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Abstract

Curation methods for massive vision-language datasets
trade off between dataset size and quality. However, even
the highest quality of available curated captions are far too
short to capture the rich visual detail in an image. To show
the value of dense and highly-aligned image-text pairs,
we collect the Densely Captioned Images (DCI) dataset,
containing 7805 natural images human-annotated with
mask-aligned descriptions averaging above 1000 words
each. With precise and reliable captions associated with
specific parts of an image, we can evaluate vision-language
models’ (VLMs) understanding of image content with a
novel task that matches each caption with its corresponding
subcrop. As current models are often limited to 77 text
tokens, we also introduce a summarized version (sDCI) in
which each caption length is limited. We show that modern
techniques that make progress on standard benchmarks do
not correspond with significant improvement on our sDCI
based benchmark. Lastly, we finetune CLIP using sDCI and
show significant improvements over the baseline despite a
small training set. By releasing the first human annotated
dense image captioning dataset, we hope to enable the
development of new benchmarks or fine-tuning recipes for
the next generation of VLMs to come.

1. Introduction
State-of-the-art vision-language models (VLMs) are often
trained on large scale datasets such as LAION-400M [28],
YFCC100M [34], or other undisclosed datasets crawled
from the web. These datasets are formed by collecting im-
ages from the web and using alt-text (or other local text on
the webpage) to create loose image-text pairs. These can
then be filtered down trading off on quantity for quality [26,
30]. Still, recent work has demonstrated that throwing these
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loose captions out entirely in favor of generated captions,
with enhanced quality and density, can produce improved
results [10]. Other works [1, 20, 21, 38] have demonstrated
that it is possible to get CLIP-level performance using a
vastly reduced compute, often by throwing away portions of
the data resulting in more balance between image and text
modalities. However, those approaches rely on automatic
pipelines which do not generate reliable and long captions
that can capture rich visual details in an image. From this it
appears no existing dataset has high-quality image descrip-
tions that are tightly-coupled enough with the image to train
for or evaluate a deep alignment between the two domains.

In the absence of high quality captions to evalu-
ate VLMs, benchmarks such as ARO [42] and VL-
Checklist [45] often complement image-caption pairs with
hard negatives that are generated by slightly altering the
initial (positive) description. Progress on these benchmarks
has been rooted in training VLMs with negatives of similar
construction to the tests [42] rendering the methodologies
ineffective on datasets such as Winoground [35]. Recent
works [22] have called the evaluation capacity of many
of these benchmarks into question, given how effective
language-prior-based methods perform. More specifically,
given the unlikeliness of the hard negative captions in these
benchmarks, a good text encoder can achieve close to 100%
accuracy without looking at the images. Moreover, Bordes
et al. [3] have shown that most improvements observed on
ARO or VL-Checklist do not translate on simple synthetic
benchmarks for which the negative caption is as likely as
the positive one. Since the use of VLMs is significantly
increasing, it is crucial to make sure that we have a diverse
suite of reliable benchmarks to asses their abilities.

In this paper, we introduce the Densely Captioned
Images dataset, a collection of 7805 images with dense and
mask-aligned descriptions averaging above 1000 words
each. One such example is provided in Figure 1, displaying
just a subset of the collected text paired with their aligned
masks. We demonstrate how to leverage this dataset to
evaluate VLMs in two ways after summarizing captions
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Figure 1. One example from the Densely Captioned Images dataset. Only part of the submask hierarchy is shown.

to fit into CLIP’s 77 token limit, both with a negatives-
based test as well as a novel matching task, referred
to as subcrop-caption matching, that requires selecting
appropriate captions for different regions of the same
image. We evaluate existing baselines, and observe that no
models perform well at both concurrently, and improved

performance via negatives-based training comes at the cost
of decreased performance on subcrop-caption matching.
We also run some experiments using the summarized DCI
as a fine-tuning dataset to evaluate the effectiveness of
these captions for improving a model’s performance on
other benchmarks, and compare the efficiency per-example
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to that from the automated annotation setup in DAC [10].
To summarize, our contributions are:

• We release the Densely Captioned Images (DCI) dataset,
which contains dense and mask-aligned captions, along-
side an LLM-summarized version (sDCI) containing cap-
tions under 77 tokens for use with current VLMs.

• We provide a new benchmark for VLMs based on sDCI to
evaluate fine-grained vision-language understanding, and
show that no existing model can perform well at match-
ing captions from within one image to corresponding sub-
sections of that image.

• We show that fine-tuning with high quality image-caption
pairs is as good on ARO and VL-Checklist as fine-tuning
on at least 10× the automatically annotated data, and that
even without utilizing explicit negatives these pairs can
improve performance on VL-C-Object from 81.17% to
88.37% .

2. Related Works

The massive, loosely-labeled dataset approach that has en-
abled VLMs like CLIP [27] and powerful successors like
BLIP2 [19], Flamingo [2], CM3leon [41], and many others,
has been a clear forward step in vision-language modeling.
Still recent benchmarks show that models trained in this
manner display clear drawbacks in reasoning skills. Addi-
tional techniques have been proposed and adopted recently
to close this gap, discussed below.

Vision-Language Datasets. Over the last decade, there
have been significant dataset collection efforts connecting
images and text. Earlier works focused on curating datasets
by leveraging human annotations, see e.g., COCO [8],
Visual Genome [16], and Flickr30k [40]. The process
resulted in high quality annotations, which were however
oftentimes limited by the caption content – i.e., relatively
short phrases (5.1 to 10.3 words on average) grounded
at image level or region level – and the data annotation
scale (30k to 130k images). To increase scale, researchers
gathered web-crawled data and introduced large scale
datasets such as YFCC100M [34], which contains 100M
media objects. Yet, crawling the web oftentimes results
in little correspondence between image and text pairs. To
reduce noise between image and text pairs, efforts such
as SBU [24] queried Flickr and filtered the noisy results,
obtaining a ∼1M images. Moreover, Conceptual Captions
(CC) [30] crawled a dataset of ∼12M images and alt-text
pairs, and included a protocol to filter noisy text-image
pairs, resulting in 3M data points. Relaxing the filtering
protocol allows to trade data quality for scale. Crawling
alt-text also resulted in relatively short text descriptions
with 10.3 words on average, which are most often grounded
at image level. Localized Narratives [25] was introduced

as a dense visual grounding dataset leveraging a multi-
modal annotation procedure, collecting ∼850k text-image
pairs with 36.5 words/caption on average. RedCaps [9]
constituted another effort yielding large scale (∼12M) web-
curated data by exploring alternate data sources of high
quality data instead of devising complex filtering strategies.
Wikipedia-based image-text dataset (WIT) [32] ex-
tended dataset creation efforts by gathering a multilingual
dataset of text-image-pairs consisting of ∼11.5M images.
LAION-5B [29] further increased the web-crawling efforts
by gathering a multilingual dataset of text-image pairs,
and filtered the collected data with a pre-trained CLIP [27]
model. Following, LAION-CAT [26] reduced noisy exam-
ples from LAION-5B by filtering for caption complexity,
i.e., captions that do not contain any action, and for text
spotting, i.e., images that contain rendered text. Meta-
CLIP [39] has also been released as an open dataset for
reproducing CLIP. These very large scale datasets have been
successfully used to advance the state-of-the-art of VLMs.

Vision-Language Evaluation Benchmarks. Several re-
cent advances in visual-language learning have focused on
creating comprehensive benchmarks to evaluate model per-
formance in more holistic ways. These benchmarks are in-
strumental in pushing the envelope of what VLM can un-
derstand and process, ensuring they move beyond super-
ficial image-text matching towards genuine understanding
of intricate relationships between visual and linguistic ele-
ments. In particular, VL-CheckList [45] and ARO [42] as-
sess the VLM capabilities beyond average downstream task
accuracy, by focusing on a model’s ability to understand ob-
jects, attributes, order or relations. ARO’s extensive scope,
uncovers limitations in VLMs such as poor relational un-
derstanding and lack of order sensitivity. Winoground [35]
tests models for visio-linguistic compositional reasoning by
asking VLM to match two images with two captions con-
taining the same set of words but in different orders. This
task requires models to discern the meaning conveyed by
the order of words, reflecting different visual scenes. Cur-
rent VLMs perform only marginally better than chance,
highlighting a significant gap in compositional reasoning.
CREPE (Compositional REPresentation Evaluation) [23]
evaluates two aspects of compositionality: systematicity
and productivity. Systematicity is measured by the model’s
ability to represent seen versus unseen atoms and their com-
positions, while productivity gauges the model’s capacity
to understand an unbounded set of increasingly complex
expressions. Finally, PUG (Photorealistic Unreal Graph-
ics) [3] uses synthetic data to asses the compositional rea-
soning abilities of VLMs by progressively increasing the
complexity of a given generated scene. One issue with these
evaluation datasets is their frequent reliance on COCO, ei-
ther directly as in ARO, or through Visual Genome as in
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VL-Checklist or CREPE. It is difficult to find an evaluation
dataset of sufficient scale without COCO.

Vision-Language models. Recent VLM advancements
have built upon the foundational work of CLIP [27], which
leveraged large-scale image-text pairs to jointly pre-train
an image encoder and a text encoder to predict which
images are paired with which texts in a contrastive learning
paradigm. NegCLIP build upon CLIP by leveraging
negative captions when training. BLIP (Bootstrapping
Language-Image Pre-training) [18] uses a new framework
that bootstraps the captions from noisy web data for
both understanding and generation tasks. Its successor
BLIP-2 [19] further streamlines the process by utilizing
off-the-shelf frozen pre-trained image encoders and lan-
guage models, bridging the modality gap with a lightweight
querying mechanism. Clip-rocket [12] improves VLM
baselines by showing that applying image and text aug-
mentations makes up for most of the improvement attained
by prior VLMs. Flava [31] proposes a foundation VLM
model by combining existing VLMs objectives together
with auxiliary in-modality losses for the text and vision
encoders. X-VLM [43] achieves success with a pretraining
method matching sub-portions of the text to regions of
the image at multiple granularities. These models intro-
duces improvements over CLIP, focusing on efficiency,
adaptability, and reducing the need for extensive labeled
datasets, thereby pushing the boundaries of vision-language
pre-training. The closest work to our approach is DAC
(Densely Aligned Captions) [10], which improves with
an automated LLM based pipeline the caption quality and
density. By showing that DAC-enhanced CLIP models
exhibit substantial gains on some benchmarks, this work
underscores the critical role that caption quality and density
play in the efficacy of VLMs. We build on this insight
and explore how to further increase the caption quality and
density by relying on human annotators, and analyze how
that impacts downstream model performance.

3. Dataset Construction
The Densely Captioned Images dataset, or DCI, consists of
7805 images from SA-1B [15], each with a complete de-
scription aiming to capture the full visual detail of what is
present in the image. Much of the description is directly
aligned to submasks of the image. An example is shown in
Figure 1. In the top left we see the full image of a wa-
ter pump, with an associated description. The italicized
section is collected as a standard caption, aiming to sum-
marize the full image in about a sentence, similar to exist-
ing caption datasets. The remainder of that first description
contains details about the relationship between visible enti-
ties in the image, as well as in-depth descriptions of regions
that are not described as part of the submasks. All other

text describing the image is associated with submasks of
the image. Each submask has its own free-text label (not
pictured) and description, and may also contain further sub-
masks. Here for instance we see submasks for windows and
balconies as being contained in the submask capturing three
buildings in the background.

3.1. Preparation

In order to collect the data, we first select images from
a random privacy-mitigated subset of SA-1B. We then
procedurally extract subregions of each image to annotate,
as we found in initial trials that crowdsourcing both regions
and descriptions concurrently overcomplicated the task and
successful annotation rate. For this process, we turn to
the Segment Anything Model (SAM) [15] and adapt their
standard method to extract all masks from an image.

For the extraction process, SAM usually relies on a grid
of points across the entire image. In order to increase the
possibility of selecting interesting regions worth annotating,
we additionally apply a canny filter [4] and select random
points within a radius from discovered edges. We then run
SAM to detect all masks using both the grid and the near-
edge points. Once the masks are returned, we establish a hi-
erarchy of submasks by thresholding the number of overlap-
ping pixels between two masks to determine if one is a sub-
mask of the other, or if the two masks should be joined. This
helps reduce some of the noise introduced by the automatic
masking process, and leaves us with a tree-like structure for
the masks. Lastly, we remove any masks that are too small.
We note that undergoing this process does not result in ev-
ery detail of each image being selected as a candidate for
annotation, and as such instances in the DCI dataset are not
expected to have complete submask-aligned coverage of all
elements one could recognize in or discuss about an image.

3.2. Collection Process

We use Mephisto [37] to host our task, pay crowdworkers
to provide annotations on the dataset, and additionally run
qualification steps. Workers that pass our qualifications are
eligible to work on the main task which contains 3 stages:
1. Workers are provided with the whole image, and asked

to provide a short description of it. This is considered
the standard caption.

2. Workers are provided with submasks of the image, one
at a time starting with the leaves of the mask tree, dis-
playing a SAM-selected region of the image as well as
an indicator for where that region comes from. They
are generally asked to provide a label and complete de-
scription for the pictured region, though are allowed to
mark the region as ‘uninteresting’ and only provide a la-
bel, or ‘bad’ and provide nothing. These options allow
us to focus worker time on useful annotations and help
capture some of the noise of the automatic selection pro-
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Figure 2. Annotation view for writing description for masks of the image. The masked region appears highlighted for clarity.

Figure 3. Example of a Llama2-generated summary and negative that comprise sDCI. Each image and submask have multiple summariza-
tions and negatives. We also compare the caption quality between DAC [10] and DCI. In contrast to DCI that relies on human annotations,
DAC used an automatic pipeline based on LLM for captioning. As we observe in this example, the DAC captions can suffer from halluci-
nations and miss important elements of the photo. In this work we argue that while improving automatic pipeline is an important research
direction, for now the captions proposed are not reliable enough to be used to evaluate models and assess their abilities.

cess. This is shown in Figure 2. For masks that contain
submasks, workers are also provided with overlays that
show the regions already annotated, and are asked to an-
notate in terms of what has already been written.

3. After completing all the submasks, the worker is then
shown the complete image again and asked to provide an
overall description, paying attention to the relationship
between previously annotated regions.

An in-depth description of the filtering and quality as-
surance process can be found in Appendix 8 while the
Datasheet [13] is available in Appendix 12. Complete anno-
tation instructions, dataset download links as well as repro-
ducible code are avaliable on our GitHub1. The DCI dataset
is released under the CC-BY-NC license.

1https://github.com/facebookresearch/DCI
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3.3. Fitting DCI into 77 CLIP tokens

Ultimately, we collected an average of 1111 words (1279
CLIP tokens) per image, with a median of 941 words.
This proves problematic for evaluating or fine-tuning CLIP-
based VLMs given their maximum text token length of 77.
Embedding pooling methods [7] to extend the effective in-
put size for text modeling is an active research area [6, 44],
and current work suggests average-pooling embeddings
over these longer descriptions would be ineffective.

One possible approach would be to utilize the subsec-
tions of the image while providing the corresponding sub-
caption, in a manner akin to a multi-modal multi-crop ap-
proach [5]. Still, even when considering just the 91,424
submasks, the average token length is nearly 200 per cap-
tion. We instead use the longer context capabilities of
Llama2 [36] to summarize down the overall information
in the image into CLIP-consumable portions. We gener-
ate multiple captions for each image and submask, using
prompts that attempt to summarize down recursively until
the result is in bounds. As this modification to the dataset
is generated automatically, the summarizations may have
introduced noise, and may not capture all of the detail in
the full original captions. Summarizations also occasionally
mix references or include context in a submask that isn’t the
main focus. Still, the summaries are fairly high quality and
more dense than those found in other datasets, especially
when using more than one distinct summarization per im-
age. We also prompt the LLM to generate negatives from
these summaries, achieving a set of particularly hard nega-
tives for CLIP to evaluate. We call this version of the dataset
summarized DCI (sDCI). Examples of full caption, LLM
summary and LLM negative are included in Figure 3 and
contrasted with DAC [10] data. More detail including the
prompts used can be found in Appendix 7.

Ultimately, this fitting step produces a lower bound on
the level of vision-language understanding ‘resolution’ that
the overall DCI dataset is capable of evaluating a model for.
As newer models arise that are able to handle embedding
much larger quantities of text content, it will be possible to
make full use of DCI’s original annotated captions.

3.4. Statistics

All-in-all the Densely Captioned Images dataset is far more
dense than Localized Narratives on COCO images [25]
(later referred to as LNCOCO) and nearly 100× more dense
than standard COCO captions [8]. After reducing to CLIP-
bounded summaries, it still contains more text density than
both. Complete details can be found in Table 1.

Here we see that the multiple-summarization method of
sDCI produces fairly similar token per image values to the
original dataset while keeping individual captions’ token
lengths in bounds for CLIP. To get Localized Narratives into
the 77 token bound, we simply drop longer examples.

Dataset Imgs Caps Toks/Cap Toks/Img

DCI 7,805 7,805 1,282.09 1,282.09
DCIsub 96,007 96,007 199.33 199.33
sDCI 8,012 87,268 49.21 536.00
sDCIsub 96,007 714,630 36.60 263.01

LNCOCO 142,845 142,845 49.11 49.11
LNCOCO<77 127,456 127,456 43.70 43.70
COCO 123,287 616,767 13.54 67.74

Table 1. Comparison of DCI dataset statistics to other datasets,
focusing on average CLIP tokens per image or caption. Note the
26x difference between DCI and the previous longest annotated
dataset, Localized Narratives (LN). sub denotes including sub-
masks and their descriptions as examples, and sDCI refers to the
LLM-summarized version of DCI that fits captions to 77 tokens
(Sec. 3.3), while LNCOCO<77 simply drops examples longer than
77 tokens (∼ 10.8%).

4. Evaluating VLMs with summarized DCI

4.1. Methodology

Using the 7805 images in the summarized Densely Cap-
tioned Images (sDCI) dataset, we construct a few different
evaluations. As noted above, the ability to select multiple
submasks from the same image and include them in the
same batch allows us to create a CLIP-style test, wherein the
model can evaluate a full batch of images and captions and
score correctly which caption belongs to which image. As
we provide models with a crop around the selected masks,
we call this Subcrop-Caption Matching (SCM), and we use
a batch size of 8. We can run against our LLM-generated
negatives as well. Given that LLM-summarization has pro-
vided us with multiple captions and negatives per image and
submask, we supply the first unless noted otherwise. With
this in mind, we construct 6 evaluations as follows:
[All SCM]: Group each image with their subcrops, along-
side one summarized caption per subcrop. Then use the
model to find the most likely caption associated to each sub-
crop. This test measures the ability of the VLM to distin-
guish between the different parts that compose an image.2

[All Neg]: Select one LLM summarized caption and the
corresponding LLM-generated negative for each image and
subcrop. Score a model on its ability to distinguish between
the positive and negative.
[All Pick5-SCM]: Use the same setup as All SCM, but
rather than using only one caption per subcrop, we use 5
LLM generated captions per subcrop. We score a model
as succeeding only when the worst-scoring positive caption

2Since we used sDCI to fit current models token length, it is possible
that some of the summaries remove the information that make possible to
distinguish between the captions. Ideally this test should be performed on
the non-summarized version once VLMs can handle 1000+ tokens.
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All All Pick5 Base All
Model SCM Neg SCM Neg Neg Hard Negs

CLIP Baseline [27] 40.06% 60.79% 11.21% 24.06% 67.56% 41.34%
NegCLIP [42] 43.35% 56.00% 13.22% 4.82% 76.69% 50.84%

BLIP [18] 39.13% 54.02% 10.73% 5.51% 63.41% 53.23%
Flava [31] 38.08% 47.99% 8.01% 9.82% 11.6% 45.59%

X-VLM [43] 38.45% 53.46% 10.96% 5.10% 44.29% 52.42%
DACLLM [10] 37.45% 81.71% 8.13% 37.84% 90.56% 71.21%
DACSAM [10] 37.90% 84.17% 6.70% 39.94% 89.66% 73.61%

Table 2. sDCI test result: We compare existing baselines on our Subcrop-Caption Matching (SCM) and negatives tests. Additional results
are available in Table 10 in the Appendix. We note our best model fine-tuned on sDCI from section 5 achieved 64.02% and 31.60% on a
held-out test of All SCM and All SCM Pick5 respectively, setting an upper bound for model performance.

scores higher than the best-scoring caption of any other im-
age in the batch. This test evaluates if the representation
space is structured such that captions belonging to a spe-
cific image are closest to the target image in the space.
[All Pick5-Neg]: Use the same setup as All Neg, but rather
than using one caption, we use 5 LLM summarized captions
for each image and subcrop. If any of these captions score
worse than the negative, the model fails the example.
[Base Neg]: Using only the 7805 base images without sub-
crops, evaluate the model’s ability to distinguish between
an LLM generated caption and its corresponding LLM-
generated negative. Note, this is a strict subset of All Neg,
though these captions are on the longer side on average and
cover a different distribution.
[All Hard-Negs]: Using the same setup as All Neg, but
rather than using a single negative, use the negative across
all LLM-generated negatives that CLIP scores highest.

4.2. Results

We compare in Table 2 the sDCI performances given by dif-
ferent state-of-the-art models: CLIP [27], NegCLIP [42],
BLIP [18], Flava [31] and X-VLM [43]. Additional experi-
ments on different architectures and pretraining datasets are
available in Table 10 (see Appendix). The CLIP baseline
starts at 40.12% on All SCM and 60.63% on All Neg. The
only model to improve over CLIP on SCM tasks is Neg-
CLIP, which follows the fact that the hard image negatives
that NegCLIP is trained on provide the most similar task
to what we test of any of these models. None of the mod-
els trained without an explicit CLIP-loss component outper-
form CLIP on SCM tasks, but DAC ultimately performs the
worst.

Performance on the Pick5 variations of each task follow
the trends of the standard performance. Performance on
Base Neg for Flava point to a weakness in comparing longer
text examples, given the significant drop from 47.99% to
11.6% that is not demonstrated in other models.

Interestingly, models trained absent of CLIP (BLIP,

Flava, X-VLM) experience a far less noticeable drop in
performance between All Neg and All Hard Negs. This
validates that sDCI’s CLIP-hard negatives are not simply a
higher proportion of ‘impossible’ negatives, but rather cap-
ture some underlying trait about the negatives that CLIP
models and their descendants all struggle with.

None of the models presented perform well across all
of the sDCI test set. Given each of the CLIP-style models
have some kind of advantage on this test set due to being
trained on some objective that sDCI directly evaluates, we
expect that the BLIP, Flava, and X-VLM scores are some-
what representative for existing state-of-the-art models’ true
performance on this test set.

5. Using summarized DCI as fine-tuning
dataset

To evaluate the use and difficulty of the sDCI dataset for
training, we fine-tune state-of-the-art models with it. In par-
ticular, we use a ViT/32B CLIP model in all of our exper-
iments, requiring use of the CLIP-bounded version of our
dataset. We split sDCI into 7800 train, 100 validation, 112
test samples for this purpose. We use a training batch size of
32 and a learning rate of 5e-5 for all experiments, and run
for up to 10 epochs. We train using both standard CLIP loss
as well as an additional Negatives loss component, which
follows the ‘text negative’ of NegCLIP [42]. Given the tiny
size of our finetuning sets relative to the 400M pretraining
images, we use LoRA [14] to reduce the trainable parame-
ters. We train a model with and without negatives loss.

In order to make good use of the multiple summarized
captions we have per image and submask, we randomly se-
lect one to be used in each individual epoch. We call this
method Pick1. We describe this method and other ablations
we attempted in more detail in Appendix 9.

We follow the experimental setup of DAC [10] by eval-
uating our sDCI fine-tuned CLIP on the ARO and VL-
Checklist benchmarks. We compare to DAC directly as it
is the most similar work to ours in attempting to increase
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ARO VL-Checklist
Model VG-R VG-A COCO FLICKR Object Attribute Relation

sDCIP1 76.23% 67.56% 88.58% 91.30% 80.71% 68.69% 70.12%
sDCIP1NL0 57.34% 61.98% 39.36% 44.62% 88.37% 70.42% 61.28%

DACLLM10,000
61.53% 63.89% 46.28±1.5% 59.41±1.9% 66.90% 57.4% 56.96%

DACLLM100,000
61.0% 63.6% 48.2% 61.42% 66.87% 57.22% 57.18%

DACLLM500,000 60.1% 63.8% 50.2% 61.6% 66.54% 57.39% 56.77%
DACLLM3,000,000 81.28% 73.91% 94.47% 95.68% 87.30% 77.27% 86.41%
DACSAM3,000,000

77.16% 70.5% 91.22% 93.88% 88.50% 75.83% 89.75%

CLIP Baseline [27] 59.98% 63.18% 47.9% 60.2% 81.17% 67.67% 61.95%
BLIP2 [19] 41.16% 71.25% 13.57% 13.72% 84.14% 80.12% 70.72%
NegCLIP [42] 81% 71% 86% 91% 81.35% 72.24% 63.53%
SVLC [11] 80.61% 73.03% 84.73% 91.7% 85% 71.97% 68.95%

Table 3. sDCI fine-tuned CLIP performance against the ARO and VL-Checklist benchmark. We compare CLIP fine-tuned with sDCI
against models fine-tuned using DAC captions. Since the DAC dataset contains 3M images whereas sDCI contains only 7805 images, we
performed an ablation of the number of training images used in the DAC dataset. In this instance, DACLLM10000 refer to fine-tuning CLIP
using only 10,000 images from DAC. We plot the mean across 5 different seeds and display the standard deviation when it is above 1%
accuracy. We observe that training on sDCI lead to significant improvement in comparison to DAC for a comparable number of examples.

caption density. As noted in Figure 3, these automatically
generated captions are generally noisy. As DAC is using 3M
images for fine-tuning, we performed a small ablation on
the number of DAC images to use for fine-tuning to be simi-
lar to our base image count (10,000 compared to our 8,012),
or to our full mask count (100,000 compared to our 99,445).

5.1. Results

In Table 3, we show that, while the DCI Pick1 model trained
with negatives loss (sDCIP1) does not reach the perfor-
mance of DAC models trained on 3M images, it does im-
prove over the CLIP baseline on most metrics3, and outper-
forms some baselines trained on more data. sDCIP1 does
however outperform both sample-limited ablations of DAC,
suggesting that a small number of highly aligned image to
dense text pairs are more effective for training models than
larger quantities of more loosely aligned or sparse data.
Unsurprisingly, the version trained without negatives loss,
sDCIP1NL0, does not improve across most benchmarks,
and even somewhat degrades when compared to the CLIP
baseline.4 Of note however is the significant bump in VL-
Object, alongside some improvement to VL-Attribute. Im-
provements here suggest that the sDCI dataset successfully
includes more object, and to a lesser degree attribute, in-
formation than the captions in the source dataset for CLIP.
It does, however, point to a limitation of using the LLM
summarizations and not incorporating mask information, as
relational information is sometimes lost.

3The decreased performance on VL-Object may be explained by our
LLM-generated negatives not closely covering the test set negatives.

4The degradation is likely due to the distribution shift and small sample
size, given the training objective is the same as CLIP.

6. Conclusion and Future Work

We introduce the Densely Captioned Images dataset, and
display clear use for it as a evaluation benchmark. We also
show initial potential for using the dataset for fine-tuning.
Given that in order to evaluate today’s models on DCI we
had to reduce the size of the text to only 77 tokens, DCI
should prove to be useful for a longer period of time as
models that are able to consume and utilize larger amounts
of text context become the norm. We envision that in those
cases the full human annotated captions without length
reduction would be provided. Today’s context size limita-
tion also prevented us from fine-tuning existing models on
the highly aligned text-image data within DCI, as existing
models don’t have enough context size to handle the full
text, but the dataset isn’t nearly large enough to pre-train
a new set of models that could use the full text. It could
be relevant to treat developing highly aligned text-image
datasets in a similar manner to that used in machine
translation for low-resource languages, which run into a
similar issue with cost and difficulty to collect. This area
of work has relied on automated methods such as bitext
mining [33] to bootstrap up from an initial set of expertly
collected examples, which DCI may already provide the
foundation for. Further, we haven’t attempted to incorpo-
rate the pixel-level masks that the dataset has in any of our
experiments, instead opting to use crops around the masks
to retain parity with our test set. This dataset is unique
for both the extreme density and high degree of alignment
present, and in this introductory work we’ve only scratched
the surface of using this information to its fullest extent.
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