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Figure 1. Learning to SPIN: Our robot learns to simultaneously perceive, manipulate, and navigate cluttered unstructured environments
in a whole-body fashion. The robot has an actuated camera with a limited field of view that it must control to get information about its
environment. The motion and perception problem are tightly coupled since what the robot knows about the environment influences how it
can move and vice versa. We show results in a large variety of scenarios both indoors and outdoors with different obstacles like boxes and
furniture. Our robot can pick up different objects like cups, and utensils. Video demos at https://spin-robot.github.io

Abstract
While there has been remarkable progress recently in

the fields of manipulation and locomotion, mobile manip-
ulation remains a long-standing challenge. Compared to
locomotion or static manipulation, a mobile system must
make a diverse range of long-horizon tasks feasible in un-
structured and dynamic environments. While the applica-
tions are broad and interesting, there are a plethora of chal-
lenges in developing these systems such as coordination be-
tween the base and arm, reliance on onboard perception for
perceiving and interacting with the environment, and most
importantly, simultaneously integrating all these parts to-
gether. Prior works approach the problem using disentan-
gled modular skills for mobility and manipulation that are
trivially tied together. This causes several limitations such

as compounding errors, delays in decision-making, and no
whole-body coordination. In this work, we present a re-
active mobile manipulation framework that uses an active
visual system to consciously perceive and react to its en-
vironment. Similar to how humans leverage whole-body
and hand-eye coordination, we develop a mobile manipu-
lator that exploits its ability to move and see, more specif-
ically – to move in order to see and to see in order to
move. This allows it to not only move around and interact
with its environment but also, choose “when” to perceive
“what” using an active visual system. We observe that such
an agent learns to navigate around complex cluttered sce-
narios while displaying agile whole-body coordination us-
ing only ego-vision without needing to create environment
maps. Videos are available at https://spin-robot.github.io
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1. Introduction
Consider the example shown in Figure 2. A person is trying
to carry a coffee cup through clutter. This not only requires
navigational planning from start to goal but planning of the
whole body to avoid obstacles along the way. Furthermore,
due to ego-centric vision, the person needs to actively look
around to gather the presence of obstacles. This general
form of mobile manipulation task necessitates a coupled un-
derstanding of whole-body control with active perception.
This capability is one of the fundamental and frequently en-
countered tasks in embodied cognition.

The dominant paradigm to tackle this problem is through
classical planning-based control which requires apriori
knowledge about the precise location of all the obstacles
along with a detailed map of the environment. In most
real-world scenarios, this assumption is impractical due to
computational reasons, but more importantly, because envi-
ronments are dynamic and objects keep moving around in
general. Furthermore, relying on precise measurement of
scenes for control does not allow agents to reactively im-
provise to changes in their environment. Practically, even
when the complete environment map is known apriori, joint
planning for a system with high degrees of freedom, say a
mobile base with an arm, is often intractable and too expen-
sive to be deployed in real-time.

Humans, on the other hand, do not rely on precise known
estimates of object locations and instead use ego-centric vi-
sion to navigate around obstacles in real-time. In an un-
familiar environment, where to look is informed by where
they want to move (called ‘active perception’), and how
they move in return determines what all they can see im-
mediately afterward. This integrated mobility and percep-
tion allows us to see, adapt, and react to maneuver through
unseen heavily cluttered environments.

This paper presents SPIN, an end-to-end approach to
Simultaneous Perception, Interaction, and Navigation. We
train a single model that not only outputs low-level controls
for the robot body and arm but also predicts where should
the robot’s ego-centric camera look at each time step while
moving its whole body by avoiding obstacles. We train our
approach via reinforcement learning (RL), and to get around
the computational bottleneck of rendering depth images, we
use a teacher-student training framework where robot be-
havior is first learned using RL with access to visible object
scandots and then distilled into a policy that operates from
ego-depth using supervised learning. We evaluate across 6
benchmarks in simulation ranging from easy, medium, and
hard difficulty, and two real-world environments with a sim-
ilar level of clutter as the hard environments in simulation
and also add dynamic, adversarial obstacles. We find that
our method outperforms classical methods and baselines
which do not use active vision. We also observe emergent
behaviors, including dynamic obstacle avoidance which the

Figure 2. Human and robot illustration of whole-body navigation
through the clutter.

robot did not see during training time.
Our approach presents a radical hypothesis that the tradi-

tionally non-reactive planning approach to whole-body con-
trol can indeed be cast into a reactive model – i.e. – single
end-to-end policy trained by RL. Despite a big departure
from optimal control literature, this hypothesis is not as sur-
prising since agile whole-body coordination and fast obsta-
cle avoidance in humans are developed into muscle memory
over time. We now discuss our approach in detail.

2. Method

We want our mobile manipulator (Fig. 5) to navigate and
manipulate objects while avoiding obstacles in cluttered en-
vironments. It shares anatomical similarities with a human,
bringing with it many of the same challenges. First, it has a
limb in the form of an arm that can be raised and lowered,
so the robot must constantly move the arm to avoid any ob-
stacles. Second, it has an actuated camera with a very lim-
ited field of view (87◦ horizontal, 58◦ vertical), so it needs
to constantly look around to simultaneously plan ahead and
look out for unexpected obstacles. Imagine yourself walk-
ing through a cluttered cabinet, there are too many obsta-
cles around to keep track of, and you can’t see all of them
at once, so you must keep looking all around your body
to plan a path through the clutter but also make sure you
don’t hit anything you missed along the way. Unlike regular
walking where our eyes mostly point straight ahead and the
path is clear, here you must actively choose what to perceive
for simultaneously planning ahead and also doing reactive
fixes to your planned path. Since all the obstacles cannot be
perceived at a single glance, you must have spatial aware-
ness and know where the obstacle you saw some time ago
is right now in relation to your body. Note that this entire
process is very different from the classical approach, where
perception, planning, and obstacle avoidance are separate
processes executed separately and in sequence. Further, it
is assumed that the output of each is perfect, whereas this is
rarely the case in practice in our unstructured world.

To deal with this challenging, entangled problem setup,
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Figure 3. We learn a policy that uses ego-vision to simultaneously perceive, interact, and navigate in cluttered environments. We propose
two methods: (1) Coupled Visuomotor Optimization (CVO) learns robot and camera actions at the same time. We train an RL policy
to predict these. We only provide scandots if they are visible in the agent’s field-of-view allowing the agent to learn to move its camera
and aggregate information about its environment. This is followed by a phase-2 supervised training where this behavior is distilled into
a student network that operates with ego-centric depth images (2) Decoupled Visuomotor Optimization (DVO) decouples the action and
perception learning into two parts: first the agent learns to navigate across clutter assuming access to all obstacles. In phase 1b, the robot
learns to move its camera to estimate the relevant information. This is followed by supervised learning same as above.

we take a data-driven approach. We train our robot to navi-
gate inside procedurally generated clutter in simulation us-
ing RL. The robot is only allowed to perceive the part of its
environment that is visible to the camera and learns to co-
ordinate its arm, base, and camera motion such that it can
plan ahead and reactively adjust to obstacles.

In practice, since training with RL requires many sam-
ples and rendering depth is inefficient (see supp. Section
??), we divide training into two phases. In the first one, we
learn mobile manipulation behaviors via RL using a cheap-
to-compute variant of depth and in phase 2 we train a CNN
for perception from depth images as illustrated in Figure 3.

2.1. Phase 1 - Learning Simultaneous Perception,
Interaction and Navigation

In this stage, we use RL to learn to control all the joints of
the robot to navigate clutter and pick target objects. Since
rendering depth images directly from the robot camera is
expensive, we must instead use an ersatz version that con-

tains the same information and is cheap to compute. We do
so using scandots st which are the xyz coordinates of the
bounding box of each obstacle. To specify which object to
pick, we give the initial location of the object (before it is
touched by the robot) oi. In lieu of the object image we
give the current location of the object ot. Here, scandots
st and object location ot are privileged information which
must later be estimated from depth images. Given this in-
formation, we train two separate LSTM policies πnav and
πpick. At test time, the nav policy is activated to reach a tar-
get location and we switch to the pick one once the robot
gets close to the object.

2.1.1 Pick Policy

This accesses proprioception xt consisting of robot joint an-
gles and velocities qt, q̇t, base linear and angular velocity
vt, ωt. For perception, it gets object’s initial and current lo-
cation oi, ot and predicts robot and camera actions.

[arobot,acam] = πpick(xt, F (ot,xt),oi) (1)
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Figure 4. We illustrate one scenario of the simulation benchmark here with many obstacles in a narrow passage. The agent learns to develop
whole-body coordination such as the robot’s arm movement in the last two frames, in order to reactively adapt and navigate through such
cluttered scenes by actively moving around the camera and aggregating information for efficient navigation without collisions.

where F is a masking function that masks object position
ot if it is not in the field of view of the camera. This is
required since object position can only be estimated from
depth in phase 2 if it is visible.

2.1.2 Navigation Policy

Training this policy requires a complex joint visuomotor op-
timization since robot motion is dependent on its knowledge
of the environment which in turn depends on how the robot
moves. We present two approaches to tackle this problem.

Coupled Visuomotor Optimization (CVO) Here, we
set up a partially observable environment for the robot and
let the RL algorithm do the joint optimization using large-
scale data. In particular, the policy gets proprioception xt

and only visible scandots s̃t = F (st,xt) as observation
and has to predict both the camera and the robot actions.
Since the scandots are permutation invariant, we pass them
through a trainable point-net architecture P to obtain com-
pressed latent zt = P (̃st) that we pass to the policy

[arobot,acam] = πnav(xt, zt) (2)

This presents a tough optimization landscape because the
observations at each step are strongly dependent on acam.
For instance, if the camera swivels around the observations
at the next timestep may look completely different. Indeed,
we observe that this requires billions of samples inside a
GPU-accelerated simulator to optimize which may not al-
ways be feasible in practice.

Decoupled Visuomotor Optimization (DVO) To ease
the optimization process, we learn the robot and camera ac-
tions separately. First, we learn how to move by giving the
robot access to all available scandots zt = P (st) in a local
vicinity. Since the robot sees everything, the camera motion
is irrelevant and we just predict the robot motion

arobot = π1a
nav(xt, zt,gt) (3)

where gt is the goal with respect to the base. Using this pol-
icy as supervision, we train another policy to predict both

camera and robot motions with access to only visible scan-
dots ẑt = P (F (st,xt)). This policy is trained via RL to
predict the robot actions from phase 1 policy arobot. This
optimization forces the student policy to learn camera be-
haviors that capture information about the environment that
are needed to move in the optimal fashion. We initialize
π1b

nav from the weights of π1a
nav

min
π1b

nav

∥ârobot − arobot∥

s.t. [ârobot, âcam] = π1b
nav(xt, ẑt,gt) (4)

This decoupled approach learns to move and see in separate
phases which eases the optimization burden. In principle,
the coupled optimization is better since it is possible that
the 1a policy may learn to exploit privileged information in
a way that the 1b policy cannot estimate it for any set of
camera movements. However, in our setting, this did not
turn out to be the case.

We train using PPO [32] with backpropagation through
time [37] in procedurally generated environments.

Rewards: For the navigation task, we use distance to
goal reward ∥gt∥ along with a forward progress reward
| (vt)g | where (vt)g is velocity along the direction of the
goal.

rnav = 0.1 · ∥gt∥+ 0.1 · | (vt)g | (5)

For the pick task, we provide an object reaching reward,
i.e., the distance between the gripper and object. This is
followed by a lift reward if a successful grasp is detected
(based on whether contact forces cross a threshold).

rpick = 0.5 · ∥ot − pt∥+ 0.5 · rlift (6)

where

rlift =
(
1− tanh

(
15 · [(ot)z]+

))
I

[∑
i

fi > 10

]
(7)

where [x]+ = max(x, 0) and I is the indicator function
which forces the reward to be active only when object con-
tact forces fi exceed 10N.
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Training environments: We procedurally generate long
corridors with obstacles placed in between the robot and the
goal. The initial joints and orientation of the robot are ran-
domized. Near the edges of the corridors, we place random-
ized obstacles and walls to simulate distractors in the depth
image. For the pick task, objects are spawned on tables of
varying dimensions. We use five different objects - banana,
mug, can, foambrick and a bottle. The episode is terminated
if the robot reaches the goal or hits an obstacle/table.

2.2. Phase 2 - From Scandots to Depth

Scandots are not directly observable in the real world and
must instead be estimated from the depth image. We train
a convolution network C to convert rendered depth images
dt to perception latents z̃t. This latent is passed to a student
policy π′ to predict the actions [ãrobot, ãcam]. This is super-
vised using L2 loss from the phase 1 actions. The weights
for π′ are initialized using π. We train this policy using
DAgger [29]. For the navigation policy we optimize

min
Cnav,π′

nav

∥π′
nav(Cnav(dt),xt,gt)− πnav(zt,xt,gt)∥ (8)

Note that the teacher policy πnav can be trained using either
the coupled or decoupled approach. Similarly, for the pick
policy we estimate current object position ot from depth

min
Cpick,π′

pick

∥∥π′
pick(Cpick(dt),xt,oi)− πpick(zt,xt,ot,oi)

∥∥
(9)

3. Experimental Setup
We use the Hello Robot Stretch [1] for all our experiments
(Fig. 5). The robot has 10 actuated joints which include 2
degrees of freedom for the camera, 2 for base rotation and
translation, 2 for the arm, 1 for the gripper fingers and 3
for the dexterous wrist. An Intel D435i depth camera is
mounted on the top of the robot head which is actuated us-
ing two motors. The learned policy operates at 10Hz and we
do velocity control for the robot base and position control
for all the other joints. Velocity control for the robot base al-
lows us to perform simultaneous robot translation and rota-
tion for more agile behavior. We train using IsaacGymEnvs
[26] using 8192 environments which takes 6 hours of train-
ing for phase 1 and 10 hours of training time for phase 2 on
a RTX 3090. We compare against the following baselines:
• FixCam: The camera joints are frozen and the camera is

forced to look forward. This baseline shows whether ac-
tive vision is useful for the mobile manipulation problem
and a fixed viewpoint is not enough.

• Mapping: Instead of using a moving depth camera to get
a series of frames this baseline assumes exteroception is
provided in the form of a map. We simulate exteroceptive
noise as in [2, 27].

Base

Arm Lift

Arm Extend

Camera
pan, tilt

Wrist roll, 
pitch, yaw

Gripper

Visible scandots in 
camera’s field-of-view

Figure 5. (Left) We compute visible scandots by projecting them
to the camera frame and checking if they lie within the image plane
(Right) the stretch RE1 robot that we use experiments. It has two
DoFs in the base, one each for arm lift and extend, two for the
camera, three for the wrist and one for the gripper.

• Classical: This uses a classical stack to control the base
motion. We first teleoperate the robot for 3-5 minutes
to construct a map using the onboard 2D RPLidar using
gmapping. Next, move base is used to plan a path through
the environment. Finally, we move the robot to the start,
use a Monte Carlo method [21] to localize and then exe-
cute the plan. Note that this baseline gets an easier version
of the problem since it assumes that the map is known in
advance and does not consider arm motion due to the 2D
Lidar. This is used to test whether reactive navigation is
superior to planning.

• NoPointNet: Instead of passing object scandots through
a permutation-invariant PointNet architecture, we con-
catenate them and use a MLP to estimate a latent.

4. Results and Analysis

We evaluate our approach both in simulation as well as real-
world. Since doing a lot of in-the-wild real-world experi-
ments is more time-consuming and cumbersome due to var-
ious practical reasons, we thoroughly evaluate our approach
on 6 simulation benchmarks with multiple scenarios. We
explain each of these benchmarks in detail in Section 4.3.

While simulation benchmarks are useful for fair com-
parison with baselines as well as reproducibility, real-world
experimenting is essential for determining the efficacy of
our system in truly unstructured and dynamic environments.
For this, we test our system on various real-world environ-
ments as shown in Figure 1 and benchmark its performance
on 2 real-world setups as described in Section 4.2.

Through simulation experiments, we aim to answer the
following questions: (1) For a mobile agent, is active per-
ception with an actuated camera really necessary, or is a
fixed viewpoint enough? (2) Can an active visual agent
outperform a classical agent that relies on pre-built maps?
What are the limitations of the latter? (3) What are some
practical architectural design choices for optimizing mobil-
ity and perception together? We empirically answer each of
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(a) While our simulation lacks dynamic obstacles, the robot can still evade them because the policy continuously adjusts its plan.

(b) If there is an overhanging obstacle, the robot lowers its arm to avoid it instead of turning around, thereby displaying agile whole-body coordination.

(c) The robot adapts its plan on-the-fly to obstacles by turning around once the camera sees it.

Figure 6. Types of emergent behavior exhibited by SPIN (a) dynamic obstacle avoidance (b) whole-body movement (c) adaptive rerouting.

these questions in Section 4.3. Our real-world experiments
primarily focus on comparing the capabilities of our reac-
tive, learned system to a classical mapping and then plan-
ning approach. For our method, we observe interesting sce-
narios demonstrating emergent behaviors during real-world
experiments detailed in Section 4.1 and 4.2.

4.1. Emergent Behavior

Large-scale simulation pre-training allows our robot to
learn emergent behaviors to avoid obstacles in cluttered sce-
narios, even in the presence of dynamic obstacles. We see
several such behaviors during real-world experimentation
which were neither planned nor specifically trained for in
simulation but emerge as a result of a large diversity of pro-

cedural environments seen during training. We illustrate
three such scenarios in Figure 6. As highlighted in sev-
eral frames, Figure 6a depicts robustness to adversarially
placed dynamic obstacles that constantly block the path of
the robot. It needs to continuously perceive its environment
in multiple directions and quickly react to those changes.
We observe that in cases when there is no feasible path for
the robot to navigate through, it also learns to stop and look
around in order to replan its path and avoid collisions. Sim-
ilarly, in 6b we see that as soon as a floating obstacle is sud-
denly placed in front of the robot, it shows spatial awareness
and whole-body coordination and lowers its arm in order to
navigate through, instead of turning and replanning the en-
tire base movement which would take more time. In Figure
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Reach Pick Place

Scenario 1 Scenario 2 Scenario 1 Scenario 2
Easy Medium Hard Easy Medium Hard Easy Medium Hard Easy Medium Hard

Success Rate:
FixCam 1.00 0.53 0.20 1.00 0.50 0.26 0.86 1.00 0.53 0.16 0.97 0.50 0.20
NoPointNet 1.00 0.87 0.57 1.00 0.77 0.63 0.93 1.00 0.83 0.57 1.00 0.77 0.60
Mapping 1.00 1.00 1.00 0.86 1.00 0.97 0.97 1.00 1.00 1.00 1.00 0.90 0.97

SPIN(DVO) 1.00 1.00 0.96 1.00 1.00 0.90 0.97 1.00 1.00 0.90 1.00 0.90 0.90
SPIN(CVO) 1.00 0.97 0.93 1.00 1.00 0.93 0.97 1.00 0.97 0.90 1.00 0.97 0.93

Average Episode Duration (s):
FixCam 6.86 23.48 38.94 6.54 27.24 42.36 11.00 7.25 17.06 41.07 8.02 20.24 45.98
NoPointNet 6.30 14.87 33.25 7.22 15.04 34.09 9.25 4.88 15.22 32.00 7.89 18.49 37.42
Mapping 6.20 14.02 26.24 6.55 12.28 28.05 4.98 6.77 9.85 22.29 4.86 12.62 26.12

SPIN(DVO) 5.92 16.25 28.44 7.32 17.12 32.04 9.24 7.22 18.45 34.24 9.40 15.98 41.24
SPIN(CVO) 6.24 14.00 23.57 6.55 15.81 29.31 5.74 6.51 13.39 27.25 8.03 12.79 31.25

Table 1. We evaluate the success rate on 10 random environments with an average of 3 fixed seeds across all difficulty scenarios based
on obstacle course. We report the success rate of each part of the task including reaching (Reach), picking (Pick), and placing (Place) the
target object in the desired location. The place task requires the agent to bring back the object across the obstacles near its start location.

6c, we see an adaptive rerouting mechanism where the agent
changed its straight line motion as soon as a person kicks
in a box in front of it. These behaviors emerge in real-time
and show the ability of our system to continuously perceive,
adapt and react to changes in its environment which is very
hard for a classical planner.

4.2. Real-world results

We test on two real-world scenes - an academic lab and
an open study area with couches and a kitchenette next
to it with both static as well as dynamic obstacles. Both
these environments have unstructured clutter and humans as
dynamic obstacles that makes it challenging for the agent
to navigate through these spaces. For each environment,
we have 4 static obstacles and atmost 1 dynamic obstacle
thrown adversarially. We compare against a classical base-
line that uses an A1 RPLidar with gmapping and move base
for planning. We first teleoperate the robot for 3-5min to
create a map. Note that this provides the added advantage
that this baseline knows the entire map in advance. Since
the Lidar cannot see objects above the plane we only test
on ground obstacles and ignore floating ones that require
whole-body coordination. We run the planner to only plan
the base motion. In Tab. 2 we compare success rate and av-
erage number of collisions. An episode succeeds when the
robot reaches within 15cm of the specified goal position.
Overall, our method is able to succeed 20-40% more than
the classical baseline. This is because the classical method
suffers from noise and is not able to recover from a noisy
map, and gets stuck, whereas the learned policy learns to
look at the obstacles again and again to improve its un-
certainty estimates and constantly updates its knowledge of
where obstacles are. This ability is even more apparent in

the dynamic scenario (Table 2) where the classical has a
near zero success rate while our method is able to succeed.
It has the emergent ability to avoid a new obstacle in space,
whereas the classical baseline relies on the pre-built map
and fails entirely. Note that, we do not train our policy with
dynamic obstacles in simulations, but this behavior comes
out as a by-product of lots of diverse experience in simula-
tion. We design the observation space such that everything
is relative to the robot. This allows the agent to perceive
the environment as moving within its local reference frame,
allowing generalization to dynamic obstacles.

4.3. Simulation results

The simulation benchmarks have 6 scenes, 2 of each easy,
medium and hard environments. Easy environments have 0-
1 obstacles within a 5m goal range. Medium environments
have 2-3 obstacles within 5m and the hard ones have heav-
ily cluttered scenes with 5 obstacles within 5m. In each of
these cases, one scene (Scenario 1) comprises of a tight 1m
wide long corridor which bounds the agent to not take short-
cuts and reach the goal only by navigating through obsta-
cles. The second (Scenario 2) is an L-shaped corridor with
the goal at the end. The evaluation metrics are reported as
an average of 10 episodes with random agent and obstacle
initialization across 3 seeds.

We compare against various baselines to study the im-
pact of our design decisions in Tab. 1. For each scenario,
we report the success rate and average episode length across
10 rollouts. Our method achieves ≈ 33% higher success
rate than the NoPointNet baseline since permutation invari-
ant scandots latent makes the optimization problem easier
and also generalizes better at test time. Ours achieves ≈
68% higher success rate than the FixCam baseline with the
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Static Obstacles Dynamic Obstacles

Scenario 1

Ours Classical Ours Classical
Average Success 0.8 0.6 0.6 0.0
Average # Collisions 1.0 0.4 1.6 1.2

Scenario 2

Ours Classical Ours Classical
Average Success 0.8 0.4 0.6 0.2
Average # Collisions 0.8 0.6 1.6 1.0

Table 2. We compare our method against a classical mapping
and planning baseline for navigation in cluttered scenes with both
static as well as dynamic obstacles. The classical performs reason-
ably in static environments, it quickly breaks with dynamic obsta-
cles like humans walking around, whereas our method shows more
robust reactivity to such obstacles even without being trained with
dynamic obstacles in simulation. We report the success rate of our
method compared with the baseline. For the classical baseline, we
teleoperate the robot for 2-3 min.

camera pointing straight ahead. This is because in some
cases the robot encounters obstacles at its peripheral vision
and our policy can change the camera angle to avoid them.
Active vision is needed necessary for the robot to move ef-
fectively through a cluttered environment. Our method is
significantly better than the Mapping baseline because the
systematic noise in the object locations makes it hard for the
robot to avoid them, especially in cluttered environments,
whereas our method can continuously estimate the position
of obstacles while it is moving and adapt the motion on-
line. Finally, we compare between the decoupled (DVO)
and coupled (CVO) variants of our method and find that
they achieve similar performance. We hypothesize that the
partial observability and joint optimization for camera and
robot actions in CVO training allows the agent to quickly
discover optimal shortcuts that are otherwise harder to dis-
till from a privileged teacher policy.

5. Related Works

Classical Approaches The problem of navigating robots
around obstacles has been studied for decades. Classical
methods solve the motion and perception problem sepa-
rately. First these methods build a map of the environ-
ment using the robot’s onboard sensors such as cameras,
proprioception and Lidar or infrared [7, 16]. Kalman-filter-
based [36] techniques are often used to track positions, but
they can’t represent multi-modal ambiguities or recover af-
ter tracking failure [30]. Grid-based methods solve this but
suffer from high memory usage [5]. Modern SLAM ap-
proaches ORBSLAM3 [28], OpenVSLAM [33] and RTAB
[22] use variations of a method that relies on particle fil-
ters [35] to hold a multi-modal belief of the robot’s loca-
tion in the map [24, 34]. SLAM is especially challenging

in dynamic environments due to the confounding motion of
other agents [13, 31, 39, 42]. Once a map is built, a path
can be planned over it. Exact paths can be computed using
graph search algorithms [17], probabilistic methods which
are faster but yield approximately optimal solutions [23] or
potential-field based methods [20]. All of these assume per-
fect perception and re-planning is usually expensive making
them susceptible to noise and precluding reactive behavior.

Learning-based navigation In recent years, learning has
been used to improve the classical navigation stack. Mod-
ular approaches [8, 9, 15, 25] still leverage SLAM-based
methods to build a map but use learning or heuristic changes
to get priors for the best possible route to a goal. End-to-
end approaches forgo maps entirely and train a policy to go
from images to robot commands to go to a goal location
[10, 11, 38]. We also take the end-to-end approach but un-
like prior work where what the robot sees is fixed based on
its position, in our case it must move its head and actively
choose what it sees making optimization more challenging.

Mobile Manipulation A mobile base and arm together
can complete useful in-the-wild manipulation but present a
more challenging control problem. Imitation learning tech-
niques focus on collecting large datasets in a variety of set-
tings with a dexterous 6-dof arm and a wheeled mobile base
using teleoperation [3, 4, 6, 12, 18, 40]. Because of the
high-dimensionality of mobile manipulation, there is also
control methods that leverage synergies between both the
base and the arm and plans together. [14, 18, 19, 41].

6. Discussion and Limitations
We present SPIN, an approach to train robots that can si-
multaneously perceive, interact, and navigate cluttered en-
vironments using a data-driven approach. We show that our
RL-based reactive approach is effective for active whole-
body control-perception problem, traditionally addressed
via non-reactive planning methods. With recent interest in
humanoid and other mobile robots with actuated cameras,
on neck for instance, SPIN is a cost-effective agile whole-
body control solution with limited sensing and compute.

Although our robot can perceive geometry and avoid ob-
stacles using depth, it still operates on stereo-matched depth
instead of raw RGB. This leads to scenarios where it can
bump into glass obstacles or shiny surfaces. In the future,
we would like to use RGB for perception.
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