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Abstract

This paper proposes a cross-modal distillation frame-
work, PartDistill, which transfers 2D knowledge from
vision-language models (VLMs) to facilitate 3D shape part
segmentation. PartDistill addresses three major challenges
in this task: the lack of 3D segmentation in invisible or
undetected regions in the 2D projections, inconsistent 2D
predictions by VLMs, and the lack of knowledge accumu-
lation across different 3D shapes. PartDistill consists of
a teacher network that uses a VLM to make 2D predic-
tions and a student network that learns from the 2D pre-
dictions while extracting geometrical features from multi-
ple 3D shapes to carry out 3D part segmentation. A bi-
directional distillation, including forward and backward
distillations, is carried out within the framework, where the
former forward distills the 2D predictions to the student net-
work, and the latter improves the quality of the 2D predic-
tions, which subsequently enhances the final 3D segmen-
tation. Moreover, PartDistill can exploit generative mod-
els that facilitate effortless 3D shape creation for generat-
ing knowledge sources to be distilled. Through extensive
experiments, PartDistill boosts the existing methods with
substantial margins on widely used ShapeNetPart and Part-
NetE datasets, by more than 15% and 12% higher mIoU
scores, respectively. The code for this work is available at
https://github.com/ardianumam/PartDistill.

1. Introduction
3D shape part segmentation is essential to various 3D vision
applications, such as shape editing [23, 45], stylization [29],
and augmentation [40]. Despite its significance, acquiring
part annotations for 3D data, such as point clouds or mesh
shapes, is labor-intensive and time-consuming.

Zero-shot learning [8, 41] generalizes a model to un-
seen categories without annotations and has been notably
uplifted by recent advances in vision-language models
(VLMs) [21, 22, 37, 46]. By learning on large-scale image-
text data pairs, VLMs show promising generalization abil-
ities on various 2D recognition tasks. Recent research ef-
forts [1, 24, 48, 52] have been made to utilize VLMs for
zero-shot 3D part segmentation, where a 3D shape is pro-

Figure 1. We present a distillation method that carries out zero-
shot 3D shape part segmentation with a 2D vision-language model.
After projecting an input 3D point cloud into multi-view 2D im-
ages, the 2D teacher (2D-T) and the 3D student (3D-S) networks
are applied to the 2D images and 3D point cloud, respectively.
Instead of direct transfer, our method carries bi-directional distil-
lations, including forward and backward distillations, and yields
better 3D part segmentation than the existing method.

jected into multi-view 2D images, and a VLM is applied
to these images for 2D prediction acquisition. Specifically,
PointCLIP [48] and PointCLIPv2 [52] produce 3D point-
wise semantic segmentation by averaging their correspond-
ing 2D pixel-wise predictions. Meanwhile, PartSLIP [24]
and SATR [1] present a designated weighting mechanism
to aggregate multi-view bounding box predictions.

The key step of zero-shot 3D part segmentation with
2D VLMs, e.g., [1, 24, 48, 52], lies in the transfer from
2D pixel-wise or bounding-box-wise predictions to 3D
point segmentation. This step is challenging due to three
major issues. First (I1), some 3D regions lack corre-
sponding 2D predictions in multi-view images, which are
caused by occlusion or not being covered by any bounding
boxes, illustrated with black and gray points, respectively,
in Fig. 1. This issue is considered a limitation in the previ-
ous work [1, 24, 48, 52]. Second (I2), there exists potential
inconsistency among 2D predictions in multi-view images
caused by inaccurate VLM predictions. Third (I3), existing
work [1, 24, 48, 52] directly transfers 2D predictions to seg-
mentation of a single 3D shape. The 2D predictions yielded
based on appearance features are not optimal for 3D geo-
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metric shape segmentation, while geometric evidence given
across different 3D shapes is not explored.

To alleviate the three issues I1∼I3, unlike existing
methods [1, 24, 48, 52] directly transferring 2D predictions
to 3D segmentation, we propose a cross-modal distillation
framework with a teacher-student model. Specifically, a
VLM is utilized as a 2D teacher network, accepting multi-
view images of a single 3D shape. The VLM is pre-trained
on large-scale image-text pairs and can exploit appearance
features to make 2D predictions. The student network is de-
veloped based on a point cloud backbone. It is derived from
multiple, unlabeled 3D shapes and can extract point-specific
geometric features. The proposed distillation method, Part-
Distill, leverages the strengths of both networks, hence im-
proving zero-shot 3D part segmentation.

The student network learns from not only the 2D teacher
network but also 3D shapes. It can extract point-wise fea-
tures and segment 3D regions uncovered by 2D predictions,
hence tackling issue I1. As a distillation-based method,
PartDistill tolerates inconsistent predictions between the
teacher and student networks, which alleviates issue I2 of
negative transfer caused by wrong VLM predictions. The
student network considers both appearance and geometric
features. Thus, it can better predict 3D geometric data and
mitigate issue I3. As shown in Fig. 1, the student network
can correctly predict the undetected arm of the chair (see
the black arrows) by learning from other chairs.

PartDistill carries out a bi-directional distillation. It first
forward distills the 2D knowledge to the student network.
We observe that after the student integrates the 2D knowl-
edge, we can jointly refer both teacher and student knowl-
edge to perform backward distillation which re-scores the
2D knowledge based on its quality. Those of low quality
will be suppressed with lower scores, such as from 0.6 to
0.1 for the falsely detected arm box in Fig. 1, and vice versa.
Finally, this re-scored knowledge is utilized by the student
network to seek better 3D segmentation.

The main contributions of this work are summarized
as follows. First, we introduce PartDistill, a cross-modal
distillation framework that transfers 2D knowledge from
VLMs to facilitate 3D part segmentation. PartDistill ad-
dresses three identified issues present in existing methods
and generalizes to both VLM with bounding-box predic-
tions (B-VLM) and pixel-wise predictions (P-VLM). Sec-
ond, we propose a bi-directional distillation, which involves
enhancing the quality of 2D knowledge and subsequently
improving the 3D predictions. Third, PartDistill can lever-
age existing generative models [31, 33] to enrich knowledge
sources for distillation. Extensive experiments demonstrate
that PartDistill surpasses existing methods by substantial
margins on widely used benchmark datasets, ShapeNet-
Part [44] and PartNetE [24], with more than 15% and 12%
higher mIoU scores, respectively. PartDistill consistently

outperforms competing methods in zero-shot and few-shot
scenarios on 3D data in point clouds or mesh shapes.

2. Related Work
Vision-language models. Based on learning granular-
ity, vision-language models (VLMs) can be grouped into
three categories, including the image-level [15, 37], pixel-
level [21, 27, 53], and object-level [22, 25, 46] categories.
The second and the third categories make pixel-level and
bounding box predictions, respectively, while the first cate-
gory produces image-level predictions. Recent research ef-
forts on VLMs have been made for cross-level predictions.
For example, pixel-level predictions can be derived from an
image-level VLM via up-sampling the 2D features into the
image dimensions, as shown in PointCLIPv2 [52]. In this
work, we propose a cross-modal distillation framework that
learns and transfers knowledge from a VLM in the 2D do-
main to 3D shape part segmentation.

3D part segmentation using vision-language models.
State-of-the-art zero-shot 3D part segmentation [1, 24, 52]
is developed by utilizing a VLM and transferring its knowl-
edge in the 2D domain to the 3D space. The pioneering
work PointCLIP [48] utilizes CLIP [37]. PointCLIPv2 [52]
extends PointCLIP by making the projected multi-view
images more realistic and proposing LLM-assisted text
prompts [4], hence producing more reliable CLIP outputs
for 3D part segmentation.

Both PointCLIP and PointCLIPv2 rely on individual
pixel predictions in 2D views to get the predictions of the
corresponding 3D points, but individual pixel predictions
are less unreliable. PartSLIP [24] suggests to extract super-
points [20] from the input point cloud. Therefore, 3D seg-
mentation is estimated for each superpoint by referring to a
set of relevant pixels in 2D views. PartSLIP uses GLIP [22]
to output bounding boxes and further proposes a weighting
mechanism to aggregate multi-view bounding box predic-
tions to yield 3D superpoint predictions. SATR [1] shares
a similar idea with PartSLIP but handles 3D mesh shapes
instead of point clouds.

Existing methods [1, 24, 48, 52] directly transfer VLM
predictions from 2D images into 3D spaces and pose three
issues: (I1) uncovered 3D points, (I2) negative transfer,
and (I3) cross-modality predictions, as discussed before.
We present a distillation-based method to address all three
issues and make substantial performance improvements.

2D to 3D distillation. Seminal work of knowledge distil-
lation [5, 14] aims at transferring knowledge from a large
model to a small one. Subsequent research efforts [26, 28,
39, 43, 50] adopt this idea of transferring knowledge from
a 2D model for 3D understanding. However, these meth-
ods require further fine-tuning with labeled data. Open-
Scene [34] and CLIP2Scene [7] require no fine-tuning and
share a similar concept with our method of distilling VLMs
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Figure 2. Overview of the proposed method. (a) The overall pipeline where the knowledge extracted from a vision-language model
(VLM) is distilled to carry out 3D shape part segmentation by teaching a 3D student network. Within the pipeline, backward distillation
is introduced to re-score the teacher’s knowledge based on its quality and subsequently improve the final 3D part prediction. (b) & (c)
Knowledge is extracted by back-projection when we adopt (b) a bounding-box VLM (B-VLM) or (c) a pixel-wise VLM (P-VLM), where
Γ and C denote 2D-to-3D back-projection and connected component labeling [3], respectively.

for 3D understanding, with ours designed for part segmenta-
tion and theirs for indoor/outdoor scene segmentation. The
major difference is that our method can enhance the knowl-
edge sources in the 2D modality via the proposed back-
ward distillation. Moreover, our method is generalizable to
both P-VLM (pixel-wise VLM) and B-VLM (bounding-box
VLM), while their methods are only applicable to P-VLM.

3. Proposed Method
3.1. Overview
Given a set of 3D shapes, this work aims to segment each
one into R semantic parts without training with any part
annotations. To this end, we propose a cross-modal bi-
directional distillation framework, PartDistill, which trans-
fers 2D knowledge from a VLM to facilitate 3D shape part
segmentation. As illustrated in Fig. 2, our framework takes
triplet data as input, including the point cloud of the shape
with N 3D points, multi-view rendered images from the
shape in V different poses, and R text prompts with each
describing the target semantic parts within the 3D shapes.

For the 2D modality, the V multi-view images and the
text prompts are fed into a Bounding-box VLM (B-VLM)
or Pixel-wise VLM (P-VLM). For each view v, a B-VLM
produces a set of bounding boxes, Bv = {bi}βi=1 while
a P-VLM generates pixel-wise predictions Sv . We then
perform knowledge extraction (Sec 3.2) for each Bv or
Sv; Namely, we transfer the 2D predictions into the 3D
space through back-projection for a B-VLM or connected-
component labeling [3] followed by back-projection for a
P-VLM, as shown in Fig. 2 (b) and Fig. 2 (c), respec-

tively. Subsequently, a set of D teacher knowledge units,
K = {k}Dd=1 = {Y d,Md}Dd=1, is obtained by aggregat-
ing from all V multi-view images. Each unit d comprises
point-wise part probabilities, Y d ∈ RN×R, from the teacher
VLM network, accompanied with a mask, Md ∈ {0, 1}N ,
identifying the points included in this knowledge unit.

For the 3D modality, the point cloud is passed into the 3D
student network with a 3D encoder and a distillation head,
producing point-wise part predictions, Ỹ ∈ RN×R. With
the proposed bi-directional distillation framework, we first
forward distill teacher’s 2D knowledge by aligning Ỹ with
K via minimizing the proposed loss, Ldistill, specified in
Sec 3.2. The 3D student network integrates 2D knowledge
from the teacher through optimization. The integrated stu-
dent knowledge Ỹ ′ and the teacher knowledge K are then
jointly referred to perform backward distillation from 3D
to 2D, detailed in Sec. 3.3, which re-scores each knowledge
unit kd based on its qualities, as shown in Fig. 2. Finally, the
re-scored knowledge K′ is used to refine the student knowl-
edge to get final part segmentation predictions Ỹf by assign-
ing each point to the part with the highest probability.

3.2. Forward distillation: 2D to 3D

Our method extracts the teacher’s knowledge in the 2D
modality and distills it in the 3D space. In the 2D modal-
ity, V multi-view images {Iv ∈ RH×W }Vv=1 are rendered
from the 3D shape, e.g., using the projection method in [52].
These V multi-view images together with the text prompts
T of R parts are passed to the VLM to get the knowl-
edge in 2D spaces. For a B-VLM, a set of β bounding

3472



boxes, Bv = {bi}βi=1, is obtained from the v-th image, with
bi ∈ R4+R encoding the box coordinates and the probabil-
ities of the R parts. For a P-VLM, a pixel-wise prediction
map Sv ∈ RH×W×R is acquired from the v-th image. We
apply knowledge extraction to each Bv and each Sv to ob-
tain a readily distillable knowledge K in the 3D space, as
illustrated in Fig. 2 (b) and Fig. 2 (c), respectively.

For a B-VLM, bounding boxes can directly be treated as
the teacher knowledge. For a P-VLM, knowledge extrac-
tion starts by applying connected-component labeling [3]
to Sv to get a set of ρ segmentation components, {si ∈
RH×W×R}ρi=1, indicating if the r-th part is with the high-
est probability in each pixel. We summarize the process
when applying a VLM to a rendered image and the part text
prompts as

VLM(Iv, T ) =

{
Bv = {bi}βi=1, for B-VLM,

C(Sv) = {si}ρi=1, for P-VLM,
(1)

where C denotes connected-component labeling.
We then back-project each box bi or each prediction map

si to the 3D space, i.e.,

ki = (Y i,M i) =

{
Γ(bi), for B-VLM,

Γ(si), for P-VLM,
(2)

where Γ denotes the back-projection operation with the
camera parameters [49] used for multi-view image render-
ing, Y i ∈ RN×R is the point-specific part probabilities, and
M i ∈ {0, 1}N is the mask indicating which 3D points are
covered by bi or si in the 2D space. The pair (Y i,M i)
yields a knowledge unit, ki, upon which the knowledge re-
scoring is performed in the backward distillation.

For the 3D modality, a 3D encoder, e.g., Point-
M2AE [47], is applied to the point cloud and obtains per-
point features, O ∈ RN×E , capturing local and global ge-
ometrical information. We then estimate point-wise part
prediction, Ỹ ∈ RN×R, by feeding the point features O
into the distillation head. The cross-modal distillation is
performed by teaching the student network to align the part
probability from the 3D modality Ỹ to their 2D counterparts
Y via minimizing our designated distillation loss.

Distillation loss. Via Eq. 1 and Eq. 2, we assume that D
knowledge units, K = {kd}Dd=1 = {Y d,Md}Dd=1, are ob-
tained from the multi-view images. The knowledge K ex-
ploits 2D appearance features and is incomplete as several
3D points are not covered by any 2D predictions, i.e., is-
sue I1. To distill this incomplete knowledge, we utilize a
masked cross-entropy loss defined as

Ldistill = −
D∑

d=1

1

|Md|

N∑
n=1

R∑
r=1

Md
nC

d
nZ

d
n,rlog(Ỹn,r), (3)

where Cd
n = max

r
(Y d

n (r)) is the confidence score of kd on

point n. Zd
n,r takes value 1 if part r receives the highest

probability on kd, and 0 otherwise. |Md| is the area covered
by the mask Md.

By minimizing Eq. 3, we teach the student network to
align its prediction Ỹ to the distilled prediction Y by con-
sidering the points covered by the mask and using the confi-
dence scores as weights. Despite learning from incomplete
knowledge, the student network extracts point features that
capture geometrical information of the shape, thus enabling
it to reasonably segment the points that are not covered by
2D predictions, hence addressing issue I1. This can be re-
garded as interpolating the learned part probability in the
feature spaces by the distillation head.

As a distillation-based method, our method allows par-
tial inconsistency among the extracted knowledge K =
{kd}Dd=1 caused by inaccurate VLM predictions, thereby al-
leviating issue I2 of negative transfer. In our method, the
teacher network works on 2D appearance features, while
the student network extracts 3D geometric features. After
distillation via Eq. 3, the student network can exploit both
appearance and geometric features from multiple shapes,
hence mitigating issue I3 of cross-modal transfer. It is
worth noting that unlike the conventional teacher-student
models [11, 13, 14] which solely establish a one-to-one cor-
respondence, we further re-score each knowledge unit kd

based on its quality (Sec. 3.3), and improve distillation by
suppressing low-quality knowledge units.

3.3. Backward distillation: 3D to 2D

In Eq. 3, we consider all knowledge units {kd}Dd=1,
weighted by their confidence scores. However, due to the
potential VLM mispredictions, not all knowledge units are
reliable. Hence, we refine the knowledge units by assign-
ing higher scores to those of high quality and suppressing
the low-quality ones. We observe that once the student
network has thoroughly integrated the knowledge from the
teacher, we can jointly refer both teacher and integrated stu-
dent knowledge Ỹ ′ to achieve the goal, by re-scoring the
confidence score Cd to Cd

bd as:

Cd
bd =

|Md(argmax(Y d)⇔argmax(Ỹ ′))|
|Md|

, (4)

where ⇔ denotes the element-wise equality (comparison)
operation. In this way, each knowledge unit kd is re-scored:
Those with high consensus between teacher K and inte-
grated student knowledge Ỹ ′ have higher scores, such as
those on the chair legs shown in Fig. 3, and those with
low consensus are suppressed by the reduced scores, such
as those on the chair arm (B-VLM) and back (P-VLM) in
Fig. 3. Note that for simplicity, we only display two scores
in each shape of Fig. 3 and show the average pixel-wise
scores in P-VLM. To justify that the student network has
thoroughly integrated the teacher’s knowledge, from ini-
tial knowledge Ỹ to integrated knowledge Ỹ ′, we track the
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Figure 3. Given the VLM output of view v, Bv or Sv , we dis-
play the confidence scores before (C) and after (Cbd) perform-
ing backward distillation via Eq. 4, with Y and M obtained via
Eq. 2. With backward distillation, inaccurate VLM predictions
have lower scores, such as the arm box in B-VLM with the score
reduced from 0.7 to 0.1, and vice versa.

moving average of the loss value for every epoch and see
if the value in a subsequent epoch is lower than a specified
threshold τ . Afterward, the student network continues to
learn with the re-scored knowledge K′ by minimizing the
loss in Eq. 3 with C being replaced by Cbd, and produces
the final part segmentation predictions Ỹf .

3.4. Test-time alignment
In general, our method performs the alignment with a shape
collection before the student network is utilized to carry the
3D shape part segmentation. If such a pre-alignment is not
preferred, we provide a special case of our method, test-time
alignment (TTA), where the alignment is performed for ev-
ery single shape in test time. To maintain the practicabil-
ity, TTA needs to achieve a near-instantaneous completion.
To that end, TTA employs a readily used 3D encoder, e.g.,
pre-trained Point-M2AE [47], freezes its weights, and only
updates the learnable parameters in the distillation head,
which significantly fastens the TTA completion.

3.5. Implementation Details
The proposed framework is implemented in PyTorch [32]
and is optimized for 25 epochs via Adam optimizer [19]
with a learning rate and batch size of 0.001 and 16, re-
spectively. Unless further specified, the student network
employs Point-M2AE [47] pre-trained in a self-supervised
way on the ShapeNet55 dataset [6] as the 3D extractor,
freezes its weights, and only updates the learnable parame-
ters in the distillation head. A multi-layer perceptron con-
sisting of 4 layers, with ReLU activation [2], is adopted
for the distillation head. To fairly compare with the com-
peting methods [1, 24, 48, 52], we follow their respective

settings, including the used text prompts and the 2D ren-
dering. Their methods render each shape into 10 multi-
view images, either from a sparse point cloud [48, 52], a
dense point cloud [24], or a mesh shape [1]. Lastly, we fol-
low [18, 38] to specify a small threshold value, τ = 0.01 in
our backward distillation, and apply class-balance weight-
ing [9] during the alignment, based on the VLM predictions
in the zero-shot setting, with additional few-shot labels in
the few-shot setting.

4. Experiments
4.1. Dataset and evaluation metric
We evaluate the effectiveness of our method on two main
benchmark datasets, ShapeNetPart [44] and PartNetE [24].
While ShapeNetPart dataset contains 16 categories with a
total of 31,963 shapes, PartNetE contains 2,266 shapes,
covering 45 categories. The mean intersection over union
(mIoU) [30] is adopted to evaluate the segmentation results
on the test-set data, measured against the ground truth label.

4.2. Zero-shot segmentation
To compare with the competing methods [1, 24, 48, 52],
we adopt each of their settings and report their mIoU per-
formances from their respective papers. Specifically, for P-
VLM, we follow PointCLIP [48] and PointCLIPv2 [52] to
utilize CLIP [37] with ViT-B/32 [10] backbone and use their
pipeline to obtain the pixel-wise predictions from CLIP.
For B-VLM, a GLIP-Large model [22] is employed in our
method to compare with PartSLIP and SATR which also
use the same model. While most competing methods report
their performances on the ShapeNetPart dataset, PartSLIP
evaluates its method on the PartNetE dataset. In addition,
we compare with OpenScene [34] by extending it for 3D
part segmentation and use the same Point-M2AE [47] back-
bone and VLM CLIP for a fair comparison.

Accordingly, we carry out the comparison separately to
ensure fairness, based on the employed VLM model and
the shape data type, i.e., point cloud or mesh data, as shown
in Tables 1 and 2. In Table 1, we provide two versions of
our method, including test-time alignment (TTA) and pre-
alignment (Pre) with a collection of shapes from the train-
set data. Note that in the Pre version, our method does not
use any labels (only unlabeled shape data are utilized).

First, we compare our method to PointCLIP and Point-
CLIPv2 (both utilize CLIP) on the zero-shot segmentation
for the ShapeNetPart dataset, as can be seen in the first part
of Table 1. It is evident that our method for both TTA and
pre-alignment versions achieves substantial improvements
in all categories. For the overall mIoU, calculated by av-
eraging the mIoUs from all categories, our method attains
5.4% and 15.5% higher mIoU for TTA and pre-alignment
versions, respectively, compared to the best mIoU from the
other methods. Such results reveal that our method which
simultaneously exploits appearance and geometric features
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Table 1. Zero-shot segmentation on the ShapeNetPart dataset, reported in mIoU (%).*

VLM Data type Method Airplane Bag Cap Chair Earphone Guitar Knife Laptop Mug Table Overall

CLIP [37] point cloud

PointCLIP [48] 22.0 44.8 13.4 18.7 28.3 22.7 24.8 22.9 48.6 45.4 31.0
PointCLIPv2 [52] 35.7 53.3 53.1 51.9 48.1 59.1 66.7 61.8 45.5 49.8 48.4
OpenScene [34] 34.4 63.8 56.1 59.8 62.6 69.3 70.1 65.4 51.0 60.4 52.9

Ours (TTA) 37.5 62.6 55.5 56.4 55.6 71.7 76.9 67.4 53.5 62.9 53.8
Ours (Pre) 40.6 75.6 67.2 65.0 66.3 85.8 79.8 92.6 83.1 68.7 63.9

GLIP [22]

point cloud Ours (TTA) 57.3 62.7 56.2 74.2 45.8 60.6 78.5 85.7 82.5 62.9 54.7
Ours (Pre) 69.3 70.1 67.9 86.5 51.2 76.8 85.7 91.9 85.6 79.6 64.1

mesh
SATR [1] 32.2 32.1 21.8 25.2 19.4 37.7 40.1 50.4 76.4 22.4 32.3

Ours (TTA) 53.2 61.8 44.9 66.4 43.0 50.7 66.3 68.3 83.9 58.8 49.5
Ours (Pre) 64.8 64.4 51.0 67.4 48.3 64.8 70.0 83.1 86.5 79.3 56.3

*Results for other categories, including those of Table 2 and Table 3, can be seen in the supplementary material.

Table 2. Zero-shot segmentation on the PartNetE dataset, reported in mIoU (%).

VLM Data type Method Bottle Cart Chair Display Kettle Knife Lamp Oven Suitcase Table Overall

GLIP [22] point cloud PartSLIP [24] 76.3 87.7 60.7 43.8 20.8 46.8 37.1 33.0 40.2 47.7 27.3
Ours (TTA) 77.4 88.5 74.1 50.5 24.2 59.2 58.8 34.2 43.2 50.2 39.9

can better aggregate the 2D predictions for 3D part segmen-
tation than directly averaging the corresponding 2D predic-
tions as in the competing methods, where geometric ev-
idence is not explored. We further compare with Open-
Scene [34] under the same setting as ours (Pre) and our
method substantially outperforms it. One major reason is
that our method can handle the inconsistency of VLM pre-
dictions (issue I2) better by backward distillation.

Next, as shown in the last three rows of Table 1, we
compare our method to SATR [1] that works on mesh data
shapes. To obtain the mesh face predictions, we propagate
the point predictions via a nearest neighbors approach as
in [17], where each face is voted from its five nearest points.
Our method achieves 17.2% and 24% higher overall mIoU
than SATR for TTA and pre-alignment versions, respec-
tively. Then, we compare our method with PartSLIP [24] in
Table 2 wherein only results from TTA are provided since
the PartNetE dataset does not provide train-set data. One
can see that our method consistently obtains better segmen-
tations, with 12.6% higher overall mIoU than PartSLIP.

In PartSLIP and SATR, as GLIP is utilized, the uncov-
ered 3D regions (issue I1) could be intensified by possible
undetected areas, and the negative transfer (issue I2) may
also be escalated due to semantic leaking, where the box
predictions cover pixels from other semantics. On the other
hand, our method can better alleviate these issues, thereby
achieving substantially higher mIoU scores. In our method,
the pre-alignment version achieves better segmentation re-
sults than TTA. This is expected since in the pre-alignment
version, the student network can distill the knowledge from
a collection of shapes, instead of individual shape.

Besides foregoing quantitative comparisons, a qualita-
tive comparison of the segmentation results is presented in
Fig. 4. It is readily observed that the competing methods
suffer from the lack of 3D segmentation for the uncovered
regions (issue I1) caused by either occlusion or not being
covered by any bounding box, drawn with black and gray

colors, respectively. Moreover, these methods may also en-
counter negative transfers caused by inaccurate VLM out-
puts (issue I2), such as those pointed by blue arrows, with
notably degraded outcomes in SATR due to semantic leak-
ing. Nonetheless, our method performs cross-modal dis-
tillation and alleviates these two issues, as can be seen in
Fig. 4. In addition, due to a direct transfer of 2D predictions
to 3D space which relies on each independent shape as in
the competing methods, erroneous 2D predictions will just
remain as incorrect 3D segmentation (issue I3), such as the
missed detected chair arms and guitar heads pointed by red
arrows. Our method also addresses this issue, by exploiting
geometrical features across multiple shapes.

4.3. Few-shot segmentation

We further demonstrate the effectiveness of our method in
a few-shot scenario by following the setting used in Part-
SLIP [24]. Specifically, we employ the fine-tuned GLIP
model [22] provided by PartSLIP via 8-shot labeled shapes
of the PartNetE dataset [44] for each category. In addition
to the alignment via Eq. 3, we ask the student network to
learn parameters that minimize both Eq. 3 and a standard
cross-entropy loss for segmentation on the 8 labeled shapes.

As shown in Table 3, the methods dedicated to few-shot
3D segmentation, ACD [12] and Prototype [51], are adapted
to PointNet++ [51] and PointNext [36] backbones, respec-
tively, and can improve the performances (on average) of
these backbones. PartSLIP, on the other hand, leverages
multi-view GLIP predictions for 3D segmentation and fur-
ther improves the mIoU, but there are still substantial per-
formance gaps compared to our method which distills the
GLIP predictions instead. We also present the results from
fine-tuning Point-M2AE with the few-shot labels, which
shows lower performances than ours, highlighting the sig-
nificant contribution of our distillation framework. For
more qualitative results, see the supplementary materials.
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SATR Ours (Pre)Ours (TTA)Ours (Pre) Ours (Pre)Ours (TTA) PartSLIP Ours (TTA)PointCLIP

point cloud - CLIP meshmesh - GLIP point cloud - GLIP

PointCLIPv2 Ground truths

Figure 4. Visualization of the zero-shot segmentation results, drawn in different colors, on the ShapeNetPart dataset. We render PartSLIP
results on the ShapeNetPart data to have the same visualization of shape inputs. While occluded and undetected regions (issue I1) are
shown with black and gray colors, respectively, the blue and red arrows highlight several cases of issues I2 and I3.

Table 3. Few-shot segmentation on the PartNetE dataset, reported in mIoU (%).

Method Bottle Cart Chair Display Kettle Knife Lamp Oven Suitcase Table Overall

Non-VLM-based

PointNet++ [35] 27.0 11.6 42.2 30.2 28.6 22.2 10.5 19.4 3.3 7.3 20.4
PointNext [36] 67.6 47.7 65.1 53.7 60.6 59.7 55.4 36.8 14.5 22.1 40.6

ACD [12] 22.4 31.5 39.0 29.2 40.2 39.6 13.7 8.9 13.2 13.5 23.2
Prototype [51] 60.1 36.8 70.8 67.3 62.7 50.4 38.2 36.5 35.5 25.7 44.3

Point-M2AE [47] 72.4 74.5 83.4 74.3 64.3 68.0 57.6 53.3 57.5 33.6 56.4
VLM-based
(GLIP [22])

PartSLIP [24] 83.4 88.1 85.3 84.8 77.0 65.2 60.0 73.5 70.4 42.4 59.4
Ours 84.6 90.1 88.4 87.4 78.6 71.4 69.2 72.8 73.4 63.3 65.9

4.4. Leveraging generated data
Since only unlabeled 3D shape data are required for our
method to perform cross-modal distillation, existing gener-
ative models [31, 33] can facilitate an effortless generation
of 3D shapes, and the generated data can be smoothly incor-
porated into our method. Specifically, we first adopt DiT-
3D [31] which is pre-trained on the ShapeNet55 dataset [6]
to generate point clouds of shapes, 500 shapes for each cat-
egory, and further employ SAP [33] to transform the gener-
ated point clouds into mesh shapes. These generated mesh
shapes can then be utilized in our method for distillation.
Table 4 shows the results evaluated on the test-set data of
ShapeNetPart [44] and COSEG [42] datasets for several
shape categories, using GLIP as the VLM.

One can see that with distilling from the generated alone,
our method already achieves competitive results on the
ShapeNetPart dataset compared to distilling from the train-
set data. Since the generated data via DiT-3D is pre-trained
on the ShapeNet55 dataset which contains the ShapeNet-
Part data, we also evaluate its performance on the COSEG
dataset to show that such results can be well transferred
to shapes from another dataset. Finally, Table 4 (the last
row) reveals that using generated data as a supplementary
knowledge source can further increase the mIoU perfor-
mance. Such results suggest that if a collection of shapes is

available, generated data can be employed as supplementary
knowledge sources, which can improve the performance.
On the other hand, if a collection of shapes does not exist,
generative models can be employed for shape creation and
subsequently used in our method as the knowledge source.

4.5. Ablation studies
Proposed components. We perform ablation studies on
the proposed components, and the mIoU scores in 2D1 and
3D spaces on three categories of the ShapeNetPart dataset
are shown in (1) to (9) of Table 5. In (1), only GLIP box
predictions are utilized to get 3D segmentations, i.e., part
labels are assigned by voting from all visible points within
the multi-view box predictions. These numbers serve as
baselines and are subject to issues I1∼I3. In (2) and (3),
3D segmentations are achieved via forward distillation from
the GLIP predictions to the student network using Eq. 3,
for test-time alignment (TTA) and pre-alignment (Pre) ver-
sions, resulting in significant improvements compared to
the baselines, with more than 10% and 14% higher mIoUs,
respectively. Such results demonstrate that the proposed
cross-modal distillation can better utilize the 2D multi-view
predictions for 3D part segmentation, alleviating I1∼I3.

1Calculated between the VLM predictions and their corresponding 2D
ground truths projected from 3D, and weighted by the confidence scores.
See supplementary material for the details.
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Table 4. Segmentation mIoU (%) by leveraging generated data.

Distilled data ShapeNetPart [44] COSEG [42]
Airplane Chair Guitar Chair Guitar

Train-set (baseline) 69.3 86.2 76.8 96.4 68.0
Gen. data 69.0 85.3 75.6 96.1 67.5

Gen. data & train-set 70.8 88.4 78.3 97.4 70.2

Table 5. Ablation study on the proposed method.

No VLM Pre BD Student
network

Airplane Chair Knife
2D 3D 2D 3D 2D 3D

(1)

GLIP
[22]

42.8 40.2 60.2 60.1 53.6 57.2
(2) ✓ 42.8 56.2 60.2 73.5 53.6 77.6
(3) ✓ ✓ 42.8 64.3 60.2 84.2 53.6 84.5
(4) ✓ ✓ 44.3 57.3 61.7 74.2 54.8 78.5
(5) ✓ ✓ ✓ 48.2 69.3 63.2 86.5 55.0 85.7
(6) ✓ ✓ exclude I1 48.2 62.5 63.2 80.4 55.0 81.2
(7) ✓ ✓ w/o pretrain 48.2 69.1 63.2 86.7 55.0 85.3
(8) CLIP

[37]
✓ ✓ 34.6 38.4 50.4 63.6 66.8 77.4

(9) ✓ ✓ ✓ 37.8 40.6 54.2 65.0 68.4 78.9

We further add backward distillation (BD) in (4) and (5),
which substantially improves the knowledge source in 2D,
e.g., from 42.8% to 48.2% for the airplane category in the
pre-alignment version, and subsequently enhances the 3D
segmentation. We observe a higher impact (improvement)
on the pre-alignment compared to TTA versions, i.e., in (4)
and (5), as the student network of the former can better inte-
grate the knowledge from a collection of shapes. A similar
trend of improvement can be observed for a similar ablation
performed with CLIP [37] used as the VLM (in (8) and (9)).

In (6), we exclude our method’s predictions for those un-
covered points to simulate issue I1, and the reduced mIoUs
compared to (5), e.g., from 86.5% to 80.4% for the chair cat-
egory, reveal that our method can effectively alleviate issue
I1. Finally, instead of using pre-trained weights of Point-
M2AE [47] and freezing them as the 3D decoder as in (5),
we initialize these weights (by default PyTorch [32] initial-
ization) and set them to be learnable as in (7). Both set-
tings produce comparable results (within 0.4%). The main
purpose of using the pre-trained weights and freezing them
is for faster convergence, especially for the test-time align-
ment purpose. Please refer to the supplementary material
for the comparison of convergence curves.

Number of views. We render V = 10 multi-view images
for each shape input in our main experiment, and Fig. 5
(left) shows the mIoU scores with different values of V .
A substantial drop is observed when utilizing V < 6, and
small increases are obtained when a larger V is used.

Various shape types for 2D multi-view rendering. We
render 10 multi-view images from various shape data types,
i.e., (i) gray mesh, (ii) colored mesh, (iii) dense colored
point cloud (∼300k points) as used in PartSLIP [24],
and (iv) sparse gray point cloud (2,048 points) using
PyTroch3D [16] and the rendering method in [52] to ren-
der (i)-(iii) and (iv), respectively. Fig. 5 (right) summarizes
such results on the ShapeNetPart dataset, with GLIP used
as the VLM. Note that the first three shape types produce

number of views
shape types for 2D rendering

Figure 5. Ablation study on number of views and various shape
types for 2D multiview rendering on the ShapeNetPart dataset.

comparable mIoUs with slightly higher scores when col-
ored mesh or dense colored point cloud is utilized. When
sparse gray point cloud data type is used, a mild mIoU de-
crease is observed. Please refer to the supplementary mate-
rial to see more results for (i)-(iv).

Limitation. The main limitation of our method is that
the segmentation results are impacted by the quality of the
VLM predictions, where VLMs are generally pre-trained to
recognize object- or sample-level categories (not part-level
of object categories). For instance, GLIP can satisfactorily
locate part semantics for the chair category but with lower
qualities for the earphone category, while CLIP can favor-
ably locate part semantics for the earphone category but
with less favorable results for the airplane category. Hence,
exploiting multiple VLMs can be a potential future work.
Nonetheless, the proposed method which currently employs
a single VLM model can already boost the segmentation re-
sults significantly compared to the existing methods.

5. Conclusion
We present a cross-modal distillation framework that trans-
fers 2D knowledge from a vision-language model (VLM)
to facilitate 3D shape part segmentation, which general-
izes well to both VLM with bounding-box and pixel-wise
predictions. In the proposed method, backward distillation
is introduced to enhance the quality of 2D predictions and
subsequently improve the 3D segmentation. The proposed
approach can also leverage existing generative models for
shape creation and can be smoothly incorporated into the
method for distillation. With extensive experiments, the
proposed method is compared with existing methods on
widely used benchmark datasets, including ShapeNetPart
and PartNetE, and consistently outperforms existing meth-
ods with substantial margins both in zero-shot and few-shot
scenarios on 3D data in point clouds or mesh shapes.
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