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Abstract

Scaled relative pose estimation, i.e., estimating rela-
tive rotation and scaled relative translation between two
images, has always been a major challenge in global
Structure-from-Motion (SfM). This difficulty arises because
the two-view relative translation computed by traditional
geometric vision methods, e.g. the five-point algorithm, is
scaleless. Many researchers have proposed diverse trans-
lation averaging methods to solve this problem. Instead
of solving the problem in the motion averaging phase, we
focus on estimating scaled relative pose with the help of
panoramic cameras and deep neural networks. In this pa-
per, a novel network, namely PanoPose, is proposed to es-
timate the relative motion in a fully self-supervised manner
and a global SfM pipeline is built for panorama images. The
proposed PanoPose comprises a depth-net and a pose-net,
with self-supervision achieved by reconstructing the refer-
ence image from its neighboring images based on the es-
timated depth and relative pose. To maintain precise pose
estimation under large viewing angle differences, we ran-
domly rotate the panoramic images and pre-train the pose-
net with images before and after the rotation. To enhance
scale accuracy, a fusion block is introduced to incorporate
depth information into pose estimation. Extensive exper-
iments on panoramic SfM datasets demonstrate the effec-
tiveness of PanoPose compared with state-of-the-arts.

1. Introduction
Structure-from-motion (SfM) has always been an essen-

tial research field in computer vision. SfM consists of three
key steps: feature extraction and matching, pairwise relative
pose estimation, and global pose estimation. Based on the
different strategies used in the third step, SfM can be cate-
gorized into incremental [8, 27] and global [7, 29]. Incre-
mental SfM usually begins with two or three “seed” views
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and gradually adds more images to the model. To mitigate
the accumulated errors, the Bundle Adjustment (BA) is per-
formed after every few images are added. The complexity
of BA problem increases with the number of images, lead-
ing to more and more time spent in BA, which finally affects
the computation efficiency.

On the other hand, global SfM simultaneously estimates
all camera poses, requiring BA only once with higher effi-
ciency. The pose estimation in global SfM consists of ro-
tation averaging and translation averaging, which compute
the global rotation and translation, respectively. In the ideal
case, the translation averaging holds the following equation

tj − ti = dijRivij , (1)

where ti and tj are the camera center, Ri is the rotation
from i-th camera to the world coordinate, vij is a unit vec-
tor representing the direction of relative translation between
i-th and j-th camera, and dij = ∥tj−ti∥2 is the scale of rel-
ative translation. However, the relative translation derived
from two images with traditional five-point algorithm[24]
only contains the direction, leaving dij unknown. The scale
ambiguity is one of the major challenges in global SfM and
becomes particularly conspicuous when the camera moves
along a straight path. Various translation averaging meth-
ods aim to resolve this by optimizing relative scales [23]
or minimizing the angular error between direction vectors
[38, 43]. Additionally, the relative pose estimation requires
a rich textured environment with numerous reliable feature
matching. In textureless scenes, relative pose estimation
will produce large errors or degradation, affecting the over-
all SfM process.

To tackle these challenges, we focus on estimating the
scaled relative pose. Inspired by the self-supervised monoc-
ular depth estimation [10, 42], we propose PanoPose, con-
sisting of a depth-net and a pose-net. Different from the
aforementioned method that focuses on accurate depth es-
timation and design of complex depth-net architecture, we
give more attention to pose estimation and use a pre-trained
model [37] as the backbone with differentiable pose pre-
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diction layers. To accommodate large angle differences in
views, we utilize the characteristics of panoramic images to
randomly rotate the images to pre-train the pose prediction
layer. To further improve the accuracy of scale estimation,
we propose a fusion block, integrating depth information
into relative translation estimation. Moreover, to facilitate
the scale prior, we propose a translation averaging method
that directly optimizes the scale of relative translation. This
method is complemented by an iteratively reweighted least
squares (IRLS) strategy, enhancing accuracy and robust-
ness. The PanoPose network and our proposed translation
averaging method, as well as a rotation averaging method
[5] form a comprehensive global SfM pipeline.

Why Pano? Panoramic cameras, with a simple cam-
era model and omnidirectional field of view (FoV), outper-
form pinhole and multi-camera systems in image match-
ing robustness and 3D reconstruction completeness. Thus,
panoramic cameras are increasingly used in practical appli-
cations, especially in indoor environments, such as room
layout estimation [16, 31] and depth estimation [28]. How-
ever, research specifically focused on panoramic camera 3D
reconstruction is relatively limited. This research gap moti-
vates our study.

To summarize, the main contributions of this paper are:
• We propose a self-supervised network that estimates the

scaled relative pose between two panoramic images, mit-
igating the scale ambiguity in traditional approaches.

• We propose a pre-training strategy by randomly rotating
images to improve the pose estimation accuracy under
large viewing angle differences and a fusion block to in-
corporate depth information into pose estimation.

• Based on the network, we build a global SfM pipeline for
panoramic images, and outperform state-of-the-art global
SfM methods in panoramic datasets.

2. Related Work

2.1. Relative Pose Estimation

The traditional relative pose estimation method is the
five-point algorithm [24], which estimates the essential ma-
trix between images based on epipolar geometry and de-
composes it to relative rotation and translation. However,
the method has poor performance in textureless areas and
is unable to estimate the scale of relative translation. Com-
pared to the traditional method, the deep learning technique
can alleviate the above problems, thus many researchers
have focused on directly regressing the pose using neural
network. These methods can be roughly divided into two
categories, supervised and self-supervised.

For the supervised pose estimation, Kendall et al. [17]
propose PoseNet that regresses the camera poses from a sin-
gle image for camera relocalization. [1] and [14] use CNN
to estimate motion. However, their work focuses on learn-

ing feature representation instead of ego-motion. Thus, the
relative pose accuracy is not competitive with geometric
methods. DeMoN [32] proposes a framework composed of
multiple stacked encoder-decoder networks and estimates
the optical flow, depth, and ego-motion. To estimate the
relative pose with a wide baseline, DirectionNet [6] esti-
mates discrete distributions of camera poses and introduces
a novel parameterization to make the estimation tractable.
RelPose [41] proposes an energy-based formulation to cap-
ture the uncertainty in relative poses and estimate the rela-
tive rotation for images of a generic object.

For self-supervised relative pose estimation, since ad-
jacent images are used as supervision signals, it is often
necessary to estimate the depth map simultaneously. SfM-
Learner [42] proposes a learning framework with a single-
view depth-net and multi-view pose-net. The two networks
are trained using a loss based on warping nearby images to
the target with the estimated depth and pose. SfMLearner
lays the foundation for self-supervised depth/pose estima-
tion, and our method also uses a similar structure. Un-
DeepVO [18] uses stereo image pairs to train the network,
so the network can recover the scaled depth map and rela-
tive motion. GeoNet [39] decomposes motion into rigid and
non-rigid components and uses a joint learning framework
to estimate depth, optical flow, and relative pose.

Some works focus on relative pose estimation using
panoramic images. Hutchcroft et al. [13] propose CoV-
isPose that estimates relative pose for wide-baseline in-
door panoramas. To directly regress the camera pose, the
network jointly learns dense bidirectional visual overlap,
correspondence, and room layout in a supervised manner.
Thus, it is only suitable for indoor environments. Both [19]
and [21] use a similar network architecture as SfMLearner
and change the inputs to panoramic images.

The most similar work to ours is [35]. The main dif-
ferences between our work and theirs are: 1) they project
the images to cubic projection while we use the original
equirectangular projection; 2) we add a fusion block to uti-
lize the depth information from depth-net to better estimate
relative translation scales.

2.2. Global Structure-from-Motion

Given the relative pose of image pairs, global SfM esti-
mates all camera poses simultaneously, involving two steps:
rotation averaging and translation averaging. Rotation av-
eraging is computing the global rotation for each camera
based on the relative rotations, while translation averag-
ing estimates the global translation using pairwise relative
translations and the global rotation. Govindu [11] gives the
first rotation averaging method by representing the rotation
in quaternion and solving the problem with linear least-
squares fitting. To enhance the robustness of rotation av-
eraging, Chatterjee and Govindu [5] optimize the problem
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Figure 1. (a) is the overview of our network. (b) is the detailed architecture of the proposed fusion block.

under L1-norm and proposed an IRLS strategy to further
refine the result. Compared to rotation averaging, trans-
lation averaging is more difficult, since only the direction
of relative translation is determined, leaving the scale un-
known. The situation worsens when the baseline is short
or the camera centers collinear. Jiang et al. [15] propose
a linear method for estimating global translations by min-
imizing geometric error. Moulon et al. [23] optimize the
problem under L∞-norm and estimate the scale of transla-
tion within a triplet. BATA [43] uses a carefully designed
simple bilinear objective function and introduces a variable
to perform the requisite normalization. A pose-only solu-
tion was derived from [4], which gives a linear solution to
the translation averaging problem. [22] proposed a frame-
work that iteratively refines the relative translation direction
using the point correspondences between two images.

3. Method

3.1. Overview

The overview of the proposed network is shown in Fig. 1,
which comprises a CNN-based depth-net and a transformer-
based pose-net. The depth-net takes a panoramic image as
input and generates a dense depth map, while the pose-net
takes pairs of images and directly regresses the 6-degree-of-
freedom (6-DoF) relative pose. Different from other self-
supervised methods [21, 34] that design complex depth-net
for better depth estimation, we pay more attention to the
accuracy of relative poses. Also, using a heavy depth-net
can make the overall network hard to convex or stuck in lo-
cal minimal, so the depth-net is as lightweight as possible.
The choice of different depth-net architecture is discussed in
supplementary material. Our depth-net architecture closely
resembles Monodepth2 [10], which uses a ResNet-18 as an
encoder and multiple deconvolution and upsampling block
as a decoder. The depth-net outputs depth maps at dif-
ferent scales, (H,W ), (H/2,W/2), (H/4,W/4), where H
and W are the height and width of the input image.

In the following, Sec. 3.2 introduces the detailed struc-
ture of our pose-net and the proposed depth fusion block,

Sec. 3.3 presents the losses in our framework, Sec. 3.4
shows our rotation-only pre-training strategy, and the pro-
posed global SfM pipeline is in Sec. 3.5.

3.2. Pose-net with Fusion Block

Transformer[33] has been widely used in panorama
depth estimation [28, 44], but its potential in pose esti-
mation is not fully exploited. Also, training vision trans-
formers in a self-supervised manner is challenging and de-
mands a substantial amount of data. Thus, we adopt Croco
[37] as our pose-net backbone, which is a transformer-
based network trained unsupervisedly via cross-view com-
pletion. After the Croco, input images are represented as
high-dimensional features, and we use a rotation estimator
and a translation estimator to directly regress the relative
pose. The rotation estimator is an MLP that consists of two
hidden layers with a hidden dimension of 1024. The out-
put of the rotation estimator is a 9-dimension vector and
we use Procrustes mapping to project it to the closet rota-
tion matrix. According to [3], the Procrustes representation
has better performance than the rotation-vector and quater-
nion representation. The translation estimator is similar to
the rotation estimator and the difference is the output is a
3-dimension vector.

To incorporate depth information into the relative trans-
lation estimation process and enhance scale accuracy, a
depth fusion block is introduced before the translation es-
timator. The detailed structure of our fusion block is il-
lustrated in Fig. 1(b). It consists of multiple transformer
blocks, with each block encompassing both a self-attention
layer and a cross-attention layer. The inputs to this fu-
sion block are twofold: the depth feature, derived from the
depth-net at various scales, and the pose feature, which orig-
inates from the Croco backbone. In the fusion block, we
incorporate three transformer blocks to fuse depth informa-
tion from (H,W ), (H/2,W/2), (H/4,W/4). For a spe-
cific depth feature map from scale i, it is firstly divided into
non-overlap patches with patch size p×p, where p = 16/2i.
Then, a convolution layer with kernel size equal to patch
size is applied to each patch. The output channel of this con-
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volution layer matches the dimensions of the pose feature.
A standard transformer block with self-attention and cross-
attention is employed to fuse the information from different
networks. The pose features are first passed through the
self-attention layer and fused with the embedded depth fea-
ture by the cross-attention layer. In each attention layer,
we use the Rotary Positional Embedding (RoPE) [9] which
encodes the relative positioning of feature pairs when com-
puting attention.

3.3. Loss

Following a similar approach to [42], we formulate our
problem as minimizing the photometric reprojection error.
For each pixel p in reference image Ir, its pixel coordinates
can be projected to the target image It as

p′ = π−1 (Rπ(p, d) + t) . (2)

Here, (R, t) is the relative pose and d is the depth of p
in depth map Dr. π(∗) is the transformation from the im-
age coordinate to local camera coordinate, while π−1(∗)
represents the inverse transformation. We employ bilinear
sampling to sample the target image and get the color value
of p′. After all pixels in Ir are projected to It, the recon-
structed image I ′r is derived. Following [10], the L1-norm
and SSIM [36] are used to compute the photometric loss as

Lp =
∑
p∈Ir

Lssim(p) + L1(p)

Lssim(p) =
α

2

(
1− SSIM(Wp,W

′
p)
)

L1(p) = (1− α)∥Ir(p)− I ′r(p)∥1

, (3)

where Lssim(p) and L1(p) are the SSIM loss and L1 loss
for each pixel, respectively. Wp represents the image patch
centered at p in Ir and W ′

p is the image patch centered at
p in I ′r. The patch size is set to 7 × 7. SSIM(Wp,W

′
p)

computes the image similarity between two image patches.
α is a weight to balance the SSIM and L1 difference and it
is set to 0.85 as other self-supervised methods.

In addition to photometric loss, an edge-aware smooth
loss is applied to the estimated depth to reduce noise. The
loss is computed both horizontally and vertically, and the
expression is{

D∗
r = Dr/d̄r

Le = |∇xD
∗
r |e−|∇xIr| + |∇yD

∗
r |e−|∇yIr|

. (4)

Here, d̄r is the average of all depth values and D∗
r is the

mean-normalized depth that can discourage shrinking of the
estimated depth. ∇x and ∇y denote computing the second
order gradient in different axes.

To further enhance the precision of our pose-net’s pose
estimation, we introduce the pose consistency loss. Given

the input images as Ir and It, the relative pose output by
the network is (R1, t1). We exchange the order of the in-
put images and obtain an output relative pose of (R2, t2).
Theoretically, (R1, t1) and (R2, t2) should be exact oppo-
sites. Our pose consistency loss is based on this assumption,
which can be expressed as

Lc = ∥R1 −RT
2 ∥F + β∥t1 −RT

2 t2∥22 . (5)

∥·∥F is the Frobenius norm between two matrix and β = 10
to balance the rotation error and translation error.

The final loss is

Lfinal = Lp + λeLe + λcLc , (6)

where λe and λc are the weights for the depth smoothness
loss and the pose consistency loss.

3.4. Rotation Only Pre-training

In practical applications, such as when capturing im-
ages handheld, the camera may undergo rapid rotations, re-
sulting in significant perspective changes between consec-
utive frames. When using an ordinary pinhole camera, this
can lead to small overlapping between images, potentially
yielding inaccurate relative pose estimates. Panoramic cam-
eras have an omnidirectional field of view and are robust to
rapid changes in perspective. This is one of the key reasons
that we choose panoramic cameras.

The main supervision signal of self-supervised meth-
ods comes from the reprojection error of the image. Thus,
current self-supervised methods assume relatively smooth
camera movements and small variations in viewing angles
between adjacent frames. However, when the angular dis-
parity between two images is substantial, the images them-
selves can differ significantly. The depth estimated by the
depth-net is also inaccurate, which will lead to large errors
in reprojection. In such cases, the network optimization
process may be misguided, potentially leading to conver-
gence in local optima. To address this challenge, we pro-
pose a rotation-only pre-training strategy, which utilizes the
inherent geometry of panoramic images.

Specifically, for an image I , a rotation axis (rx, ry, rz)
and an angle rd are randomly selected. Since the panoramic
image has an omnidirectional FoV and can be rotated with-
out requiring depth information, I is rotated with the pre-
generated rotation and gets Ir. We use the pose-net to
predict the relative rotation between I and Ir and the loss
∥R −R∗∥F is used to supervise the network, where R∗ is
the generated rotation and R is the predicted. In most cases,
the camera is mainly rotated around the y-axis, we take ad-
vantage of this feature and require the generated rotation
axis to satisfy |ry| > |rx| + |rz|. While this strategy pro-
vides pre-training exclusively for relative rotation, it proves
effective in enhancing relative pose estimation, particularly
in scenarios with significant differences in viewing angles.
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3.5. Proposed SfM Pipeline

We further propose an SfM pipeline that leverages our
PanoPose as the relative pose estimator. In this pipeline,
the method proposed by [5] is employed for rotation aver-
aging. Since the network can estimate scaled relative trans-
lation, the translation averaging problem can be solved by
optimizing it under L2-norm with an iteratively reweighted
least squares (IRLS) scheme, namely L2IRLS. The problem
is formulated as

argmin
∑
(i,j)

wij ∥ti −Rijtj − λijtij∥22

s.t. 0.5sij ≤ λij ≤ 1.5sij , t1 = (0, 0, 0)T
, (7)

where (Rij , tij) is the relative pose, ti is the global transla-
tion for i-th image, λij is the scale of relative translation and
sij is the initial scale derived from the network. In the first
constraint, we allow λij to fluctuate within a certain range.
The second constraint is to remove translation ambiguity.

wij =
(
∥ti −Rijtj − λijtij∥22 + δ

)−1/2

is the weight of
each cost, and δ is set to 0.01. The minimizing process will
iterate 2-3 times before converging, and the weight wij is
initialized to 1 in the first iteration.

4. Experiment
4.1. Implementation Details

Our PanoPose is implemented using PyTorch [26] frame-
work and Adam optimizer with β1 = 0.9 and β2 = 0.999.
Two RTX A6000 GPUs are used to train the network with
a batch size of 10. A pre-trained depth-net from [10] is em-
ployed to give a better initialization. In each experiment
dataset, the network is pre-trained for 10 epochs with the
proposed rotation-only pre-training strategy. Then, the net-
work is trained for 40 epochs. During training, all images
are resized to 320× 640 and the learning rate is 1e-5.

4.2. Evaluation Metrics and Datasets

For the evaluation of relative pose, relative rotation error
(RRE), relative translation angle error (RTAE), and relative
scale error (RSE) are used. RRE represents the accuracy of
relative rotation, RTAE shows the accuracy of relative trans-
lation direction, and RSE reflects the accuracy of the rela-
tive translation scale. As for the evaluation of global pose,
absolute rotation error (ARE) and absolute translation error
(ATE) are used. Detailed calculation methods for these er-
ror metrics are in the supplementary material. To verify the
performance of our method, Experiments are conducted on
the following five datasets, from small indoor environments
to large outdoor scenes.

PanoSUNCG. PanoSUNCG[34] is a synthetic indoor
environment dataset, which contains 103 scenes of the

SunCG dataset [30] and has 25,000 panoramic images. All
images are provided with dense depth maps and ground
truth poses. In our experiments, the official training and
testing splits are used, where 80 scenes for training and 23
scenes for testing. For each image, we find its 5 nearest
neighbor images based on the position of the camera center
and randomly select two of them to generate image pairs,
which results in 50,000 image pairs.

Mapillary Metropolis. The Mapillary Metropolis
dataset 1 contains 10,274 panoramic images with ground
truth poses. Additionally, we render a sparse depth map for
each image based on the LiDAR reconstruction result pro-
vided by the dataset. In our experiments, the official train-
ing and validating splits are used, which include 6845 and
3347 images, respectively. Since the interval between im-
age sampling is relatively long, we use two frames that are
adjacent in time as an image pair.

360VO Dataset. The 360VO dataset [12] is a synthetic
dataset rendered from the urban scene [20]. It contains 10
sequences (Seq 0 to Seq 9) with a total of 23,000 panoramic
images, each with a ground truth pose. Since the dataset is
designed for visual odometry, it lacks depth information and
predefined train/validation/test splits. We use sequences 1,
4, and 9 for test and other sequences for training. For each
image, we use its 10 nearest neighbors to generate image
pairs, which results in 230,000 pairs.

Building and Campus. Among the data sets mentioned
above, only the Mapillary Metropolis dataset is based on
real-world scenes. However, the images are uniformly sam-
pled at a fixed distance of 6 meters, resulting in a sparsely
connected pose graph that makes global pose estimation
challenging. Thus, we have collected our own datasets with
an Insta 360 ONE X2 panoramic camera, namely Building
and Campus. The Building dataset is collected around sev-
eral buildings and the Campus dataset is collected on a vast
campus. The ground truth poses are acquired by an RTK
GNSS. We use the panoramic MVS method to generate the
sparse depth map for each image. The Building dataset con-
tains 1424 images for training and 300 images for testing,
while the Campus uses 6125 images for training and 1,500
images for testing. For each image, the image pairs are gen-
erated with its nearest 7 neighbors.

4.3. Relative Pose Estimation

In this experiment, we compare our method against some
state-of-the-art self-supervised pose estimation methods, in-
cluding SfMLearner [42], MonoDepth2 [10], NonLocal-
DPT [40], and BiFuse++ [35]. SfMLearner and Mon-
oDepth2 are designed for normal pinhole cameras, but they
can process input images at arbitrary resolutions. So we
retrained the network with their default settings on our ex-
periment dataset to ensure fair comparisons. In [40], the

1https://www.mapillary.com/dataset/metropolis

20013



Dataset Method Mean RRE Med RRE Mean RTAE Med RTAE Mean RSE Med RSE

360VO-Seq1

SfMLearner [42] 3.2378 0.8158 5.2945 1.0116 0.2529 0.1307
MonoDepth2 [10] 2.1394 0.2341 4.9963 0.6907 0.1931 0.1457

NonLocal-DPT [40] 1.5878 0.1872 5.0870 0.9376 0.2391 0.1833
BiFuse++ [35] 2.5309 0.2056 10.9642 3.7566 0.5800 0.2651
Five-point [24] 0.0294 0.028 0.0976 0.0713 1.8622 0.5087

PanoPose 0.1520 0.0791 0.9390 0.4494 0.1630 0.1449

Mapillary
Metropolis

SfMLearner [42] 2.8751 0.8528 2.9834 0.9398 0.2534 0.1852
MonoDepth2 [10] 2.5383 0.9582 2.1671 0.5328 0.1577 0.0995

NonLocal-DPT [40] 2.1328 0.6906 2.3511 0.4885 0.0934 0.0675
BiFuse++ [35] 2.6898 0.5574 33.5934 32.3928 0.1952 0.1346
Five-point [24] 0.1691 0.0685 1.281 0.2741 0.0133 0.0056

PanoPose 1.7228 0.2683 1.7661 0.4006 0.0217 0.0101

PanoSUNCG

SfMLearner [42] 1.2548 0.4922 1.8113 1.0338 0.3562 0.1855
MonoDepth2 [10] 1.9562 0.8227 2.9704 1.1927 0.2877 0.0962

NonLocal-DPT [40] 2.0587 0.9024 2.9158 1.1361 0.3091 0.0781
BiFuse++ [35] 5.6007 1.6863 5.0651 2.5947 0.7836 0.1531
Five-point [24] 0.3453 0.1507 3.4659 1.5776 0.5875 0.366

PanoPose 0.1559 0.0560 0.4253 0.2874 1.2295 0.0115

Building

SfMLearner [42] 0.6557 0.3744 1.4321 0.4402 0.1039 0.0810
MonoDepth2 [10] 0.1317 0.1119 1.5811 0.4729 0.1232 0.1012

NonLocal-DPT [40] 0.4535 0.2243 1.9583 0.5702 0.1325 0.0905
BiFuse++ [35] 1.6576 0.3897 2.0919 1.4433 0.2212 0.1592
Five-point [24] 0.3961 0.0685 15.182 1.4175 0.3406 0.1066

PanoPose 0.2009 0.1427 0.4653 0.3892 0.0935 0.0733

Campus

SfMLearner [42] 0.3395 0.1039 2.6042 0.6923 0.7214 0.0993
MonoDepth2 [10] 0.2815 0.1359 2.7216 0.5135 0.8789 0.0677

NonLocal-DPT [40] 0.2284 0.0932 2.0066 0.9848 0.5692 0.0934
BiFuse++ [35] 0.9410 0.3369 2.6573 0.6410 66.8591 0.1102
Five-point [24] 0.1525 0.0396 2.7876 0.3605 1.0854 0.0378

PanoPose 0.1094 0.0862 2.2683 0.4644 0.2563 0.0519

Table 1. Relative pose evaluation result on different datasets. The unit of relative rotation error (RRE) and relative translation angle error
(RTAE) is degree, and relative scale error (RSE) is unitless. The mean and median errors are demonstrated in the table. The best result is
shown in bold and the second best is shown with under line.

authors assume that panoramic images are aligned with the
direction of gravity, restricting their network to estimate 4-
DOF poses. We modified their network to output 6-DOF
poses. For a full comparison, the traditional five-point al-
gorithm [24] is incorporated, in which we extract RootSIFT
[2] features and use brute force matching strategy to com-
pute essential matrix and decompose it into relative pose.
Since the five-point method cannot estimate the scale, all
relative translations are set to unit vectors.

The evaluation result of the relative pose is shown in
Tab. 1. For the sake of brevity, we have excluded the results
in 360VO-Seq4 and 360VO-Seq9, which are available in the
supplementary material. Compared to the learning-based
methods, the traditional five-point algorithm has more ad-
vantages in estimating relative rotation and translation di-
rection. For both RRE and RTAE, the five-point algorithm
consistently achieves the best or second-best results, ex-
cept for the Building dataset, where it exhibits higher er-
rors in relative translation angle estimation. These advan-
tages in accuracy can be attributed to the omnidirectional
field of view (FoV) of the panoramic image and the pre-

cise RootSIFT feature matching. Due to the omnidirec-
tional FoV, even if a part of the image is occluded, rela-
tive pose estimation can be performed relying on feature
points in other areas. In contrast, network-based methods
estimate a mask to deal with occlusion areas, which is unre-
liable in some cases and can yield suboptimal results in cer-
tain scenarios. In the datasets used for experiments, most
scenes exhibit rich textures, leading to accurate relative
pose estimation of the five-point method. However, in the
synthetic indoor environment of the PanoSUNCG dataset,
which includes textureless areas, the five-point method ex-
hibits reduced performance compared to our PanoPose. In
Mapillary Metropolis datasets, the five-point method also
achieves the lowest relative scale error. This is because the
images in this dataset are regularly sampled at intervals of 6
meters. The relative translation scale obtained by the five-
point method is fixed at 1 meter (unit vector), a low error
can be obtained by multiplying the scaling factor of 6.

Our PanoPose outperforms other self-supervised meth-
ods in most datasets, except for the relative rotation estima-
tion on Building and mean RTAE on Campus. On 360VO-
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Dataset TA method Init Rel Pose Mean ARE(◦) Med ARE(◦) Mean ATE(m) Med ATE(m)

360VO-Seq3

BATA[43] Five-point 12.4805 7.9057 2.6858 2.1478
PanoPose 13.4524 9.9413 2.2941 1.8877

LUD[25] Five-point 12.4512 7.8862 2.7598 2.3717
PanoPose 13.4209 9.9148 2.1823 1.9502

L2IRLS Five-point 13.2952 7.3977 3.1602 2.4316
PanoPose 13.2376 9.4842 1.9853 1.3688

360VO-Seq6

BATA[43] Five-point 11.1983 7.3028 1.6403 1.6572
PanoPose 13.5741 10.6381 1.2708 1.3216

LUD[25] Five-point 11.0981 7.2018 1.7205 1.6399
PanoPose 13.5074 10.6592 1.1363 1.2586

L2IRLS Five-point 11.0658 7.2726 2.8248 2.2934
PanoPose 13.4502 8.9259 0.9815 0.9771

Building

BATA[43] Five-point 0.4963 0.4952 3.5968 3.1559
PanoPose 2.7754 2.8502 3.0632 2.5502

LUD[25] Five-point 0.4914 0.4872 3.8921 3.3175
PanoPose 2.8346 2.9134 3.1973 2.7261

L2IRLS Five-point 0.4895 0.4915 4.1518 3.4175
PanoPose 2.7865 2.9091 2.6129 2.0475

Table 2. Global pose evaluation result on different datasets. We demonstrate the mean and median absolute rotation error (ARE) and
absolute translation error (ATE). The best results are shown in bold.

Seq1 and PanoSUNCG, our method significantly surpasses
the comparative self-supervised methods. Compared with
the best results of the comparative method, our PanoPose
reduces the mean RRE, median RRE, mean RTAE, and me-
dian RTAE by 87%, 61%, 81%, and 36%. Focusing on
the scale error, PanoPose outperforms other self-supervised
methods on median RSE in all datasets. As for the mean
RSE, the proposed PanoPose achieves the best result ex-
cept for the PanoSUNCG dataset, where certain image pairs
exhibit significant scale errors, contributing to an overall
higher average error.

4.4. Global Pose Estimation

To further validate the effectiveness of PanoPose, we em-
ploy the relative poses estimated by PanoPose and the tradi-
tional five-point method as initial values and combine them
with different translation averaging methods. Subsequently,
we calculate the absolute error between the estimated poses
and the ground truth. We use [5] as the rotating averaging
method. For the translation averaging method, BATA[43],
LUD[25], and L2IRLS (Eq. (7)) are chosen. Notably, we do
not consider [4] and [22] as they require feature point cor-
respondence, while PanoPose only provides relative pose.
The results are summarized in Tab. 2.

As can be seen from the table, the choice of translation
averaging methods has little impact on the final rotation er-
ror (Mean ARE and Med ARE). Moreover, when using the
five-point method, the absolute rotation tends to be more
accurate, owing to the precise estimation of relative rotation
between image pairs.

Focusing on the absolute translation error, using our net-
work for estimating relative poses outperforms the five-

point method. Across the experimental datasets, changing
the initial relative pose estimation from the five-point al-
gorithm to PanoPose reduces the mean ATE and median
ATE by 29% and 27% respectively. The combination of
our network and the proposed L2IRLS translation averaging
strategy significantly outperforms others in terms of ATE.
This superior performance can be attributed to L2IRLS’s
direct optimization of the relative translation scale, which
is provided by PanoPose with relatively high precision.
Conversely, when the five-point algorithm is paired with
L2IRLS, the resulting ATE is the highest. This is because
the traditional method cannot estimate the scale, resulting in
a large initial scale error received by L2IRLS, which in turn
leads to performance degradation. On the other hand, BATA
and LUD do not use scale as an optimization variable, thus
avoiding scale-related errors.

To provide a qualitative comparison of the various com-
binations of relative pose estimation methods and transla-
tion averaging strategies, we visualize the estimated camera
global pose in Fig. 2. Comparing the first row and second
row of Fig. 2, it is clear that transitioning from the tradi-
tional five-point method to PanoPose results in more accu-
rate pose estimation. The third row is the result generated
by our network and L2IRLS, and it has the best alignment
with the ground truth.

4.5. Ablation Studies

With the same conditions, we validate the key compo-
nents of our network by conducting an ablation study on
the experiment datasets, and the results are summarized in
Tab. 3. For the sake of brevity, only the average value of the
relative pose error is reported.
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(a) 360VO-Seq3 (b) Building

Figure 2. Global pose estimation result on different datasets.
Ground truth is shown in red and the estimated camera trajectory
is blue. The first row is the result of the five-point and BATA. The
second row is our PanoPose and BATA. The last row is PanoPose
and the proposed L2IRLS.

From Tab. 3, we can observe that the rotation-only pre-
training has a significant improvement in relative rotation
estimation. Employing this strategy leads to a 60% reduc-
tion in the RRE. The depth fusion block can improve the
accuracy of relative translation scales. Across the exper-
imental datasets, utilization of this module resulted in an
RSE reduction of 22%, 44%, and 73% respectively.

Since the block is inserted in the process of relative trans-
lation estimation, theoretically, it also influences translation
direction estimation. From the experiment result, we ob-
serve that the fusion block has a positive effect on transla-
tion direction estimation in 360VO-Seq4 and PanoSUNCG
datasets while leading to worse results on Campus. When
the pre-training strategy and fusion module are used to-
gether, the relative pose estimation accuracy is greatly im-
proved, especially the relative rotation and relative transla-
tion scales. However, the improvement in the relative trans-
lation direction is smaller. This is because the two key mod-

Dataset Rot Fusion RRE RTAE RSE

360VO-
Seq4

0.1795 0.6924 0.2317
✓ 0.0687 0.5841 0.2428

✓ 0.1716 0.5209 0.1806
✓ ✓ 0.0656 0.4809 0.1770

Pano-
SUNCG

0.8459 0.8492 3.0462
✓ 0.2237 0.5773 3.3820

✓ 0.7114 0.6891 1.6933
✓ ✓ 0.1559 0.4253 1.2295

Campus

0.2476 2.6856 0.8419
✓ 0.1404 3.1764 1.8562

✓ 0.2599 2.8506 0.2314
✓ ✓ 0.1094 2.2683 0.2563

Table 3. Ablation study of the proposed rotation-only pre-training
strategy and fusion block, which are represented by Rot and Fu-
sion, respectively. The best result is shown in bold.

ules we proposed focus on rotation and scale respectively.

5. Conclusion

In this paper, we propose PanoPose, a fully self-
supervised network for panoramic image relative pose es-
timation. Our PanoPose is composed of a depth-net and
a pose-net to estimate the dense depth map and relative
pose, and the main supervision is the photometric loss be-
tween the reference image Ir and the reconstructed image
I ′r. To further improve pose estimation accuracy, we add a
fusion block to leverage depth-net information, a rotation-
only pre-training strategy, and pose consistency loss. Since
PanoPose is a self-supervised method, in practical applica-
tions, it can be trained directly on the target dataset, which
greatly improves its scope of application. PanoPose can
also be applied to normal pinhole images by removing the
rotation-only pretraining stage, which utilizes the inherited
geometry of panoramic images.

Limitions. Despite its advancements, PanoPose still has
its drawbacks. Because the network uses transformer-based
Croco as the backbone, the amount of calculation is
relatively large, which affects the efficiency of training and
inference. Additionally, the cross-dataset generalization
capabilities of PanoPose are still limited, which is also a
key issue for the learning-SfM method to become practical.
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