscore inher-

ent ambiguity within the testing GT labels. Moreover, since
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the SoTA models will predict either enclosed or extended

types of layouts, the same ambiguity is likely to be within

the training GT labels as well. This presents a substantial

challenge for single-prediction-based SoTA methods.

4. Method

To address the ambiguity issue in the dataset labels, we in-

troduce our Bi-Layout model as shown in Fig. 3, which

can generate two types of layout predictions Pextended and

Penclosed. Our model mainly consists of three modules: fea-

ture extractor (Sec. 4.1), global context embedding (Sec. 4.2),

and shared feature guidance module (Sec. 4.3). We describe

each component and the training objectives (Sec. 4.4) used

for training our Bi-Layout model in the following sections.

4.1. Feature Extractor

The feature extractor in our Bi-Layout model is shown in

Fig. 3(a). We follow previous works [17, 29, 31, 34] to use

ResNet-50 [11] architecture to extract 2D image features Fl

of 4 different scales from the input panorama I . For each

feature scale, we modify the module from [31] as Simpli-

fied Height Compression Module (SHCM) to compress the

features along the image height direction and generate 1D

feature of the same dimension R
N×

D

4 , where N is the width

of feature map and D is the feature dimension. Finally, we

concatenate these features from different scales to generate

the final compressed feature Fc ∈ R
N×D, where N = 256

and D = 512.

In contrast to previous works [17, 31, 34] setting D =
1024, our design reduces model parameters. By pruning our

feature representation, we enhance the model’s efficiency

without compromising its effectiveness. To assess this design

choice, we present detailed ablation studies in Sec. 5.5.

4.2. Global Context Embedding

Once the compressed feature Fc is extracted, we introduce a

novel and learnable embedding mechanism termed as Global

Context Embedding. This mechanism captures and encodes

the overarching contextual information in a specific layout

label, as illustrated in Fig. 3(b). We employ two learnable

embeddings Ek ∈ R
N×D where k ∈ [extended, enclosed],

one for extended and the other one for enclosed type. Dur-

ing training, these embeddings learn and encode diverse

contextual information associated with different types of

layout annotation. Moreover, they play a vital role in provid-

ing the dataset’s global context information when queried

by the compressed image feature Fc via cross-attention in

our shared feature guidance module (refer to Sec. 4.3). By

infusing our compressed feature Fc with this rich layout

type-related embedding Ek, we generate diverse and mean-

ingful predictions (Pextended and Penclosed), each aligned with

a distinct global context of the dataset label.
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Figure 4. Our Shared Feature Guidance Module architecture

(SFGM). It consists of two blocks: Guided Cross-Attention and

SWG Self-Attention. The module has M = 8 layers, and the

structure of each layer is identical. Given the compressed image

feature Fc and global context embedding Ek, we first apply the

sinusoidal and learnable positional encoding, respectively. With

the compressed feature Fc as the query Q and our global context

embedding Ek as both the key K and value V, our guided cross-

attention generates the feature F k
gca, and it is served as QKV

inputs to SWG self-attention. This process will repeat and further

refine the output feature with our global context embedding to

generate the final guided feature F k
g .

4.3. Shared Feature Guidance Module

Building upon the compressed image feature Fc and the

global context embeddings Ek, as shown in Fig. 3(c), we

present an innovative component called Shared Feature Guid-

ance Module (SFGM). This module can effectively guide

the fusion of the image feature with the target global context

embedding. Specifically, we share the compressed image

feature Fc and use different global context embeddings Ek

(one at a time) as the inputs for our shared feature guidance

module SFGM(·) to generate corresponding guided feature

F k
g ∈ R

N×D, denoted as:

F k
g = SFGM(Fc, Ek), k ∈ [extended, enclosed]. (1)

Our shared feature guidance module consists of Guided

Cross-Attention and SWG Self-Attention as the building

blocks, and the details of the architecture are shown in Fig. 4.

The standard cross-attention setting in DETR [2] or other

high-level tasks [4, 5, 20, 30, 37, 42] uses embeddings as the

query Q to retrieve relevant information from the correspond-

ing image feature, which acts as both the key K and value V

in order to generate the target outputs. In our scenario, if we

adopt the standard QKV setting, the shared image feature

Fc alone may not carry sufficient information to distinguish

between the two types of distinct layouts. Therefore, we

reverse this relationship and use our global context embed-

dings Ek to learn from corresponding labels, guiding the

image feature Fc to generate the desired layout types.

As shown in Fig. 4, we use the compressed feature Fc

as the query Q and our global context embedding Ek as

both the key K and value V in our guided cross-attention
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GCA(·):

Q = (Fc + PEsin)Wq, K = (Ek + PElearn)Wk,

V = (Ek + PElearn)Wv, F k
gca = GCA(Q,K,V),

(2)

where F k
gca ∈ R

N×D is the output of our guided cross-

attention block. We apply different positional encoding

strategies for these features, utilizing learnable positional

encoding [2] PElearn ∈ R
N×D for our global context

embedding Ek and sinusoidal positional encoding [1, 21]

PEsin ∈ R
N×D for the compressed image feature Fc. Each

feature is then multiplied by its respective learnable weights

Wq/k/v ∈ R
D×D. This unique design choice enables us to

enrich the image feature Fc by effectively incorporating our

global context embedding Ek. Subsequently, this enriched

feature F k
gca is served as QKV inputs to the SWG self-

attention module [17] for further enhancement. As demon-

strated in [17], the SWG self-attention module can effec-

tively establish local and global geometric relationships

within the room layout. Then, the process of guided cross-

attention and SWG self-attention is repeated several times

to refine the image feature with our context embeddings to

generate the final guided feature F k
g , as shown in Fig. 4.

By employing this novel cross-attention design, we

achieve an enriched and context-aware guided feature rep-

resentation F k
g that is subsequently utilized for generating

our Bi-Layout predictions (Pextended and Penclosed), each pos-

sessing distinct and valuable properties. This flexibility in

our method enables us to provide diverse layout predictions

tailored to different global context embeddings Ek and input

panorama features Fc. Built on this architectural design, our

model can be compact and efficient to generalize to more

label types by increasing global context embeddings Ek.

4.4. Training Objective

After obtaining the target feature F k
g , we follow [17, 29]

using fully connected (FC) layers to map the feature F k
g to

horizon-depth dk = {dik}
N
i=1

and room height hk, where N

is the width of the feature map. We can apply the explicit

transformation to convert the horizon depth and room height

to layout boundaries Pk on the panorama. We further convert

column-wise depth dik into depth normal ni
k and gradient of

normal gik, k ∈ [extended, enclosed].
The loss functions for depth, normal, gradient, and room

height are defined as follows:

Lk
depth =

1

N

∑

i∈N

|dik − digt|, L
k
normal =

1

N

∑

i∈N

(−ni
k · ni

gt),

Lk
gradient =

1

N

∑

i∈N

|gik − gigt|, L
k
height = |hk − hgt|,

(3)

where digt, n
i
gt, g

i
gt, and hgt denote the ground truth of depth,

normal, gradient, and room height respectively. We calculate

the L1 loss for depth loss, gradient loss, height loss, and

cosine similarity for normal loss. Our branch loss Lk is:

Lk = λdL
k
depth + λnL

k
normal + λgL

k
gradient + λhL

k
height, (4)

where k ∈ [extended, enclosed] and the final loss Ltotal =
Lextended + Lenclosed. We set λd = 0.9, λn = 0.1, λg = 0.1
and λh = 0.1 for both branches to balance the model weight.

5. Experiments

We conduct our experiments on a single NVIDIA RTX 4090

GPU and implement the proposed method with PyTorch [22].

For training, we use a batch size of 12 and set the learning

rate to 1× 10−4. We select Adam as our optimizer, adhering

to its default configurations. For the data augmentation, we

use the technique proposed in [31], including left-right flip-

ping, panoramic horizontal rotation, luminance adjustment,

and panoramic stretch.

5.1. Datasets

MatterportLayout. MatterportLayout [45] contains 2295

samples labeled by Zou et al. [45]. However, as we ana-

lyzed in Sec. 3, this dataset has annotation ambiguity, and

many images with ambiguity are annotated with the extended

type. Hence, we propose a semi-automatic procedure (pro-

vide the details in supplementary material) to re-annotate

enclosed type labels from the ambiguous extended ones. We

re-annotate 15% of the labels in the whole dataset. Note

that these new labels of enclosed type plus the remaining

85% of original labels will be used to train our Bi-Layout

model’s enclosed branch. In contrast, all original labels will

be used to train the extended branch. For a fair comparison

with SoTA methods, we use the original label and the same

testing split for evaluation.

ZInD. ZInD [7] dataset is currently the largest dataset with

room layout annotations. It provides both raw and visible

labels, which is similar to our defined enclosed and extended

types, respectively. Besides, ZInD separates the data into

simple and complex subsets based on whether the images

have contiguous occluded corners. Therefore, we have two

variants of ZInD in our experiments: (a) ZInD-Simple rep-

resents the simple subset and consists of 24882, 3080, and

3170 panoramas for training, validation, and testing splits.

(b) ZInD-All represents the whole dataset with 50916, 6352,

and 6352 panoramas for each split. It has complex opening

regions, resulting in more severe ambiguity issues. Therefore,

it can better evaluate the robustness of different methods for

handling the ambiguity issue. In both ZInD dataset variants,

we use the raw and visible labels to train our enclosed and ex-

tended branches, respectively, and follow the SoTA methods

to test on raw labels for a fair comparison.
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(a) Full set MatterportLayout [45] ZInD-Simple [7] ZInD-All [7]

Method # Params 2DIoU(%) 3DIoU(%) 2DIoU(%) 3DIoU(%) 2DIoU(%) 3DIoU(%)

LED2Net [34] 82 M 82.37 80.05 90.20 88.34 82.31 80.28

LGT-Net [17] 136 M 83.52 81.11 91.77 89.95 84.07 82.09

DOP-Net [29] 137 M 84.11 81.70 91.94 90.13 83.92 81.87

Ours (equivalent branch) 102 M 84.56 82.05 92.07 90.25 84.90 82.96

Ours (disambiguate) 102 M 85.10 82.57 92.79 90.95 86.21 84.22

(b) Subset MatterportLayout [45] ZInD-Simple [7] ZInD-All [7]

Method # Params 2DIoU(%) 3DIoU(%) 2DIoU(%) 3DIoU(%) 2DIoU(%) 3DIoU(%)

LED2Net [34] 82 M 53.57 51.12 45.31 44.10 48.76 47.35

LGT-Net [17] 136 M 53.17 50.54 53.20 52.00 50.89 49.58

DOP-Net [29] 137 M 57.13 54.80 51.55 50.26 50.92 49.46

Ours (equivalent branch) 102 M 59.85 57.08 55.09 53.76 54.22 52.78

Ours (disambiguate) 102 M 62.81 59.97 62.10 60.63 60.20 58.53

Table 1. Full set and Subset evaluation. Equivalent branch represents the output, which is trained with the same label as baseline methods.

Disambiguate is our proposed metric.

5.2. Disambiguate Metric

If we already know the layout type of each test image, we

can use this information to select the output from the corre-

sponding branch for evaluation. However, we find that the

test data has annotation ambiguity; even the raw labels in

ZInD are still not exempt from this issue.

To address the above issue and demonstrate our model’s

capability to handle the annotation ambiguity, we introduce

a new metric, termed the disambiguate metric, as follows:

IoUdisambiguate =

S∑

i=0

arg max
P i

k
∈P

IoU(P i
gt, P

i
k), (5)

where P i
k ∈ P, k ∈ [extended, enclosed] denotes layout

predictions from both branches and P i
gt denotes the ground

truth layout. We first calculate the Intersection over Union

(IoU) between each prediction and ground truth (GT) for

each image and then select the higher IoU for averaging

all samples. This is because the higher IoU serves as the

disambiguate prediction and represents the most suitable

prediction when encountering ambiguity.

The proposed metric effectively provides a robust and

quantitative measure of how a method excels in handling

ambiguous scenarios within the dataset without necessitating

manual corrections to the ambiguous annotations. In other

words, we can use the labels provided by the original dataset

to do the evaluation.

5.3. Comparison with State­of­the­Art Methods
Evaluation settings. Since our model outputs two layouts,

we propose to compare our method with the SoTA meth-

ods in two ways. Using the equivalent branch: We use

the output from the branch trained with the same data as

other methods. Specifically, we use the output from extended

branch for the MatterportLayout dataset and the output from

enclosed branch for ZInD to fairly compare with other meth-

ods. Using both branches with disambiguate metric: We

use the proposed disambiguate metric as defined in Sec. 5.2

to evaluate the performance of our method.

Full set evaluation. We present quantitative results on

three different datasets in Table 1(a). As the SoTA meth-

ods do not experiment on the ZInD-All dataset, we retrain

all baseline models based on their official repositories. The

results demonstrate that our equivalent branch consistently

outperforms SoTA methods across all datasets, underscoring

the advantages of joint training with bi-layout data. Further-

more, our disambiguated results surpass these benchmarks,

affirming the existence of ambiguity in the original annota-

tions. Our Bi-Layout model effectively mitigates this issue

by selecting the most appropriate prediction. Notably, in

terms of model size, our architecture, despite generating

bi-layout predictions, maintains a smaller total parameter

size compared to the SoTA models. This underscores the

efficiency of our design in achieving superior performance

with a more compact model.

Subset evaluation. To highlight the ambiguity issue, we

select a subset based on the failure predictions of all the

previous SoTA models [17, 29, 34]. For each SoTA model,

we find images with the 2DIoU evaluation lower than 0.6.

Next, we combine all these failure cases among all the SoTA

models to construct the subset. Finally, the subsets consist

of 11%, 6%, and 18% of the test data in three datasets, re-

spectively. The quantitative results in Table 1(b) reveal a

more pronounced performance gap between our method and

the SoTA models, with differences reaching up to 9.28%
in 2DIoU on the most ambiguous ZInD-All dataset. We

also provide the qualitative results in Fig. 5, where a bird’s-
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(b) Qualitative comparison on the ZInd [7] dataset.

Figure 5. Qualitative comparison on the MatterportLayout [45] (top) and ZInd [7] datasets (bottom). Blue and Green represent ground truth

labels and predictions, respectively. The boundaries of the room layout are on the left, and their bird’s eye view projections are on the right.

We show our disambiguate results, which effectively address the ambiguity issue, while the SoTA methods struggle with the ambiguity, as

highlighted in dashed lines.

eye view of the predictions vividly illustrates the significant

challenges posed by ambiguity. This confirms that layout

ambiguity is a key cause for low IoUs of previous methods,

and our Bi-Layout estimation is effective in addressing the

issue and performs remarkably well in this subset.

5.4. Ambiguity Detection

Our Bi-Layout model can naturally detect ambiguous re-

gions by comparing the per-column pixel difference between

two predicted layout boundaries. This per-column pixel dif-

ference can serve as our predicted confidence score. If the

difference is larger, the column is more likely to be an am-

biguous region (i.e., typically an opening room structure).

We formulate the detection of ambiguous regions into a bi-

nary classification task where GT ambiguous regions are

columns with more than 2 pixels’ difference between two

annotations of the extended and enclosed types. We predict

Figure 6. Qualitative results for ambiguity detection. Blue and

Green on the top and bottom rows represent ground truth and

predicted confidence, respectively. Cyan and Megenta lines are

our extended and enclosed type layout predictions. With these two

predictions, our model can accurately detect ambiguous regions.

columns with more than 10 pixels’ difference between pre-

dicted layouts as ambiguous regions. We test this method on

ZInD as it is the only dataset that provides both types of GT
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Figure 7. Model architecture comparison. We show the different

model architecture designs for predicting multiple layouts. Please

refer to Table 3 for quantitative comparison.

labels (i.e., raw and visible) in testing. Our method achieves

a reasonably high Precision of 0.82 and Recall of 0.71. More-

over, the qualitative results in Fig. 6 further demonstrate that

our method can indeed detect ambiguous regions. We be-

lieve this is particularly useful for applications where the

model can highlight ambiguous regions and let the users

select suitable predictions for their use cases.

5.5. Abalation Studies

Different feature fusion designs. To fuse the information

from image features and our global context embeddings, we

conduct comprehensive ablation studies to validate the ef-

fectiveness of different designs. The fusion methods include

add, concatenation, AdaIn [16], and FiLM [23]. We further

investigate two Query-Key-Value (QKV) feature designs in

our shared feature guidance module.

The results in Table 2 show that our proposed design sig-

nificantly outperforms all feature fusion methods and the

standard cross-attention setting, where the global context

embedding Ek served as query Q. The compressed image

feature Fc served as key K and value V. This demonstrates

that our design can effectively utilize contextual informa-

tion within the embedding Ek to enhance the alignment of

the compressed feature Fc with the corresponding layout

prediction type.

Comparions of model architectures. As shown in Fig. 7,

we compare three model architectures to predict multiple

layouts. We conduct the quantitative comparison in Table 3.

Two models: Training two models of the same architecture to

predict two layout types is the most straightforward design

(Fig. 7(a)). This architecture achieves good performance

without interference between learning two types of layout.

However, this doubles the model size and training time.

Two transformers: An alternative is to share the feature

extractor but separate the transformer and prediction head

(Fig. 7(b)). This saves model size a little, but the performance

drops significantly as it cannot handle the interference when

learning two types of layouts simultaneously.

Design Q KV 2D IoU (%) 3D IoU (%)

Add 83.79 81.26

Concat 84.17 81.44

AdaIn [16] 83.28 80.54

FiLM [23] 84.08 81.39

Standard Ek Fc 83.34 80.85

Ours Fc Ek 85.10 82.57

Table 2. Comparison of QKV feature designs. Fc is the com-

pressed feature, and Ek is our global context embedding. We

evaluate different designs of QKV features in the Shared Feature

Guidance Module on MatterportLayout [45] with our proposed

disambiguate metric.

Method # Params 2DIoU(%) 3DIoU(%)

Two models 272 M 85.29 82.72

Two Transformers 203 M 84.35 81.88

Ours (c = 1024) 172 M 85.25 82.76

Ours (c = 512) 102 M 85.10 82.57

Table 3. Model size and performance trade-off. In this part, we

only compare to the LGT-Net [17] model variances (i.e., The first

two rows) since our model is built on top of its architecture. In

the third row, c represents the # channel of the image feature. We

conduct these quantitative evaluations on MatterportLayout [45]

with our proposed disambiguate metric. Our final model strikes the

best balance between performance and parameter efficiency.

Our model: Our model is the smallest as we share both

the feature extractor and transformer and only separate the

lightweight prediction head (Fig. 7(c)). To reduce the in-

terference in learning two layouts, we introduce two learn-

able global context embeddings, which can inject layout

type-related context information into the image feature via

cross-attention. Therefore, our model achieves comparable

or better performance than others. In addition, there is only

a slight performance drop if we further reduce the model

size by reducing the compressed feature channel dimension

from 1024 to 512. Our final model (c = 512) balances per-

formance and parameter efficiency best.

6. Conclusion

We propose a novel Bi-Layout model to generate two dis-

tinct predictions, effectively resolving the layout ambiguity.

Most importantly, we introduce a novel embedding mech-

anism with a shared feature guidance module, where each

embedding is designed to learn the global context inherent

in each type of layout. Our model strikes a good balance

between model compactness and prediction accuracy with

these designs. In addition, we propose a disambiguate met-

ric to evaluate the accuracy with multiple predictions. On

MatterportLayout [45] and ZInD [7] datasets, our method

outperforms other state-of-the-art methods, especially on the

subset setting with considerable ambiguity.
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