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A coffee cup, a grape
biscuit, a black oven plate on

a white dining table

Grasp the coffee cup. Grasp the calculator 
at its keypad.

A black pen, a steel marble
and a digital calculator on

an office desk

A black pot, a green bottle, a
bread container arranged on

a kitchen counter

Grab the neck
of the green bottle.

Give me the brown-band
wristwatch.

A brown-band wristwatch, a
sleek black pen and an office

clip placed on a table

A white mug, a spiral
notepad, a fountain pen
resting on a brown desk

Pick the fountain
pen at its cap.

Figure 1. We present a new dataset and method for language-driven grasp task.

Abstract
Grasp detection is a persistent and intricate challenge

with various industrial applications. Recently, many meth-
ods and datasets have been proposed to tackle the grasp
detection problem. However, most of them do not consider
using natural language as a condition to detect the grasp
poses. In this paper, we introduce Grasp-Anything++, a
new language-driven grasp detection dataset featuring 1M
samples, over 3M objects, and upwards of 10M grasping in-
structions. We utilize foundation models to create a large-
scale scene corpus with corresponding images and grasp
prompts. We approach the language-driven grasp detection
task as a conditional generation problem. Drawing on the
success of diffusion models in generative tasks and given
that language plays a vital role in this task, we propose a
new language-driven grasp detection method based on dif-
fusion models. Our key contribution is the contrastive train-
ing objective, which explicitly contributes to the denoising
process to detect the grasp pose given the language instruc-
tions. We illustrate that our approach is theoretically sup-
portive. The intensive experiments show that our method
outperforms state-of-the-art approaches and allows real-
world robotic grasping. Finally, we demonstrate our large-
scale dataset enables zero-short grasp detection and is a
challenging benchmark for future work.

1. Introduction

Imagine we want an assistant robot to grasp a cup among
a clutter of daily objects such as a knife, a fork, a cup, and
a pair of scissors. Conventionally, to convey the idea of
grasping this specific object, humans use the natural lan-
guage command, “give me the cup”, for instance. Although
humans intuitively know how to grasp the cup given the
linguistic command, determining specific grasp actions for
objects based on natural language instructions or language-
driven grasp detection remains challenging for robots [64].
First, natural language is usually overlooked in existing
grasp datasets [56] while training vision-and-language neu-
ral networks necessitates an excessive number of labeled
examples [66]. Second, recent works usually focus on par-
ticular manipulation tasks with limited objects [25], impos-
ing a bottleneck for in-the-wild robot execution [63]. Fi-
nally, despite recent developments, bridging the gap be-
tween language, vision, and control for real-world robotic
experiments remains a challenging task [83].

Recently, language-driven robotic frameworks are gain-
ing traction, offering the potential for robots to process nat-
ural language, and bridging the gap between robotic ma-
nipulations and real-world human-robot interaction [51].
PaLM-E [21], EgoCOT [51], and ConceptFusion [32] are
some notable embodied robots with the ability to compre-
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hend natural language by harnessing the power of large
foundation models such as ChatGPT [54]. However, most
works assume the high-level actions of robots and ignore the
fundamental grasping actions, restricting the structure for
generalization across robotic domains, tasks, and skills [50].
In this paper, we explore training a language-driven agent
to implement low-level actions, focusing on the task of ob-
ject grasping via image observations. Specifically, our hy-
pothesis is centered around the establishment of a robotic
system that can execute grasping actions following a given
language instruction for any universal object.

We first present Grasp-Anything++ to serve as a large-
scale dataset for language-driven grasp detection. Our
dataset is based on the Grasp-Anything [74], and is syn-
thesized from foundation models. Compared to the original
Grasp-Anything dataset, we provide more than 10M grasp
prompts and 3M associated object masks, 6M ground truth
poses at the object part level. Our dataset showcases the
ability to facilitate grasp detection using language instruc-
tions. We label the ground truth at both the object level
and part level, providing a comprehensive understanding
of real-world scenarios. For example, our ground truth in-
cludes both general instructions “give me the knife” and de-
tail ones such as “grasp the handle of the steak knife”. We
empirically show that our large-scale dataset successfully
facilitates zero-shot grasp detection on both vision-based
tasks and real-world robotic experiments.

To tackle the challenging language-driven grasp detec-
tion task, we propose a new diffusion model-based method.
Our selection of diffusion models is motivated by their
proven efficacy in conditional generation tasks [28]. These
models have shown efficiency beyond image synthesis, in-
cluding other image-based tasks such as image segmenta-
tion [77], and visual grounding [40]. Despite achieving no-
table success, integrating visual and text features effectively
remains a challenge [13] as the majority of existing liter-
ature employs latent strategies to combine visual and text
features [36]. We address this challenge by employing a
new training strategy for learning text and image features,
focusing on the use of feature maps as guidance information
for grasp pose generation. Our main contribution is a new
training objective that incorporates the feature maps and ex-
plicitly contributes to the denoising process. In summary,
our contributions are three-fold:

• We propose Grasp-Anything++, a large-scale language-
driven dataset for grasp detection tasks.

• We propose a diffusion model with a training objective
that explicitly contributes to the denoising process to de-
tect the grasp poses.

• We demonstrate that our Grasp-Anything++ dataset and
the proposed method outperform other approaches and
enable successful robotic applications.

2. Related Work
Grasp Detection. Grasp detection is a popular task in

both computer vision and robotic community [2,17,24,64].
Recently, establishing robotic systems with the ability to
follow natural commands has been actively researched [64,
80,83]. The prevalent solution to the language-driven grasp
detection task is to split into two stages: one for grounding
the target object, and the other is to synthesize grasp poses
from the grounding visual-text correlations [1,80]. Training
in two stages may result in longer inference time [41]. In ad-
dition, several works [82, 83, 90] adopt foundation models,
such as GroundDINO [42] and GPT-3 [7]. Accessing such
commercial foundation models is not always available [71],
especially on robotic systems with limited resources or
unstable internet connection [37]. In our work, we di-
rectly train the model on the large-scale Grasp-Anything++
dataset to inherit the power of a foundation-based dataset,
while ensuring a straightforward inference process for the
downstream robotic applications.

Language-driven Grasp Detection Datasets. While
there are many grasp datasets have been introduced [9, 17,
22–24, 33, 38, 45, 48, 49, 55, 78], the majority of them over-
look the text modality. Therefore, the grasping of objects
out of a clutter typically experiences ambiguities in what
object to grasp [88]. DailyGrasp [83] is one of the first grasp
datasets employing natural language for scene descriptions;
however, the scene description corpus in this dataset is rel-
atively small and does not specify which part of the ob-
ject should be grasped. In our work, we present Grasp-
Anything++, which is a large-scale language-driven grasp-
ing dataset. Grasp-Anything++ provides object instance de-
scription with a natural word phrase, for example, “a blue
ceramic vase”. Furthermore, Grasp-Anything++ describes
the grasping object at both the part level and object level,
providing more information for the robot to execute the
grasping [86].

Diffusion Models for Robotic Applications. Diffu-
sion models [28] have emerged as the new state-of-the-art
method of generative tasks [84]. Recent have witnessed
growing attention for utilizing diffusion models in robotic
applications [61]. Liu et al. [43] propose a diffusion model
to handle the language-guided object rearrangement task.
Diffusion models are also applied to other robotic tasks such
as motion planning [10], and trajectory optimization [31].
The authors in [70] present a diffusion model to determine
grasp poses by minimizing a SDF loss. Overall, the diffu-
sion models employed in previous works often combine vi-
sual and text features in a latent mechanism [6], which may
cause interpretability problems [83] for robotic systems that
require low-level controls [20]. To tackle this challenge, we
propose a training objective that explicitly contributes to the
denoising process. We demonstrate that our proposed strat-
egy is more effective than the latent strategy.
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Step Description

Scene
Generation

User Please help me generate scene descriptions for natural arrangements of daily objects. Each description has
the following form: <Object 1><Object 2>...<Verb><Container Object>. Please also
ensure the incorporation of a rich and varied lexicon in the scene descriptions.

Sample A steel knife, a polished fork and a pristine ceramic plate on a wooden table.

Text-to-
Image We use Stable Diffusion [60] to proceed text-to-image generation.

Object
Masking

User For object part-level description, given an input list {<Object 1>, <Object 2>, ...}, the output will
be a list that describes the parts of objects as: {<Object 1>: [<Part 1.1>, <Part 1.2>, ...],
<Object 2>: [<Part 2.1>, <Part 2.2>, ...]}.

Sample {knife: [handle, blade], fork: [handle, neck, stem, tines], plate: [rim, base]}

Post
Process We use OFA [75] and SAM [34] to locate the region describing the objects.

Part
Masking

User Given the object list and part lists of each scene description, you will generate for me all prompts with
the following format: {<Manipulation Action><Object ID><Part ID>}. The part that is
more suitable for human grasping is positioned at the start of the list to represent the grasping actions.

Sample Give me the steel knife; Grasp the knife at its handle.

Post
Process We leverage VLPart [67] to locate the region describing the parts of objects.

Grasp
Generation

User Generate for me a scene description with grasp instructions following the templates.

Sample Scene description: A steel knife, a polished fork and a pristine ceramic plate on a wooden table. Object
list: {knife, fork, plate}. Part lists: {knife: [handle, blade], fork: [handle, neck,
stem, tines], plate: [rim, base]}. Prompts: Give me the steel knife; Grasp the knife at its handle.

Grasp
Labelling We utilize a pretrained RAGT-3/3 [9] to generate grasp poses corresponding to the located region.

Table 1. Grasp-Anything++ creation pipeline. We utilize ChatGPT to generate scene descriptions and grasp instructions from the user
input. We generate images given scene descriptions and automatically synthesize the grasp poses.

3. The Grasp-Anything++ Dataset
We utilize large-scale foundation models to cre-

ate the Grasp-Anything++. Our dataset offers open-
vocabulary grasping commands and images with associated
groundtruth. There are three key steps in establishing our
dataset: i) prompting procedure, ii) image synthesis and
grasp poses annotation, and iii) post-processing.

3.1. Prompting Procedure

We first establish prompt-based procedures to generate a
large-scale scene description corpus as well as grasp prompt
instructions. In particular, we utilize ChatGPT to generate
the prompts for two tasks: i) Scene descriptions: Sentences
capturing the scene arrangement, including the extracted
object and part lists, and ii) Grasp instructions: Prompts
directing the robot to grasp specific objects or parts.

We follow a procedure in Table 1 to implement Chat-
GPT’s output templates. The reference target in the grasp
instruction may be either an object or an object’s part. When
the reference is an object’s part, that part is directly selected
as the reference in the grasp instruction sentence. If the ref-
erence is an object, we determine the grasping region on the
part of the object that is likely to be grasped in everyday
scenarios as described in affordance theory [53].

3.2. Image Synthesis and Grasp Annotation

Image Synthesis. Given the scene description cor-
pus, we first utilize a large-scale pretrained text-to-image
model, namely, Stable Diffusion [60] to generate images
from scene descriptions. Next, we perform a series of vi-
sual grounding and image segmentation using OFA [75],
Segment-Anything [34], and VLPart [67] to locate the ref-
erenced object or part to the grasp instruction.

Grasp Annotation. Grasp poses are represented as 2D
rectangles, consistent with prior research and practical com-
patibility with real-world parallel grippers [17, 33]. Utiliz-
ing a pretrained network [9], we annotate grasp poses based
on part segmentation masks. Since potential inaccuracies in
these candidate poses could occur, we follow the procedure
as defined in [74] to evaluate the quality of generated grasp
poses to discard unreasonable grasp poses.

Specifically, grasp quality is evaluated through net
torque T = (τ1 + τ2) − RMg , where resistance at con-
tact points is τi = KµsF cosαi. With constants such as
M (mass), g (gravitational acceleration), K (geometrical
characteristics), µs (static friction coefficient), and F (ap-
plied force), accurately determining T directly is challeng-
ing due to the physical difficulties in precisely measuring
M , K, and µs. Thus, we employ a surrogate measure,
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(c) Number of object/part references.

Figure 2. Data statistics. We analyze object categories and the use of natural language in the Grasp-Anything++ dataset.

T̃ =
cosα1 + cosα2

R
, as an alternative. As a result in [12],

antipodal grasps score higher on T̃ , indicating better qual-
ity. Consequently, grasps are evaluated based on T̃ , with
positive values indicating positive grasps and others consid-
ered as negative.

Post Processing. Despite training on extensive datasets,
Stable Diffusion [60] may produce subpar content, com-
monly termed as hallucination [30] when generating images
from the text prompts. To address this, we perform manual
reviews to filter out such images, with qualitative examples
in our figures. Our process includes checks at every stage to
prevent duplicate or hallucinated content. However, manual
inspection introduces biases, which we counter with guide-
lines focusing on abnormal structures or implausible gravity
(Fig. 3), aligns with approach in the literature [62].

Figure 3. Failure image generation cases. Images generated by
Stable Diffusion [60] may exhibit hallucinatory artifacts such as
sunglasses lacking a lens, scissors with an anomalous structure,
and a spoon not resting properly on a table.

Additionally, ChatGPT-generated scene prompts often
duplicate [44]. To address this, we use duplication check-
ing, filtering out identical prompts with BERTScore [89],
which assesses sentence similarity through cosine similar-
ities of token embeddings. We remove sentences with a
BERTScore above 0.85 as in prior study [76].

3.3. Data Statistics

Number of Categories. To evaluate the object category
diversity, we apply a methodology akin to that in [16]. Uti-
lizing 300 categories from LVIS dataset [26], we employ
a pretrained model [91] to identify 300 candidate objects
from our dataset for each category. We then curate a subset
comprising 90,000 objects, refining it by excluding items
that do not align semantically with their designated cate-
gories. A category is considered significant if it has more

than 40 objects. Fig. 2a shows the results. Overall, our
dataset spans over 236 categories from LVIS dataset, indi-
cating a notable degree of object diversity in our dataset.

Scene Descriptions. Fig. 2b shows the distribution of
scene descriptions based on sentence length. The analysis
reveals a wide range of sentence lengths, spanning from 10
words to 100 words per sentence. On average, each scene
description consists of approximately 54 words, indicative
of detailed and descriptive sentences. These scene descrip-
tions correspond to sets of grasp instructions. Fig. 2c further
shows the objects and object parts in scene descriptions.

Diversity Analysis. We assess the diversity of occlu-
sion and lighting conditions in the dataset. Regarding oc-
clusion, we use a pretrained YOLOv5 model to identify
objects within images. The results indicate that 93.8% of
images have a substantial overlap of five or more bounding
boxes, which suggests a diverse range of occlusion within
the Grasp-Anything++ dataset. Regarding lighting condi-
tions, we convert images to YCbCr to analyze Y channel
(luminance) and find that GraspL1M has the most diverse
lighting conditions, identifying by the lowest Gini coeffi-
cient (a metric to measure the inequality of a distribution)
of 0.26, compared to VMRD [87] (0.31), OCID-grasp [2]
(0.32), Cornell [33] (0.62), Jacquard [17] (0.91).

4. Language-driven Grasp Detection
Motivation. The use of diffusion model for language-

driven grasp detection is motivated by its efficiency in vari-
ous generative tasks [15,28,43,84]. Conditional generation,
such as our language-driven grasp detection task, aligns
seamlessly with diffusion models’ capabilities [29]. More-
over, language-driven grasp detection represents a fine-
grained problem in which the outputs strongly depend on
the text input [4]. For example, “grasp the steak knife” and
“grasp the kraft knife” refer to two different objects on the
image. To this end, we propose using contrastive loss with
diffusion model to tackle this task, as contrastive learning is
a popular solution for fine-grained tasks [8, 14, 85].

4.1. Constrastive Loss for Diffusion Model

We represent the target grasp pose as x0 in the diffusion
model. The objective of our diffusion process of language-
driven grasp detection involves denoising from a noisy state
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xT to the original grasp pose x0, conditioned on the input
image and grasp instruction represented by y.

In a diffusion process [28], assume that q(x1:T |x0) is the
forward process and we parameterize the reverse process by
pθ(x0:T ). The conditional diffusion process [19] assumes q̂
is the forward process but with the inclusion of a condition
y. The goal of the reverse process is to optimize the varia-
tional bound on negative log likelihood [28]

L = E

− log pθ(xT )−
∑
t≥1

log
pθ(xt−1|xt)
q(xt|xt−1)

 . (1)

We prove in the Appendix that

L = E
[
C − log pθ(xT )︸ ︷︷ ︸

Constant

+ log q̂(x0|xT , y)︸ ︷︷ ︸
Contrastive

+

∑
t>1

DKL(q̂(xt−1|xt,x0, y)∥pθ(xt−1|xt))− log pθ(x0|x1, y)︸ ︷︷ ︸
Denoising score

]
.

(2)
The terms DKL(q̂(xt−1|xt,x0, y)∥pθ(xt−1|xt)) and

log pθ(x0|x1, y) in Equation 2 are similar to the concept
of denoising score used in [28]. Thus, we can represent
the quantity

∑
t>1DKL(q̂(xt−1|xt,x0, y)∥pθ(xt−1|xt)) −

log pθ(x0|x1, y) by the loss utilized in [68, 69]

Ldiffusion = Ex0∼q(x0|y),t∼[1,T ] [x0 − f(xt+1, t+ 1, x̃0)]
2 .

(3)
Since q(xT |·) is equivalent to an isotropic Gaussian dis-

tribution as T → +∞, the estimation quantity log pθ(xT )
converges to a constant when θ → θ∗. Therefore, we can
ignore the first term of Equation 2.

Finally, the term q̂(x0|xT , y) of Equation 2 provides
more information about the relation between xT and x0. As
this term is intractable [65], we parameterize q̂(x0|xT , y)
as pψ,y(x0,xT ). This estimation resembles the noise-
contrastive estimation [27], where the xT , x0 can be con-
sidered as a pair of contrastive estimation and ψ can be es-
timated by a contrastive loss.

In [19, 68, 73], the authors indicate that predicting x0 is
often infeasible but predicting an estimation x̃0 is tractable
and can be used as a ‘pseudo’ estimation of x0. We denote
x̃0 as an estimation of x0. The loss term q̂(x0|xT , y) can
be approximated by using the following contrastive loss

Lcontrastive = max

(
0,

∥∥∥∥√αT x̃0 − xT√
1− αT

∥∥∥∥2
2

−M

)
, (4)

where M is the number of dimension of x0, and αt is the
variance schedule at timestep t (t = 1;T ).

Proposition 1. Suppose that x̃0, x0 and ϵ are independent,
and that ∥∥∥∥√αT x̃0 − xT√

1− αT

∥∥∥∥2
2

≥M .

Then there exists C > 0 such that: for arbitrary δ > 0, if
Lcontrastive < δ, then

E
[
∥x̃0 − x0∥22

]
< Cδ .

Proof. See Supplementary Material.

Remark 1.1. Proposition 1 suggests that if the contrastive
loss Lcontrastive tends to zero, then the prediction x̃0 will
approach the ground truth x0.

Remark 1.2. The condition
∥∥∥√

αT x̃0−xT√
1−αT

∥∥∥2
2
≥ M is suit-

able for our language-driven grasp detection task as x̃0

and xT are two contrastive quantities, therefore, we can
assume there is a minimum distance between x̃0 and xT .
In addition, in the proof of Proposition 1, we see that

E
[∥∥∥√

αT x̃0−xT√
1−αT

∥∥∥2
2
−M

]
= β2E

[
∥x̃0 − x0∥22

]
, which

is always nonnegative. Therefore, it is both theoretically
and experimentally reasonable to add this assumption.

Text
Encoder

Vision
Encoder A

LB
EF

"Grasp me 
the lock" Ground

truth

Timestep

M
LP

M
LP

M
LP

M
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Concatenate

LGD

LGD

LGD

Denoising
process

Figure 4. Language-drive Grasp Detection (LGD) network. We
present the network architecture (left) and the proposed training
objectives of the denoising process (right).

4.2. Language-driven Grasp Detection Network

Network. Our network operates on two conditions: an
image denoted as I and a corresponding text prompt rep-
resented as e. To process these conditions, we employ a
vision encoder to extract visual features from I and a text
encoder to derive textual embeddings from e. The result-
ing feature vectors, denoted as I′ and e′, are subsequently
subjected to a fusion module, ALBEF [39]. We leverage
the attention mask generated by the ALBEF fusion module
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Give me the bottle

Grasp the wristwatch at its dial

(a) Ours (b) GR-ConvNet (c) Det-Seg-Refine (d) GG-CNN (e) CLIPORT (f) CLIP-Fusion

Figure 5. Language-driven grasp detection results visualization.

as the estimation x̃0 of x0. Next, we aggregate three ele-
ments: the estimation region x̃0, the grasp pose at the cur-
rent timestep xt+1, and the timestep t + 1. These inputs
are combined using MLP layers, similar to the approach
outlined in [68]. Specifically, the output operation can be
expressed as: xt = f(xt+1, t + 1, x̃0), where function f
encompasses a composition of multiple MLP layers. Ad-
ditional specifics regarding these universal MLP layers are
provided in the Supplementary Material.

Training Objective. In our context, conditioned grasp
detection models the distribution p(x0|y) as the reversed
diffusion process of gradually cleaning xt+1. Instead of
predicting xt as formulated by [28], we follow Ramesh et
al. [58] and predict the signal itself, i.e., xt = f(xt+1, t +
1, x̃0) with the simple objective [28]. To this end, we utilize
the contrastive loss as in Equation 4 to explicitly improve
the learning objective of the denoising process:

Ltotal = Lcontrastive + Ldiffusion . (5)

5. Experiments
We conduct experiments to evaluate our proposed

method and Grasp-Anything++ dataset using both the
vision-based metrics and real robot experiments. We then
demonstrate zero-shot grasp results and discuss the chal-
lenges and open questions for future works.

5.1. Language-driven Grasp Detection Results

Baselines. We compare our language-driven grasp de-
tection method (LGD) with the linguistically supported ver-
sions of GR-CNN [35], Det-Seg-Refine [2], GG-CNN [47],
CLIPORT [64] and CLIP-Fusion [80]. In all cases, we em-
ploy a pretrained CLIP [57] or BERT [18] as the text em-
bedding. The implementation details of all baselines can be
found in our Supplementary Material.

Baseline Seen Unseen H

GR-ConvNet [35] + CLIP [57] 0.37 0.18 0.24
Det-Seg-Refine [2] + CLIP [57] 0.30 0.15 0.20

GG-CNN [47] + CLIP [57] 0.12 0.08 0.10
CLIPORT [64] 0.36 0.26 0.29

CLIP-Fusion [80] 0.40 0.29 0.33

LGD (ours) + BERT [18] 0.44 0.38 0.41
LGD (ours) + CLIP [57] 0.48 0.42 0.45

Table 2. Language-driven grasp detection results.

Setup. To assess the generalization of all methods
trained on Grasp-Anything++, we utilize the concept of
base and new labels [92] in zero-shot learning. We cate-
gorize LVIS labels from Section 3.3 to form labels for our
experiment. In particular, we select 70% of these labels
by frequency for ‘Base’ and assign the remaining 30% to
‘New’. We also use the harmonic mean (‘H’) to measure the
overall success rates [92]. Our primary evaluation metric is
the success rate, defined similarly to [35], necessitating an
IoU score of the predicted grasp exceeding 25% with the
ground truth grasp and an offset angle less than 30◦.

Main Results. Table 2 shows the results of language-
driven grasp detection on the Grasp-Anything++ dataset.
The findings indicate a notable performance advantage of
our LGD over other baseline approaches, with LGD outper-
forming the subsequent best-performing baselines (CLIP-
Fusion) by margins of 0.14 on Grasp-Anything++ dataset.

Baseline Seen Unseen H

LGD w/o predicting x̃0 0.15 0.08 0.10
LGD w/o contrastive loss 0.45 0.40 0.42

LGD w contrastive loss 0.48 0.42 0.45

Table 3. Contrastive loss analysis.
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Figure 6. Loss visualization.

LGD without contrastive LGD with contrastive

Figure 7. t-SNE visualization. We apply t-SNE to cluster the
vision-and-language features with and without contrastive loss.

Contrastive Loss Analysis. Table 3 presents the perfor-
mance of LGD under varied configurations. The outcomes
emphasize the substantial influence of the training objec-
tive (contrastive loss) and the importance of language in-
structions in enhancing LGD performance on both seen and
unseen classes in the Grasp-Anything++ dataset.

Fig. 6 shows the contrastive loss Lcontrastive approach-
ing towards 0 during training, indicating the grasp pose
estimation x̃0 aligns with the ground truth x0, as antici-
pated by Proposition 1. The subsequent attention maps vi-
sualization in Fig. 8 shows the attention region is mean-
ingful and improves the results when employing our pro-
posed contrastive loss compared to its absence. Moreover,
we employ t-SNE for vision-and-language embedding vi-
sualization, as in [46], by processing 2, 000 samples from
the Grasp-Anything++ dataset through the ALBEF module.
The outcomes reveal that our contrastive loss facilitates bet-
ter object classification, as evidenced in Fig.7 by clearer
segregation of pixel embeddings across various semantic
classes, underscoring contrastive loss’s role in refining em-
beddings’ differentiation for improved class distinctions.

Qualitative Results. Fig. 5 presents qualitative results
of the language-driven grasp detection task, suggesting that
our LGD method generates more semantically plausible
than other baselines. Despite satisfactory performance,
LGD occasionally predicts incorrect results, with a detailed
analysis of these cases available in our Appendix.

Robotic Validation. We provide quantitative results by
integrating our language-driven grasp detection pipeline for
a robotic grasping application with a KUKA LBR iiwa

Pick up the spoon at its neck Grasp the fork

Grasp the key at its bit Grab the wallet for me

Figure 8. Attention map visualization. We compare the attention
map when utilizing our proposed contrastive loss and when not.

Baseline Single Cluttered

GR-ConvNet [35] + CLIP [57] 0.33 0.30
Det-Seg-Refine [2] + CLIP [57] 0.30 0.23

GG-CNN [47] + CLIP [57] 0.10 0.07
CLIPORT [64] 0.27 0.30

CLIP-Fusion [80] 0.40 0.40
LGD (ours) 0.43 0.42

Table 4. Robotic language-driven grasp detection results.

R820 robot. Using the RealSense D435i camera, the grasp
pose inferred from approaches in Table 4 is transformed into
the 6DoF grasp pose, similar to [35]. The optimization-
based trajectory planner in [5,72] is employed to execute the
grasps. Experiments are conducted for two scenarios, i.e.,
the single object scenario and the cluttered scene scenario,
of a set of 20 real-world daily objects. In each scenario,
we run 30 experiments using baselines listed in Table 4 and
a predefined grasping prompt corpus. The results exhibit
that our LGD outperforms other baselines. Furthermore, al-
though LGD is trained on our Grasp-Anything++ which is
a solely synthesis dataset created by foundation models, it
still shows reasonable results on real-world objects.

5.2. Zero-shot Grasp Detection

Our proposed Grasp-Anything++ is a large-scale dataset.
Apart from the language-driven grasp detection task, we be-
lieve it can be used for other purposes. In this experiment,
we seek to answer the question: Can Grasp-Anything++ be
useful in the traditional grasp detection task without text?
Consequently, we verify our Grasp-Anything++ and LGD
(no text) with other existing datasets and grasping methods.

Setup. We setup an LGD (no text) version, and other
state-of-the-art grasp detection methods GR-ConvNet [35],
Det-Seg-Refine [2], GG-CNN [47]. We use five datasets:
our Grasp-Anything++, Jacquard [17], Cornell [33],
VMRD [87], and OCID-grasp [2] in this experiment.
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Grasp-Anything++ (ours) Jacquard [17] Cornell [33] VMRD [87] OCID-grasp [2]

Baseline Base New H Base New H Base New H Base New H Base New H

GR-ConvNet [35] 0.71 0.59 0.64 0.88 0.66 0.75 0.98 0.74 0.84 0.77 0.64 0.70 0.86 0.67 0.75
Det-Seg-Refine [2] 0.62 0.57 0.59 0.86 0.60 0.71 0.99 0.76 0.86 0.75 0.60 0.66 0.80 0.62 0.70

GG-CNN [47] 0.68 0.57 0.62 0.78 0.56 0.65 0.96 0.75 0.84 0.69 0.53 0.59 0.71 0.63 0.67
LGD (no text) (ours) 0.74 0.63 0.68 0.89 0.69 0.77 0.97 0.76 0.85 0.79 0.66 0.72 0.88 0.68 0.76

Table 5. Base-to-new zero-shot grasp detection results.

Zero-shot Results. Table 5 summarizes the base-to-new
grasp detection results on five datasets. Overall, the per-
formance of LGD even without the language branch is bet-
ter than other baselines across all datasets. Furthermore,
this table also shows that our Grasp-Anything++ dataset is
more challenging to train as the detection results are lower
than related datasets using the same approaches due to the
greater coverage of unseen objects in the testing phase.

Train
Test Jacquard Cornell VMRD OCID-grasp Grasp-Anything++

Jacquard [17] 0.87 0.51 0.13 0.21 0.17
Cornell [33] 0.07 0.98 0.20 0.12 0.13
VMRD [87] 0.06 0.21 0.79 0.11 0.10

OCID-grasp [2] 0.09 0.12 0.20 0.74 0.11

Grasp-Anything++ (ours) 0.41 0.63 0.30 0.39 0.65

Table 6. Cross-dataset grasp detection results.

Cross-dataset Evaluation. To further verify the use-
fulness of our Grasp-Anything++ dataset, we conduct the
cross-dataset validation in Table 6. We use the GR-
ConvNet [35] to reuse its results on existing grasp datasets.
GR-ConvNet is trained on a dataset (row) and evaluated
on another dataset (column). For example, training on
Jacquard and testing on Cornell yields an accuracy of 0.51.
Notably, training with our dataset improves performance by
approximately 10− 33% compared to other datasets.

In the wild grasp detection. Fig. 9 shows visualiza-
tion results using LGD (no text) trained on our Grasp-
Anything++ dataset on random internet images and other
datasets images. We can see that the detected grasp poses
are adequate in quality and quantity. This demonstrates that
although our Grasp-Anything++ is fully created by founda-
tion models without having any real images, models trained
on our Grasp-Anything++ dataset still generalize well on
real-world images.

5.3. Discussion

Our experiments indicate that Grasp-Anything++ can
serve as a foundation dataset for both language-driven and
traditional grasp detection tasks. However, there are certain
limitations. First, our dataset lacks depth images for directly
being applied to robotic applications [52]. Second, we re-
mark that the creation of our dataset is time-consuming and
relies on access to the ChatGPT API. Fortunately, future
research can reuse our provided assets (images, prompts,

Figure 9. In the wild grasp detection. Top row images are from
GraspNet [24], YCB-Video [78], NBMOD [9] datasets; bottom
row shows internet images.

etc.) without starting from scratch. Furthermore, our ex-
periments show that adding language to the grasp detection
task (Table 2) poses a more challenging problem compared
to standard grasp detection task (Table 5).

We see several interesting future research directions.
First, future work could investigate the use of text or image-
to-3D models [79] or image-to-depth [59] and reuse our
dataset’s prompts and images to construct 3D language-
driven grasp datasets. Additionally, beyond linguistic grasp
instruction adherence, our dataset holds potential for varied
applications, including scene understanding [81] and scene
generation [3], hallucination analysis [30], and human-
robot interaction [11].

6. Conclusion

We introduce Grasp-Anything++, a large-scale dataset
with 1M images and 10M grasp prompts for language-
driven grasp detection tasks. We propose LGD, a diffusion-
based method to tackle the language-driven grasp detection
task. Our diffusion model employs a contrastive training
objective, which explicitly contributes to the denoising pro-
cess. Empirically, we have shown that Grasp-Anything++
serves as a foundation grasp detection dataset. Finally, our
LGD improves the performance of other baselines, and the
real-world robotic experiments further validate the effec-
tiveness of our dataset and approach.
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[59] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vi-
sion transformers for dense prediction. In CVP4, 2021. 8

[60] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, 2022. 3, 4

[61] Kallol Saha, Vishal Mandadi, Jayaram Reddy, Ajit Srikanth,
Aditya Agarwal, Bipasha Sen, Arun Singh, and Madhava Kr-
ishna. Edmp: Ensemble-of-costs-guided diffusion for mo-
tion planning. arXiv preprint arXiv:2309.11414, 2023. 2

[62] Schuhmann et al. Laion-5b: An open large-scale dataset for
training next generation image-text models. NeurIPS, 2022.
4
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