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Figure 1. MotionEditor: A diffusion-based video editing method aimed at transferring motion from a reference to a source.

Abstract

Existing diffusion-based video editing models have made
gorgeous advances for editing attributes of a source video
over time but struggle to manipulate the motion informa-
tion while preserving the original protagonist’s appear-

∗Corresponding authors.

ance and background. To address this, we propose Mo-
tionEditor, the first diffusion model for video motion edit-
ing. MotionEditor incorporates a novel content-aware mo-
tion adapter into ControlNet to capture temporal motion
correspondence. While ControlNet enables direct genera-
tion based on skeleton poses, it encounters challenges when
modifying the source motion in the inverted noise due to
contradictory signals between the noise (source) and the
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condition (reference). Our adapter complements Control-
Net by involving source content to transfer adapted control
signals seamlessly. Further, we build up a two-branch ar-
chitecture (a reconstruction branch and an editing branch)
with a high-fidelity attention injection mechanism facilitat-
ing branch interaction. This mechanism enables the editing
branch to query the key and value from the reconstruction
branch in a decoupled manner, making the editing branch
retain the original background and protagonist appearance.
We also propose a skeleton alignment algorithm to address
the discrepancies in pose size and position. Experiments
demonstrate the promising motion editing ability of Mo-
tionEditor, both qualitatively and quantitatively. To the best
of our knowledge, MotionEditor is the first to use diffusion
models specifically for video motion editing, considering
the origin dynamic background and camera movement.

1. Introduction
Diffusion models [5, 9, 11, 12, 22, 25, 31, 39, 40, 42, 46,
55, 56] have achieved remarkable success in image and
video generation, which inspired plenty studies in video
editing [3, 17, 19, 29, 47, 49, 50]. While significant progress
has been made, existing diffusion models for video editing
primarily focus on texture editing, such as attribute manip-
ulation for protagonists, background editing, and style edit-
ing. The motion information, which is widely studied in
video understanding [34, 38, 41, 48] and stands out as the
most unique and distinct feature when compared to images,
is mostly ignored. This raises the question: Can we manip-
ulate the motion of a video in alignment with a reference
video? In this paper, we attempt to explore a novel, higher-
level, and more challenging video editing scenario—motion
editing. Given a reference video and prompt, we aim to
change the protagonist’s motion in the source to match the
reference video while preserving the original appearance.

To date in literature, researchers have explored human
motion transfer [20] and pose-guided video generation [21].
The former focuses on animating still images based on ref-
erence skeletons, while the latter tries to generate pose-
aligned videos without preserving a desired appearance.
Motion editing differs in that it directly modifies the mo-
tion in video while preserving other information, such as
dynamic per-frame background and camera movement.

Recent advancements in visual editing have mainly
emerged through the use of diffusion models [2, 21, 24, 35,
52, 54]. For example, ControlNet [52] enables direct con-
trollable generation conditioned on poses. However, they
suffer from severe artifacts when trying to edit the motion
according to another pose. We hypothesize the reason is
that the control signals are only derived from the reference
poses, which cannot properly accommodate the source con-
tent, thus resulting in a contradiction. Some methods also

lack the ability to preserve the appearance of the protago-
nist and background, as well as the temporal consistency.
In this paper, we rethink the fundamental efficacy of Con-
trolNet. We argue that it is essential to involve the source
latent when generating the controlling signal for the editing
task. With the help of source contents, the condition guid-
ance can precisely perceive the entire context and structures,
and adjust its distribution to prevent undesired distortion.

To this end, we propose MotionEditor, depicted in Fig.
2, to take one step forward in exploring video motion edit-
ing with diffusion models. MotionEditor requires one-shot
learning on a source video to preserve the original tex-
ture feature. We then introduce a content-aware motion
adapter appended to ControlNet for enhancing control ca-
pability and temporal modeling. The adapter consists of
content-aware blocks and temporal blocks. In particular,
content-aware blocks perform cross-attention to incorpo-
rate the source frame feature, which significantly boosts the
quality of motion control.

At inference time, a skeleton alignment algorithm is de-
vised to counter the size and position disparities between
source and reference skeletons. We further propose an at-
tention injection mechanism based on a two-branch archi-
tecture (reconstruction and editing branches) to preserve the
source appearance of the protagonist and the background.
Previous attention fusion strategies directly inject the atten-
tion map or key into the editing branch. The direct injection
may result in confusion between the edited foreground and
background. In some cases, it would bring noise to the edit-
ing branch, thereby resulting in the phenomenon of over-
lapping and shadow flickering. To avoid this, we propose to
decouple the keys/values in the foreground and background
using a segmentation mask. The keys/values in the editing
branch are thus supplemented by those from the foreground
and background in the reconstruction branch. As such, the
editing branch is able to capture the background details and
the geometric structure of the protagonist from the source.

In conclusion, our contributions are as follows: (1) We
are the first to explore video diffusion models for motion
editing, which is usually ignored by previous video editing
works. (2) A novel content-aware motion adapter is pro-
posed to enable the ControlNet to perform consistent and
precise motion editing. (3) We propose a high-fidelity at-
tention injection mechanism that preserves the background
information and the geometric structure of the protagonist
from the source. The mechanism is only active during infer-
ence, making it training-free. (4) We conduct experiments
on in-the-wild videos, where the results show the superior-
ity of our method compared with the state-of-the-art.

2. Related Work
Diffusion for Image Editing Image generation has been
remarkably improved with diffusion models [31], surpass-
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ing previous GAN models [7, 8, 27, 28, 44] in quality
and editing capabilities. Building on the pioneering work
by [31], researchers have made progress in this direction.
Meng et al. propose SDEdit, the first approach that en-
ables image editing via inversion and reversion. This allows
more precise control over the edits compared with previous
GAN-based approaches. Prompt-to-Prompt [9] and Plug-
and-Play [42] introduce techniques to generate more coher-
ent hybrid images, tackling the inconsistent noise. Mean-
while, UniTune [43] and Imagic [16] focus on personalized
fine-tuning of diffusion models. In short, these approaches
enable edits that remain truer to the original image.

To generate diverse contents, researchers have proposed
several controllable diffusion models [6, 13, 26, 32, 33, 52].
Zhang et al. introduce ControlNet, which enables Sta-
ble Diffusion [31] to embrace multiple controllable condi-
tions for text-to-image synthesis. Cao et al. propose Mas-
aCtrl, which converts existing self-attention into mutual
self-attention to achieve non-rigid image synthesis. Over-
all, these approaches have advanced diffusion-based image
editing by handling inconsistent noise, fine-tuning strate-
gies, and inversion-based editing. However, it remains an
open challenge to enable precise semantic edits while main-
taining perfect fidelity and coherence.

Diffusion Models for Video Editing and Generation
Video editing is complex, which demands temporal con-
sistency in editing. Most methods [47, 49] use existing
T2I diffusion models with an additional temporal modeling
module. Tune-a-Video [47], SimDA [51], and Text2Video-
Zero [17] inflate 2D diffusion models to 3D models.
FateZero [29] and Vid2Vid-zero [45] use mutual attention
to ensure consistency of geometry and color. On the other
hand, Text2LIVE [1] and StableVideo [4] decompose video
semantics by leveraging layered neural atlas [15]. However,
these models are limited to low-level attribute editing and
cannot edit complex information such as motion.

Recently, pose-driven video generation has become pop-
ular. Follow-Your-Pose [21] extracts coarse temporal mo-
tion information by implementing an adapter on the text-to-
image diffusion model. ControlVideo [54] introduces full
cross-frame attention by extending ControlNet to videos.
However, these methods focus on video generation rather
than motion editing, resulting in distortion of the protago-
nist and background. Unlike these models, our MotionEd-
itor aims to perform motion editing while preserving the
appearance of the original video.

Human Motion Transfer This task aims to transfer the
motion from a video to a target image, enabling animation
of the target. Previous GAN-based methods [14, 18, 20,
36, 37] have tackled this task but struggle with complex
motions and backgrounds. LWG [20] uses 3D pose pro-
jection for motion transfer but cannot model internal mo-
tions well. FOMM [36] approximates motion transfer via

boundary key points. MRAA [37] exploits regional fea-
tures to capture part motion, yet the performance is limited
on complex scenes. To address these limitations, we pro-
pose MotionEditor for high-quality motion editing on com-
plex motions and backgrounds. In contrast to prior work, it
leverages diffusion models capable of generating consistent
details even for intricate motions and backgrounds.

3. Preliminaries
Diffusion models [11, 25, 39] have recently shown promis-
ing results for synthesizing high-quality and diverse con-
tents using iterative denoising operations. They consist of a
forward diffusion process and a reverse denoising process.
During the forward process, models equipped with a pre-
defined noise schedule αt add random noise to the source
sample x0 at time step t for obtaining a noised sample xt:

q(x1:T ) = q(x0)

T∏
t=1

q(xt|xt−1),

q(xt|xt−1) = N (xt;
√
αtxt−1, (1− αt)I).

(1)

The original input x0 is inverted into Gaussian noise xT ∼
N (0,1) after T forward steps. The reverse process attempts
to predict a cleaner sample xt−1 based on xt by removing
noise. The process is depicted as:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),σ
2
t I), (2)

where µθ(xt, t) and σ2
t indicate the mean and variance of

the sample at the current time step. Only the mean is cor-
related with the time step and noise, while the variance is
constant. The denoising network εθ(xt, t) aims to predict
the noise ε by training with a simplified mean squared error:

Lsimple = Ex0,ε,t(∥ε− εθ(xt, t)∥2). (3)

Once the model is trained, we feed xT ∼ N (0,1) to the
diffusion model and iteratively perform DDIM sampling for
predicting cleaner xt−1 from the noise sample xt of a pre-
vious time step. The process is shown as follows:

xt−1 =
√
αt−1

xt −
√
1− αtεθ(xt, t)√

αt
+

√
1− αt−1εθ(xt, t).

(4)
One can also inject a text prompt p into the prediction
model εθ(xt, t,p) as a condition, where the diffusion model
can perform T2I synthesis. Recent work [31] introduces
an encoder E to compress images x into a latent space
z = E(x), and a decoder D to transfer the latent embedding
back to the pixel space. In this way, the diffusion process is
performed in the latent space.

4. Method
4.1. Architecture Overview

As illustrated in Fig. 2, MotionEditor is based on the com-
monly used T2I diffusion model (i.e. LDM [31]) and Con-
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Figure 2. Architecture overview of MotionEditor. In training, only the motion adapter and temporal attention in U-Net are trainable. In
inference, we first align the source and reference skeletons through resizing and translation. We then build a two-branch framework: one
for reconstruction and the other for editing. Motion adapter enhances the motion guidance of ControlNet by leveraging the information
from the source latent. We also inject the key/value in the reconstruction branch into the editing branch to preserve the source appearance.

trolNet [52]. We first inflate the spatial transformer in the
U-Net of the LDM to a 3D transformer by appending a
temporal self-attention layer. We also propose Consistent-
Sparse attention, described in Sec. 4.3, to replace the spa-
tial self-attention. To achieve precise motion manipula-
tion and temporal consistency, we design a content-aware
motion adapter, operating on features from the U-Net and
conditional pose information from the ControlNet. Fol-
lowing [47], we perform one-shot training to compute the
weights for the temporal attention module and the motion
adapter to reconstruct the input source video.

During inference, given a reference target video Xrf ,
MotionEditor aims to transfer the motion of Xrf to the
source while preserving the appearance information of the
source. To this end, we first develop a skeleton alignment al-
gorithm to narrow the gap between source skeleton Ssr and
reference skeleton Srf by considering the position and size,
and produce a refined target skeleton S̄tg . We then employ
the DDIM inversion [39] on pixel values of the video to pro-
duce a latent noise that serves as the starting point for sam-
pling. More importantly, we introduce a high-fidelity atten-
tion injection module exploring a carefully designed two-
branch network. One is dedicated to reconstruction, while
the other one focuses on editing. More specifically, the edit-
ing branch takes features from the refined target skeleton as
inputs, transferring the motion information from the refer-
ence to the source. Meanwhile, critical appearance informa-
tion encoded in the reconstruction branch is further injected
into the editing branch so that the appearance and the back-
ground are preserved. Below, we introduce the proposed
components in detail.

4.2. Content-Aware Motion Adapter

Our goal is to manipulate the body motion in videos un-
der the guidance of pose signals. While ControlNet [52]
enables direct controllable generation based on conditions,
it has difficulties modifying the source motion from the in-
verted noise. The motion signals injected by the ControlNet
could conflict with the source motion, thereby resulting in
pronounced ghosting and blurring effects or even the loss of
controlling ability. Furthermore, the model is derived from
an image, lacking the ability to generate temporal consistent
contents. Therefore, we propose a temporal content-aware
motion adapter that enhances motion guidance as well as
facilitates temporal consistency, as shown in Fig. 2.

Our motion adapter takes as input the feature output by
ControlNet, which has been observed to achieve promis-
ing spatial control. Instead of inserting temporal layers into
ControlNet, we leave it as is to prevent prejudicing its inher-
ent modeling capability. The adapter consists of two paral-
lel paths corresponding to different perception granularity.
One is the global modeling path, including a content-aware
cross-attention block and a temporal attention block. The
other is the local modeling path, which uses two temporal
convolution blocks to capture local motion features. Specif-
ically, our cross-attention involves the latent feature from
the U-Net to model the pose feature, where the query comes
from the pose feature mi, and the key/value is from the cor-
responding frame latent zi produced by the U-Net:

Q = WQ
c mi,K = WK

c zi,V = W V
c zi, (5)

where WQ
c , WK

c and W V
c are projection matrices. Our

cross-attention enables the motion adapter to concentrate on

7885



Reconstruction Editing

𝐾𝑟

𝑉𝑟
CS Attn

Cross
-Attn

Temporal
-Attn

CS Attn

Cross
-Attn

Temporal
-Attn

So
u

rc
e

𝐾𝑏𝑔
𝑟 𝑉𝑏𝑔

𝑟

Background

𝐾𝑓𝑔
𝑟 𝑉𝑓𝑔

𝑟

Foreground

Concat

𝐾𝑐𝑢
𝑒 𝑉𝑐𝑢

𝑒

Editing

𝐾𝑟

𝑉𝑟

Figure 3. Illustration of high-fidelity attention injection during in-
ference. We leverage the source foreground masks to guide the
decoupling of key/value in the Consistent-Sparse Attention.

correlated motion clues in the video latent space, which sig-
nificantly enhances the control capability. By building up a
bridge between them, the model can thereby manipulate the
source motion seamlessly, without contradiction.

4.3. High-Fidelity Attention Injection

Although our motion adapter can accurately capture body
poses, it may undesirably alter the appearance of the pro-
tagonist and the background. Consequently, we propose
a high-fidelity attention injection from the reconstruction
branch to the editing branch, which preserves the details of
the subject and background in the synthesized video. While
previous attention fusion paradigms [2, 29, 45] have used
attention maps or keys/values for editing, they suffer from
severe quality degradation in ambiguous regions, i.e. mo-
tion areas, due to context confusion. To solve the issue,
we decouple the keys and values into foreground and back-
ground through semantic masks. By injecting separated
keys and values into the editing branch from the reconstruc-
tion branch, we can reduce the confusion hindering the edit-
ing. The pipeline is shown in Fig. 3.

Before introducing the injection, we first present the de-
tails of attention blocks in the model. Each attention block
in U-Net consists of our designed Consistent-Sparse Atten-
tion (CS Attention), Cross Attention, and Temporal Atten-
tion. The Consistent-Sparse Attention, as a sparse causal
attention, replaces the spatial attention in the original U-
Net. It aims to perform spatiotemporal modeling with lit-
tle additional computational overhead. Specifically, taking
the reconstruction branch as an example, the query in CS
Attention is derived from the current frame zr

i , while the
key/value is obtained from the preceding and current frames
zr
i−1, z

r
i . This design can improve the frame consistency:

Qr = WQzr
i ,K

r = WK [zr
i−1,z

r
i ],V

r = W V [zr
i−1,z

r
i ],

(6)
where [·] refers to concatenation. WQ, WK and W V are
projection matrices. It is worth noting that we do not em-
ploy the sparse attention in [47], in which the key/value is

from the first and preceding frames z0, zi−1. We find that
it may force the synthesized motion to favor the first frame
excessively, resulting in flickering.

We now present the injection of keys and values from
the reconstruction branch to those of the editing branch,
operating on both Consistent-Sparse Attention (CS Atten-
tion) and Temporal Attention. The injection is only active
in the decoder of U-Net. For CS Attention, we leverage a
source foreground mask M , obtained from an off-the-shelf
segmentation model, to decouple the foreground and back-
ground information. Given the key Kr and value V r in the
reconstruction branch, we separate them into the foreground
(Kr

fg and V r
fg) and background (Kr

bg and V r
bg),

Kr
fg = Kr ⊙M , V r

fg = V r ⊙M ,

Kr
bg = Kr ⊙ (1−M), V r

bg = V r ⊙ (1−M).
(7)

The decoupling operation introduces an explicit distinction
between background and foreground. It encourages the
model to focus more on the individual appearance instead
of mixing both, ensuring the high fidelity of the subject
and background. Notably, simply replacing the key/value in
the editing branch with the above ones would cause a large
number of abrupt motion changes, as the model is signifi-
cantly influenced by the source motion. Instead, we com-
bine them to maintain the target motion precisely. There-
fore, in the editing branch, the key and value of CS Atten-
tion are updated by the injected key Kinj and value Vinj :

Ke = WK [ze
i−1,z

e
i ] = [WKze

i−1,W
Kze

i ] := [Ke
pr,K

e
cu],

V e = W V [ze
i−1,z

e
i ] = [W V ze

i−1,W
V ze

i ] := [V e
pr,V

e
cu],

Kinj = [Kr
fg,K

r
bg,K

e
cu],

Vinj = [V r
fg,V

r
bg,V

e
cu],

(8)
where ze

i , z
e
i−1 indicate the current and preceding frames in

the editing branch. Ke,V e are the original key and value in
CS attention of the editing branch. Ke

cu,V
e
cu are the key and

value from the current frame.
The injection in temporal attention is much simpler than

in CS Attention since it already performs the local operation
concerning the spatial region. We directly inject the Kr,V r

of reconstruction branch into the editing branch.

4.4. Skeleton Signal Alignment

Given the source and reference videos, there always exists
a gap between the source and the target protagonists due to
different sizes and coordinated positions. The discrepancy
may affect the performance of editing. Therefore, we pro-
pose an alignment algorithm for addressing this issue.

Our algorithm contains two steps, namely a resizing op-
eration, and a translation operation. Concretely, given the
source video Xsr and a reference video Xrf , we first ex-
tract the source skeleton Ssr and a foreground mask Msr,
as well as the reference skeleton Srf and its mask Mrf ,
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Figure 4. Motion editing results of our MotionEditor. More examples can be found in the supplementary material and anonymous website.

using off-the-shelf models. We then perform edge detec-
tion on the masks to obtain rectangular outlines of the fore-
ground. Based on the area of two rectangular outlines, we
scale Srf to the same size as the source. Regarding the fore-
ground position, we calculate the average coordinate of the
foreground pixels in each mask, which denotes the center of
the protagonist. An offset vector is computed by calculating
the difference between the two centers. With this vector, we
obtain an affine matrix for the translation operation, which
is further applied to the resized reference skeleton. Finally,
the target skeleton S̄tg is generated. The details of align-
ment are depicted in the supplementary material.

5. Experiments

5.1. Implementation Details

Our proposed MotionEditor is based on the Latent Diffu-
sion Model [31] (Stable Diffusion). The person segmen-
tation and skeleton estimation methods refer to SAM and
OpenPose. We evaluate our model on YouTube videos and
videos from the TaichiHD [36] dataset, in which each video
includes a protagonist of at least 70 frames. The resolution
of frames is unified to 512 × 512. We perform one-shot

learning for the motion adapter for 300 steps with a con-
stant learning rate of 3 × 10−5. We employ DDIM inver-
sion [39] and null-text optimization [23] with classifier-free
guidance [10] during inference. Due to the usage of DDIM
inversion and null-text optimization, MotionEditor needs 10
minutes to perform motion editing for each video on a sin-
gle NVIDIA A100 GPU.

5.2. Motion Editing Results

We validate the motion editing superiority of our proposed
MotionEditor extensively. Here, we demonstrate several
cases in Figure 4 and the rest of the cases are in the sup-
plementary materials. We can see that our MotionEditor can
accomplish a wide range of motion editing while simultane-
ously preserving the original protagonist’s appearance and
background information.

5.3. Comparison with State-of-the-Art Methods

Competitors. We compare our MotionEditor against re-
cent approaches to validate the superiority of our model.
The competitors are depicted as follows: (1) Models based
on GANs for human motion transfer, including LWG [20]
that disentangles the pose and shape, and MRAA [37]
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Figure 5. Qualitative comparison between our MotionEditor and
other state-of-the-art video editing models. Source prompt: “a girl
in a black dress is dancing.” Target prompt: “a girl in a black dress
is practicing tai chi.” Our method exhibits accurate motion editing
and appearance preservation.

that learns semantic object parts. (2) Tune-A-Video [47],
which inflates Stable Diffusion in a one-shot learning man-
ner. (3) Follow-Your-Pose [21], which proposes a spatial
pose adapter for pose-guided video generation. (4) Con-
trolVideo [54], which designs fully cross-frame attention,
attempting to stitch video frames into one large image. (5)
MasaCtrl [2], which conducts mask-guided mutual self-
attention fusion, in which the masks are derived from text
cross attention. (6) FateZero [29], which designs inversion
attention fusion for retaining source structure. It is worth
noting that Tune-A-Video and Masactrl are equipped with
a conditional T2I model (i.e. ControlNet) for controllable
video editing. We also combine FateZero with ControlNet
to enable pose-guided editing. More details on implemen-
tation are depicted in the supplementary material.

Qualitative results. We conduct a qualitative compari-
son of our MotionEditor against several competitors in Fig.
5. The results of LWG [20] and MRAA [37] are provided
in the supplementary material. By analyzing the results, we
have the following observations: (1) Tune-A-Video [47],
ControlVideo [54], Masactrl [2] and FateZero [29] demon-
strate capabilities in editing motion to a certain extent. Nev-

Table 1. Quantitative comparisons on 20 in-the-wild cases. L-S,
L-N, and L-T indicate LPIPS-S, LPIPS-N, LPIPS-T respectively.

Method CLIP (↑) L-S (↓) L-N (↓) L-T (↓)

LWG [20] 25.35 0.431 0.194 0.203
MRAA [37] 26.80 0.462 0.269 0.353
Tune-A-Video [47] 27.71 0.345 0.169 0.157
Follow-Your-Pose [21] 26.55 0.337 0.144 0.183
ControlVideo [54] 26.87 0.428 0.228 0.311
MasaCtrl [2] 27.14 0.372 0.236 0.177
FateZero [29] 28.07 0.308 0.176 0.124

MotionEditor 28.86 0.273 0.124 0.082

ertheless, their edited videos exhibit a considerable degree
of ghosting, manifested as overlapping frames of the pro-
tagonist’s heads and legs. (2) Follow-Your-Pose [21] fails to
perform motion editing and preserve the source appearance.
The ghosting effect also exists in the result. The plausible
reason is that it has difficulties handling the motion con-
flict between inverted noise and input reference pose. (3)
Tune-A-Video [47] and ControlVideo [54] both have dra-
matic appearance changes, e.g., hairstyle, texture of clothes
and background. Due to the constraint of a single-branch
architecture, they are unable to interact with the original
video features when additional pose conditions are intro-
duced. This leads to a gradual loss of the source appearance
along with the increasing denoising steps. (4) Masactrl [2]
generates an excessive amount of blurry noise. The pos-
sible reason is that the masks generated by cross-attention
maps are unreliable and inconsistent across time, thus in-
troducing blurring noise to the result. (5) The edited result
of FateZero [29] shows overlapping frames of the protag-
onist’s legs. It demonstrates that the attention fusion strat-
egy in FateZero may not be suitable for motion editing. (6)
Finally, our MotionEditor can effectively perform motion
editing while preserving the original background and ap-
pearance compared with previous approaches, highlighting
its great potential.

Quantitative results. To our best knowledge, there is
still no widely recognized metric for evaluating the perfor-
mance of video editing. In this paper, we conduct quantita-
tive comparisons against previous methods through several
perceptual metrics [53] and a user study on edited videos.
The detailed metrics are as follows: (1) CLIP score [30]:
Target textual faithfulness. (2) LPIPS-S: Learned Percep-
tual Image Patch Similarity (LPIPS) [53] between edited
frames and source frames. (3) LPIPS-N: LPIPS between
edited neighboring frames. (4) LPIPS-T: We split a long
video into two segments. The first segment is used for the
source, while the second segment is for the reference. We
compute LPIPS between the edited video and the second
segment. The results are shown in Table 1. We observe that
MotionEditor surpasses the competitors by a large margin.

We also conduct a user study to evaluate the human pref-
erence between our method and the competitors. For each
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Table 2. User preference ratio of MotionEditor when comparing
with each method. Higher indicates the users prefer more to our
MotionEditor. M-A, A-A and T-A indicate motion alignment, ap-
pearance alignment, and textual alignment, respectively.

Method M-A A-A T-A

LWG [20] 91.9% 95.7% 90.0%
MRAA [37] 94.8% 98.4% 92.6%
Tune-A-Video [47] 87.6% 90.8% 79.2%
Follow-Your-Pose [21] 96.3% 85.0% 84.6%
ControlVideo [54] 94.1% 98.8% 86.0%
MasaCtrl [2] 89.4% 94.6% 87.8%
FateZero [29] 78.9% 74.5% 74.7%

case, participants are first presented with the source and
target videos, as well as the prompts. We then show two
motion-edited videos; one is generated by our method and
the other is from a competitor, in random order. Participants
are asked to answer the following questions: “which one
has better motion alignment with reference”, “which one
has better appearance alignment with source”, and “which
one has better content alignment with the prompt.” The to-
tal number of cases is 20, and the participants are mainly
university students. Table 2 shows that our method outper-
forms other methods in terms of subjective evaluation.

5.4. Ablation Study

To validate the importance of the core components in Mo-
tionEditor, we conduct an ablation study. The results are
illustrated in Fig. 6. It is worth noting that we replace
our proposed CS Attention with the previous Sparse Atten-
tion [47] in (c). The results in row (c) indicate that Sparse
Attention attempts to force the frames to be aligned with
the first frame, resulting in unreliable motion. Rows (d)
and (e) both fail to accomplish motion editing and back-
ground preservation. It demonstrates that the original Con-
trolNet has weak constraints on the motion without addi-
tional content-aware modeling. It also forces the model to
retain background information. In row (f), model w/o high-
fidelity attention injection loses the original background de-
tails as the road sign behind the girl has disappeared. It val-
idates that our proposed mechanism can promote the model
to preserve the source background. Model w/o skeleton
alignment suffers from appearance change due to the mis-
alignment, as in row (g). The misalignment of the skeletons
may potentially introduce unexpected noise to the content
latent, thus destroying source data distribution. The ablation
results show that our core components certainly contribute
to the promising motion editing capability of MotionEditor.

6. Limitations
Temporal inconsistencies sometimes occur in the fore-
ground subjects. Our model only conducts one-shot learn-
ing on a single video without any large-scale video pertain-
ing. We will tackle the above issues in the future.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 6. Ablations on core components of MotionEditor. Rows in
the figure are: (a) source, (b) reference, (c) w/o CS Attention, (d)
w/o cross attention in motion adapter, (e) w/o motion adapter, (f)
w/o high-fidelity attention injection, (g) w/o skeleton alignment,
and (h) MotionEditor. Source prompt: “A girl is dancing.” Target
prompt: “A girl is practicing tai chi.”

7. Conclusion

In this paper, we proposed MotionEditor for tackling video
motion editing challenges, which is rated as high-level
video editing compared with previous video attribute edit-
ing. To enhance the motion controllability, a content-aware
motion adapter was designed to build up a relationship with
the source content, enabling seamless motion editing as
well as temporal modeling. We further proposed a high-
fidelity attention injection for preserving the source appear-
ance of the background and protagonist. To alleviate the
misalignment problem of skeleton signals, we presented a
simple yet effective skeleton alignment to normalize the tar-
get skeletons. To our knowledge, MotionEditor is the first
diffusion model to explore the video motion editing task,
encouraging more studies in this challenging scenario.
Acknowledgement This project was supported by
NSFC under Grant No. 62032006 and No. 62102092.
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