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Abstract

Quantized neural networks employ reduced precision
representations for both weights and activations. This
quantization process significantly reduces the memory re-
quirements and computational complexity of the network.
Binary Neural Networks (BNNs) are the extreme quantiza-
tion case, representing values with just one bit. Since the
sign function is typically used to map real values to binary
values, smooth approximations are introduced to mimic the
gradients during error backpropagation. Thus, the mis-
match between the forward and backward models corrupts
the direction of the gradient causing training inconsistency
problems and performance degradation. In contrast to cur-
rent BNN approaches, we propose to employ a binary pe-
riodic (BiPer) function during binarization. Specifically,
we use a square wave for the forward pass to obtain the
binary values and employ the trigonometric sine function
with the same period of the square wave as a differentiable
surrogate during the backward pass. We demonstrate that
this approach can control the quantization error by using
the frequency of the periodic function and improves net-
work performance. Extensive experiments validate the ef-
fectiveness of BiPer in benchmark datasets and network
architectures, with improvements of up to 1% and 0.69%
with respect to state-of-the-art methods in the classifica-
tion task over CIFAR-10 and ImageNet, respectively. Our
code is publicly available at https://github.com/
edmav4/BiPer.

1. Introduction
Deep Neural Networks (DNN) have achieved unprece-
dented results in many high-level tasks, such as classifica-
tion, segmentation, and detection, with a tremendous con-
current impact in computer vision, natural language pro-
cessing, information retrieval, and many others [42]. Typ-
ically, DNNs rely on full-precision (32 bit) weights and
activation functions. Accurate and precise models, how-
ever, become expensive in terms of computation, storage
and number of parameters. For this reason, DNN de-
ployment is usually prohibited for devices with limited re-

sources, such as mobile, hand-held or wearables. Different
approaches to reduce computation requirements include ef-
ficient neural network architecture design [20, 22, 40], net-
work pruning [19], knowledge distillation [15], low rank
tensor decomposition [31], hashing [12], and network quan-
tization [33, 37, 47]. Among them, network quantization
has become one of the most promising techniques, aim-
ing at compressing large models usually stored as floating-
point weights with low bitwidth numbers. Binary Neu-
ral Networks (BNNs) are the extreme quantization case,
where weights and activation functions are constrained to
just one bit, i.e., binary values, typically +1 or -1. In con-
trast to DNNs, BNNs replace heavy matrix computations
by bit-wise operations, yielding to 32× memory compres-
sion, and 58× speed-up on CPUs [36]. Thus, this approach
drastically reduces the computational requirements and ac-
celerates inference, making BNNs particularly appealing
for resource-constrained environments such as edge devices
and mobile applications.

Despite significant advantages for efficient BNN deploy-
ment in hardware with limited capabilities, the binariza-
tion of full-precision models severely degrades the accu-
racy performance in high-level tasks such as object detec-
tion, classification, segmentation, and others [37]. For in-
stance, in large datasets such as ImageNet, one of the ear-
liest BNN models, the XNOR-Net [36], achieved an accu-
racy degradation of around 18% compared to the full preci-
sion ResNet-18 architecture. Recent efforts have been de-
voted to close the performance gap of BNN with respect to
their real-valued counterparts. Nonetheless, state-of-the-art
approaches still exhibit accuracy degradations of approxi-
mately 8% [45].

Binarization of real-valued weights and activations is
generally performed using the sign function during the feed-
forward procedure. A relevant limitation of the sign func-
tion is that its gradient is null everywhere except in zero,
which makes it incompatible with error back-propagation
methods, due to the non-differentiability of binary opera-
tions. To overcome this issue, various techniques like the
straight-through estimator (STE) and relaxed training ap-
proaches have been adopted [21]. STE essentially substi-
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tutes the sign function for the identity function to calcu-
late the gradients during the backwards process. Since there
exists a mismatch between the forward and backward pass
caused by the STE approximation, research efforts have fo-
cused on designing better smooth and differentiable func-
tions to estimate the gradient of the sign function [14, 25].
Although these approaches have improved the accuracy of
BNNs, gradient instability persists when the quantization
error is minimized, i.e., when the approximation functions
are close to the sign function. Therefore, there is still a sig-
nificant performance gap between real and binary models,
and the pursuit of refined quantization functions for BNN,
with lower accuracy degradation and higher gradient stabil-
ity, remains an open challenge.

Instead of using the Sign function, in this work, we pro-
pose to address the aforementioned issues of extreme 1-bit
quantization by using a binary periodic (BiPer) function
or square wave function to promote binary weight values.
Thus, opposite to the sign function which is always negative
for negative values or positive for positive values, the pro-
posed periodic function can reach positive and negative val-
ues in the whole domain of the latent weights. To the best of
our knowledge, this is the first time a binary periodic func-
tion is employed for the binarization problem in quantized
neural networks. Since the gradient of the periodic function
still faces the problem of being zero almost everywhere, it
cannot be directly integrated within a back-propagation al-
gorithm based on gradient descent. We solved this problem
by employing a sinusoidal function with the same funda-
mental frequency of the periodic function as a differentiable
surrogate during the backward pass. The continuity and dif-
ferentiable characteristics of the sine function, make it suit-
able for stochastic gradient methods. In contrast to existing
BNN methods that smoothly and progressively approximate
the sign function to reduce the quantization error (QE), we
will show that in the proposed BiPer approach the QE can
be controlled by the frequency of the periodic function. We
further leverage this property to provide an initialization of
the weights that better balances the trade-off between the
estimation error and performance accuracy. Experimental
results demonstrate that BiPer provides the best network
performance for the classification task, with respect to state-
of-the-art BNN approaches on the CIFAR-10 and ImageNet
data sets.
Paper Contribution. The contributions of our work are
summarized as follows:
• We propose a simple yet powerful and effective modifi-

cation in the binarization process, by including a binary
periodic function.

• We introduce a continuous, periodic sinusoidal function
as a differentiable surrogate of the binary periodic func-
tion during the back-propagation process, suitable for
stochastic gradient methods.

• We mathematically analyze the quantization error of
BiPer and show that it can be controlled by the frequency
of the periodic function. This leverages a flexible initial-
ization scheme for the binary weights, that balances the
QE and network performance accuracy.

• Experiments on benchmark data sets demonstrate the ad-
vantages of BiPer for the classification task with respect
to state-of-the-art BNN approaches. BiPer outperforms
prior works by up to 1% on CIFAR-10, and 0.4% on Im-
ageNet.

2. Related Work

2.1. Binary Neural Networks

Among pioneering work on binary neural networks, Bina-
ryConnect introduced a training scheme involving binary
weights during training, and real-valued weights during
the forward pass for weight updates [8]. Subsequent ap-
proaches have focused on designing differentiable surro-
gates for the sign function to reduce the effect of the quanti-
zation error. For instance, a differentiable soft quantization
(DSQ) approach was proposed in [14], which introduced a
tanh-alike differentiable asymptotic function to estimate the
forward and backward of the sign function. An improved
BNN (BNN+) [10] employs a SignSwish activation func-
tion to modify the back-propagation of the sign function
and includes a regularization that encourages the weights
around binary values. A more recent approach proposed
an approximation of the sign function that varies along the
training process [25]. The authors in [11] introduced an
approach to training BNN by focusing on the regulariza-
tion of activation distributions. Such regularization term
encourages the binary activations to follow a balanced dis-
tribution during training. On the other hand, the rotated
BNN [26] incorporates rotation operations into the train-
ing process, through a rotation-invariant loss function that
mitigates the sensitivity of BNNs to input rotations. IR-
Net [34] employs a mechanism that preserves information
in the form of real numbers during forward propagation and
utilizes it in the backward pass. ReCU [45] addresses the
issue of dead weights in binary neural networks, by intro-
ducing a reconfiguration mechanism that revives inactive
weights during training. ResTE [43] proposed an approach
for training binary BNNs with a Rectified Straight Through
Estimator, which addresses the limitations of the traditional
STE. A rectification was introduced into the gradient es-
timation process during back-propagation, to enhance the
accuracy of gradient signals, leading to improved training
stability and convergence for BNNs. MST [41] proposed an
approach for compressing and accelerating BNNs through
the use of a Minimum Spanning Tree (MST). The MST-
compression method leverages the structural characteristics
of the network to identify an optimal subset of weights, so
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that redundant connections are pruned, leading to a more
compact BNN.

2.2. Periodic Functions in Deep Neural Networks

Periodic functions were successfully introduced as activa-
tions within neural network architectures in [39], where
a sinusoidal function is used in a multilayer perceptron
(MLP) to encode a spatial field into the network weights.
In contrast to typical non-linear activation functions such
as ReLU or tanh, periodic functions are capable of repre-
senting complex natural signals and their derivatives. For
this reason, they have been since employed for 3D-aware
image synthesis to represent scenes as view-consistent ra-
diance fields[7, 30], as well as encoding model equations,
like Partial Differential Equations (PDE), as a component
of physics informed neural networks (PINN) [9]. It should
be noted that all the aforementioned approaches use full-
precision models, while this work employs a binary periodic
function to promote binary weights in the forward model,
and a sinusoidal function to better approximate the gradi-
ents of the binary weights in the backpropagation process.
To the best of our knowledge, this is the first work that ex-
ploits the characteristics of periodic functions to improve
the performance of BNNs.

3. BNN Preliminaries
In this section, we introduce the essential mathematical for-
mulations of neural network binarization. The main feature
of BNN is to constrain the weights of a DNN as well as its
activations to have binary values. The most common ap-
proach to obtain binary weights and activations consists of
applying the sign function to a real-valued variable as

wq = ϕ(w) = Sign(w) =

{
1, if w ≥ 0,

−1, otherwise,
(1)

where wq is the binarized variable and, w is the real-valued
variable. Here, we consider the binarization of a CNN
model, however, these ideas can be extended to any neural
model. Considering the binary weights wq and the activa-
tions aq , the convolution operation can be formulated as

y = wq ⊕ aq, (2)

where the symbol ⊕ denotes bit-wise operations including
XNOR and BITCOUNT. It has been previously shown that
the direct binarization of the convolution result in (2) in-
troduces large quantization errors. To alleviate this problem
[36] proposed to introduce real-valued scaling factors α and
β to the weights and activations, respectively. Thus, the bi-
nary convolution can be expressed as

y = αβ ⊙ (wq ⊕ aq) , (3)

where ⊙ denotes element-wise multiplication. Further, the
work in [4], showed that combining α and β in a single
scaling factor γ results in better performance. Since the
gradient of the sign function is zero almost everywhere, the
optimization of the weight parameters is incompatible with
back-propagation algorithms based on gradient descent. To
solve this problem, the work in [8], introduced the straight-
through estimator (STE) to approximate the gradient with
respect to weights as

∂L
∂w

=
∂L
∂wq

∂wq

∂w
≈ ∂L

∂wq
. (4)

More precisely STE uses the identity function as a differen-
tiable surrogate of the sign function. It means that the gra-
dient with the latent full-precision weights straightly equals
to the gradient of the binarized outputs, which is also the
origin of the name straight through estimator. To reduce the
gradient error the clip function is also commonly employed,
yielding to the approximation

∂L
∂w

=
∂L
∂wq

∂wq

∂w
≈ ∂L

∂wq
1A(w), (5)

where 1A is the indicator function of the clipping set A =
{w ∈ R : |w| ≤ 1}. While, in principle, the binariza-
tion of activations can be performed in the same manner as
for the weights, several approaches have shown that using
a different approximation for binarizing activations leads to
improved performance [14, 28, 34]. In this work, following
[28], we use a piece-wise polynomial function to approxi-
mate the gradient with respect to the activations as follows

∂L
∂a

=
∂L
∂aq

· ∂a
q

∂a
≈ ∂L

∂aq
· ∂F (a)

∂a
(6)

with

∂F (a)

∂a
=


2 + 2a, if − 1 ≤ a < 0

2− 2a, if 0 ≤ a < 1

0, otherwise
(7)

where a represents the real activation values, while aq rep-
resents the binary activations. The main limitation of the
STE is that the gradient approximation introduces a con-
siderable inconsistency between the forward and backward
passes. To reduce the degree of inconsistency, several pre-
vious studies have explored alternative gradient estimators.
Nevertheless, it has been shown that reducing the estima-
tion error often results in highly divergent gradients, that
harm the model training and increase the risk of gradient
vanishing and gradient exploding [43].

4. BiPer
To overcome the gradient and quantization error challenges
from existing binarization methods and their gradient ap-
proximation functions, we propose to use a binary periodic
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function or square wave function (see Fig. 1) instead of just
the sign function to model the binary weights. In contrast
to the sign function described in section 3 and depicted in
Fig. 1(a), which is always negative for negative values of w,
the proposed periodic function (Fig. 1(b)) can reach posi-
tive and negative values in the whole domain of the latent
weights.

Figure 1. (a) Sign function. (b) Binary periodic function.

It should be pointed out that the gradient of the periodic
function still faces the problem of being zero almost every-
where, therefore, it cannot be directly integrated within a
back-propagation algorithm based on gradient descent. To
solve this problem, we first rewrite the square wave function
as

wq = Sign (sin(ω0w)) , (8)

where ω0 = 2π
T is the angular frequency. We note that this

corresponds to applying the sign function to the first har-
monic of the periodic function. Based on (8), we can ap-
proximate the gradient with respect to the weights as

∂L
∂w

=
∂L
∂wq

∂wq

∂w
≈ ∂L

∂wq

∂ŵ

∂w
(9)

where
ŵ = sin(ω0w). (10)

Note that the last differential term in (9) corresponds to the
gradient of a continuous differentiable sinusoidal function,
which is also a smooth periodic function, and proportional
to the frequency ω0. Comparing Eq. (9) to the STE approx-
imation in (4), it can be seen that the proposed approxima-
tion is the product of the STE estimator of a periodic func-
tion and a proportional constant given by the frequency. In
the following section, we explore this property to control
the quantization error with the frequency ω0.

4.1. Quantization Error Analysis

This section shows that an additional advantage of using the
periodic function is its flexibility to control the quantization
error. In particular, we mathematically demonstrate how a
lower quantization error can be achieved by setting the fun-
damental period of the wave function. To this end, let us
first assume that the latent weights roughly follow the zero-
mean Laplace distribution, i.e., W ∼ La(0, b) [1, 2, 48].

Since the weights ŵ in (10) before quantization are a func-
tion of a random variable, they are also a random variable
Ŵ ∈ [−1, 1]. Computing the probability density function
(pdf) of a random variable Y = g(X ) from the pdf of X
(fX (x)) can be easily done employing the method of trans-
formation [32], if the function g is differentiable and strictly
increasing or decreasing, i.e., strictly monotonic. Thus, the
pdf of Y can be computed as

fY(y) =

{
fX (x1)
|g′(x1)| = fX (x1) ·

∣∣∣dx1

dy

∣∣∣ where g (x1) = y

0 if g(x) ̸= y.

The more general case in which g is not monotonic requires
splitting the domain into n intervals, so that g is strictly
monotonic and differentiable on each partition. Then, the
pdf can be obtained as

fY(y) =

n∑
k=1

fX (xk)

|g′ (xk)|
=

n∑
k=1

fX (xk) ·
∣∣∣∣dxk

dy

∣∣∣∣ , (11)

where x1, · · · , xn are real solutions to g(x) = y. For BiPer,
since the periodic function from Eq. (10) is not monotonic,
we can use (11) to compute the pdf of Ŵ using the pdf of
W . Letting fW(w) = 1

b exp(|w|/b) denote the pdf of W ,
and setting g as the sine function, we can divide the sinu-
soidal function into subsequent intervals of T/2 where it is
strictly increasing or decreasing, alternately. For simplicity,
let us assume ω0 = 1, so that T = 2π. Then, the solutions
wk to sin(w) = ŵ are given by

wk = (−1)karcsin(ŵ) + πk, (12)

for some k ∈ Z. Considering that the latent weights follow
a Laplace distribution, using wk and Eq. (11), we obtain the
pdf of the weights before binarization as

fŴ(ŵ) =

∞∑
k=−∞

1

2b

1√
1− ŵ2

exp

(
−|(−1)karcsin(ŵ) + πk|

b

)
.

(13)

As it is shown in the supplementary material, the summa-
tion in (13) converges to the probability density function of
the latent weights before binarization ŵ for an arbitrary fre-
quency ω0 given by

fŴ(ŵ) =
1

2bω0

1√
1− ŵ2

exp

(
−| arcsin(ŵ)|

bω0

)
+

1

2bω0

1√
1− ŵ2

cosh

(
arcsin(ŵ)

bω0

)
1

eπ/bω0 − 1
.

(14)
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Figure 2. Probability density function of ŵ = sin(ω0w) assuming
that the random variable w follows a Laplace distribution with pa-
rameter b and a fixed value of ω0 = 1.

Figure 2 depicts the distribution of the weights for dif-
ferent values of the Laplace distribution parameter b and
a fixed frequency ω0 = 1. Note that different from the
random variable W which can take any real value, the
codomain of the random variable Ŵ is [−1, 1]. From Fig.
2 we can observe that when the value of b increases the pdf
of ŵ behaves as an arcsin distribution with values concen-
trated around -1 and 1. This reduces the quantization error
in comparison to the Laplacian distribution. Also, a similar
behavior occurs when the frequency value increases for a
fixed b. To further analyze these observations consider the
QE defined as

QE =

∫ +∞

−∞
fW (w) (sin(ω0w)− γ sign (sin(ω0w)))

2
dw,

(15)

where fW is the density distribution function of the latent
weights. Using the fact that |x| = xSign(x) along with the
properties of the absolute value, we can rewrite Eq. (15) as

QE =

∫ +∞

0

1

b
exp

(
−w

b

)
(|sin(ω0w)| − γ)

2
dw. (16)

The solution to this integral is given by (see supplementary
material for more details on this calculation)

QE =
2(ω0b)

2

4(ω0b)2 + 1
−

2γω0b
(
eπ/ω0b + 1

)
(ω0b)2 + 1)

(
eπ/ω0b − 1

) + γ2.

(17)

On the other hand, the optimal solution of the scaling factor
γ in (15) can be computed as

γ = E{|sin(ω0w)|} =
ω0b

(
eπ/ω0b + 1

)
(ω0b)2 + 1)

(
eπ/ω0b − 1

) . (18)

Replacing γ from (18) into Eq. (17), we can rewrite the QE
as a function of the frequency ω0 and the parameter b. Fig-
ure 3 illustrates the QE as a function of the frequenct ω0 for
different values of b. It can be seen that the maximum QE is
0.102835, which occurs when the product bω0 ≈ 0.954882.
This means that for a fixed value of b the maximum QE oc-
curs at ω0 ≈ 0.954882/b. Furthermore, from this value,
we note that by increasing the frequency to ∞, the QE con-

verges to 0.5 − 4

π2
. Nonetheless, increasing ω0 poses an

additional issue since the gradient is proportional to the fre-
quency value, thus it will diverge. This result is consistent
with recent literature, which states that minimizing the QE
yields to divergent gradients [43]. On the other hand, from
Fig. 3, we can also see that the quantization error can be
reduced by decreasing the frequency value. However, this
corresponds to the trivial case when γSign(sin(ω0)w) goes
to zero as well as the weights. Clearly, this is not a prac-
tical approach either since there would not be information
available to update the gradients.

Figure 3. Quantization error as a function of the frequency ω0

for different values of b. The proposed BiPer approach is able to
control QE with the frequency of the periodic function.

It is worth noting that in contrast to current approaches
that progressively reduce the QE to zero, BiPer does not
meet this QE value. Nonetheless, further explorations can
adapt state-of-the-art surrogate estimators to smoothly con-
verge from the sine function to the square wave. These stud-
ies however, fall beyond the scope of this paper, which ex-
plores an alternative binarization technique.

5. Experiments
We comprehensively evaluated BiPer for image classifica-
tion, with widely used neural network architectures, i.e.,
ResNet and VGG-Small, trained on benchmark datasets
(CIFAR-10 and ImageNet). In the following, we first de-
scribe the experiments setup. Then, we present ablation ex-
periments conducted on CIFAR-10. Finally, we compare
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BiPer with state-of-the-art BNN approaches in terms of per-
formance and complexity on both data sets.

5.1. Experiments Setup

5.1.1 Data Sets

CIFAR-10 [23]: Consists of 60,000 images of size 32 ×
32, divided into 10 categories. Training set contains 50,000
images and the remaining 10,000 are used for testing.

ImageNet [24]: A challenging data set because of its
larger size and more diverse image categories. Among its
multiple versions, we adopted the widely used ILSVRC12
version, which is divided into 1,000 categories, from which
1.2 million are training images and, 50,000 test images. Im-
ageNet is the most widely used data set to report results on
binary networks and, it allows us to show for the first time
that binary networks can perform competitively on a large-
scale data set.

5.1.2 Network Architectures

On CIFAR-10, we evaluated BiPer using ResNet-18/20 and
VGG-Small. For ResNet-18/20, we adopted the double skip
connections as in [28], to provide fair comparisons. On
ImageNet (ILSVRC-2012) we chose to binarize ResNet-
18/34. Following [3], the downsampling layers are not
quantized, and the double skip connections [28] were in-
cluded. Following standard procedures of the comparison
methods, we binarized all layers but the first and last.

5.1.3 Training Details and Procedures

BiPer approach was implemented in PyTorch because of
its flexibility and powerful automatic differentiation mech-
anisms. Our models were executed on a NVIDIA RTX
3090 GPU. All experiments used stochastic gradient de-
scent (SGD) optimization with 0.9 momentum. We fol-
lowed the data augmentation strategies in [18], which in-
clude random crops and horizontal flips.

Two stage training: Recent works have shown that an ap-
propriate initialization is often required to improve network
performance. BNN initialization strategies employ an adap-
tation of high precision Neural Networks (NNs) [13, 18], or
start from a pre-trained real-valued NN. To alleviate fea-
ture quantization adverse effects, two-stage training strate-
gies are generally employed [5, 29]. Particularly, in the first
stage the network is trained with real weights and binary
features. Then, in the second stage, a warm weight ini-
tialization is employed based on the binary representation
of the output weights from the first stage, and the model
is fully trained to binarize the weights. Thus, the problem
splits into two sub-problems: weight and feature binariza-
tion. In BiPer, we propose a two-stage training where, the

first stage uses real-valued weights ŵ as in Eq. (10), and
the second stage uses the weight binarization from Eq.(8).
If not otherwise specified, the weight-decay was fixed at
5e − 4 for the first stage and 5e − 5 for the second stage.
The learning rate was set to 0.1 in the first stage and, 0.01
in the second stage. In both stages the learning rate was
adjusted by the cosine scheduler.

5.2. Ablation Studies

To investigate the actual contributions of BiPer training
stages, we conducted ablation studies on CIFAR-10. In all
these experiments, ResNet-18/20 was used as the backbone.

5.2.1 Impact of Frequency ω0

BiPer introduces the frequency of the periodic function (ω0)
as a relevant hyperparameter. Section 4.1 showed that ω0

can control QE, and particularly, the weight QE depends on
the product of ω0 and the parameter b. Thus, for a given
value of b, increasing the frequency implies lower QE. To
verify these theoretical results, we trained BiPer Stage 1 for
200 epochs, with a lr= 0.05, weight decay 5e − 4, and
varying ω0. Figure 4 illustrates the obtained stage 1 results
for (a) Top-1 validation precision, (b) QE and (c) maximum
likelihood estimated parameter b. These results validate our
theoretical findings. However, consistently with the state of
the art, reducing the QE degrades network performance. It
is worth noting that during the first stage, there is no QE for
the weights and, the values reported in Table 1 correspond
to the QE obtained from weight binarization at the end of
stage 1 training. This same value corresponds to the QE of
the initialization for stage 2.

We further verified the effect of ω0 on the full BiPer
model. To this end, we trained BiPer Stage 2 for different
learning rates, using the outputs of Stage 1 as warm start.
The results are also presented in Figure 4. Interestingly, Fig.
4 (a) shows that the best Stage 1 model (ω0 = 10) does not
result in the best performance of the full binary model. Fur-
thermore, ensuring the lowest QE in Stage 1, does not result
in the best network performance either. For the frequency
hyperparameter, we found that an intermediate frequency
ω0 = 20 balances the initial QE and precision of the full bi-
nary model. Moreover, in some cases the final BiPer model
achieves higher precision than the initial model trained with
real weights, e.g. ω0 = 20, 30. To the best of our knowl-
edge, this is the first empirical analysis of the impact of the
quantization error in the initialization.

A third experiment was conducted in order to verify the
contribution of the periodic function in the binarization pro-
cess. In particular, we are interested on evaluating whether
BiPer improvements on classification precision are due to
the use of the periodic function instead of the two-stage
training methodology. Therefore, we trained BiPer follow-
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ing the proposed two-stage training, but we just employ the
sign function to binarize the weights and activations as in
(1). Table 1 summarizes the results for this experiment. We
can see that stage 1 attained higher precision and QE com-
pared to stage 2. Specifically, precision degradation reached
0.9% and QE decreased approximately 0.2. This behavior
is similar to that from the case when ω0 = 5 in Fig. 4,
where we obtained high precision and high QE on stage 1,
but in the second stage, the performance drops. This occurs
because lower frequencies promote small argument values
for the sinusoidal function, and sin(x) ≈ x for small values
of x.

Table 1. BiPer two-stage training without using a periodic function
in the binarization.

Stage 1 Stage 2
Precision QE Precision QE

93.93 0.2351 93.01 0.0584

5.2.2 Binary Weights - Real Activations

This experiment considers only weight binarization using
the proposed BiPer approach. Thus, we trained a resnet-20
for the CIFAR-10 data set, keeping real activation values.
Quantitative results are reported in Table 2, where it can be
noted that the proposed approach has competitive perfor-
mance with the state-of-the-art approach LCR-BNN [38].
Furthermore, it is important to highlight that the degrada-
tion accuracy compared to a full precision model is less than
1%

Table 2. Performance comparison for binary weights and real acti-
vations in BiPer, compared to state-of-the-art methods on CIFAR-
10. W/A: bit length of weights and activations. FP: Full precision
model.

Network Method W/A Top-1

ResNet-20

FP 32/32 91.7%
DoReFa 1/32 90.0%
LQ-Net 1/32 90.1%
DSQ 1/32 90.2%
IR-Net 1/32 90.8%
LCR-BNN 1/32 91.20%
BiPer (Ours) 1/32 91.20%

5.3. Comparison with SOTA methods

5.3.1 Experiments on CIFAR-10

For ResNet-18, we compared the proposed BiPer approach
with existing methods such as RAD[11], IR-Net [34], LCR-
BNN [38], RBNN [27], ReCU [45], ReSTE [43], MST [41],
and DIR-Net [35]. For VGG-Small, we compared BiPer
with the XNOR-Net [36], BNN [21], DoReFa [49], IR-Net
[34], RBNN [27], DSQ, SLB [46], ReCU [45] and ReSTE

Table 3. BiPer performance comparison with state-of-the-art BNN
on CIFAR-10. W/A: bit length of weights and activations. FP: full
precision model.

Network Method W/A Top-1

ResNet-18

FP 32/32 94.8%
RAD 1/1 90.5%
IR-Net 1/1 91.5%
LCR-BNN 1/1 91.80%
RBNN 1/1 92.2%
ReCU 1/1 92.8%
ReSTE 1/1 92.63%
MST 1/1 93.2%
DIR-Net 1/1 92.8%
BiPer (Ours) 1/1 93.75%

ResNet-20

FP 32/32 92.1%
DoReFa 1/1 79.3%
DSQ 1/1 84.1%
SLB 1/1 85.5%
IR-Net 1/1 86.5%
ReCU 1/1 87.4%
BiPer (Ours) 1/1 87.5%

VGG-small

FP 32/32 94.1%
XNOR-Net 1/1 89.8%
BNN 1/1 89.9%
DoReFa 1/1 90.2%
IR-Net 1/1 90.4%
RBNN 1/1 91.3%
DSQ 1/1 91.7%
SLB 1/1 92.0%
ReCU 1/1 92.2%
BiPer (Ours) 1/1 92.11%

[43]. The classification precision results are shown in Ta-
ble 3, and it can be seen that BiPer provides the best per-
formance for ResNet-18 and ResNet-20, while it provides
competitive results for the VGG-small network. Specif-
ically, the proposed approach obtains a Top-1 accuracy
of 93.75% when binarizing ResNet-18, improving classi-
fication precision in almost 1% against ReCU and 0.55%
against the recent Minimum Spanning Tree (MST) strategy.
Furthermore, the accuracy loss against the full precision
model is reduced to just 1%. Recall that BiPer is capable
of providing these results without requiring additional net-
work modules or regularization functions.

5.3.2 Experiments on ImageNet

We also evaluate the proposed BiPer approach using
ResNet-18 and ResNet-34, and training on the large-scale
ImageNet dataset. Table 4 shows a number of SOTA quan-
tization methods over ResNet-18 and ResNet-34, includ-
ing XNOR-Net [36], Bi-Real Net [28], PCNN [16], IR-
Net [34], BONN [17], LCR-BNN [38], HWGQ [6], RBNN
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Figure 4. Impact of the frequency of the periodic function ω0 on BiPer (a) Top-1 classification precision, (b) Quantization error and, (c)
Weight distribution parameter b, for the CIFAR-10 data set.

Table 4. BiPer performance comparison with state-of-the-art BNN
on ImageNet. W/A: bit length of weights and activations. FP: full
precision model.

Network Method W/A Top-1 Top-5

ResNet-18

FP 32/32 69.6% 89.2%
XNOR-Net 1/1 51.2% 73.2%
Bi-Real Net 1/1 56.4% 79.5%
PCNN 1/1 57.3% 80.0%
IR-Net 1/1 58.1% 80.0%
BONN 1/1 59.3% 81.6%
LCR-BNN 1/1 59.6% 81.6%
HWGQ 1/1 59.6% 82.2%
RBNN 1/1 59.9% 81.9%
FDA 1/1 60.2% 82.3%
ReSTE 1/1 60.88% 82.59%
ReCU 1/1 61.0% 82.6%
DIR-Net 1/1 60.4% 81.9%
BiPer (Ours) 1/1 61.4% 83.14%

ResNet-34

FP 32/32 73.3% 91.3%
Bi-Real Net 1/1 62.2% 83.9%
IR-Net 1/1 62.9% 84.1%
RBNN 1/1 63.1% 84.4%
ReSTE 1/1 65.05% 85.78%
ReCU 1/1 65.1% 85.8%
DIR-Net 1/1 64.1% 85.3%
BiPer (Ours) 1/1 65.73% 86.39%

[27], FDA [44], ReSTE [43], ReCU [45], and DIR-Net [35].
We can observe that the proposed BiPer approach in the
1W/1A setting achieves the best Top-1 and top-5 accuracy
for both network architectures. Specifically, for ResNet-18,
we attained a top-1 validation accuracy of 61.4%, outper-
forming the second-best result of 61.0% achieved by ReCu.
Furthermore, our top-5 performance reached 83.14%, sur-
passing the second-best result of 82.6%, also achieved by
ReCU. Likewise, for ResNet-34, we achieved the highest
top-1 and top-5 accuracies, namely 65.73% and 86.39%,
respectively. These results improve the second-best method
(ReCU) by 0.63% and 0.59% in top-1 and Top-5 accuracies,

respectively. The extensive comparison results presented in
Table 3 and Table 4 demonstrate the effectiveness of BiPer
on classification tasks.

6. Conclusions

An approach for neural network binarization using a binary
periodic function or square wave, dubbed BiPer, has been
proposed. To improve gradient stability we employed a si-
nusoidal function with the same period of the square wave
as a differentiable surrogate during the backward pass. This
simple, yet powerful modification tackles the problem of
standard gradient mismatch between forward and backward
steps during network training, providing a suitable alterna-
tive that can be incorporated within back-propagation al-
gorithms based on stochastic gradient descent. Mathemat-
ical analysis of BiPer quantization error demonstrated that
it can be controlled by the frequency of the periodic func-
tion. This leverages a flexible initialization scheme for the
binary weights, that balances the QE and network perfor-
mance accuracy. The advantages of BiPer for the classi-
fication task were demonstrated through experimental re-
sults for two benchmark data sets, i.e., CIFAR-10 and Im-
ageNet. Comparisons with respect to state-of-the-art BNN
approaches showed that BiPer outperforms prior works by
up to 1% on CIFAR-10, and up to 0.63% on Imagenet, re-
spectively. Although this work tested the BiPer approach
for classification, it can be easily extended to other high-
level tasks without increasing the complexity. Thus, BiPer
opens new horizons for neural network quantization by an-
alyzing the frequency of the periodic function and its rela-
tion to the network quantization error. In this regard, we
have shown that the QE can be controlled by the frequency.
These advancements collectively contribute to the matura-
tion of BNNs as viable alternatives for real-world applica-
tions, offering a compelling trade-off between model size,
computational efficiency, and accuracy.
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