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Abstract
Establishing an automatic evaluation metric that closely

aligns with human judgments is essential for effectively de-
veloping image captioning models. Recent data-driven met-
rics have demonstrated a stronger correlation with human
judgments than classic metrics such as CIDEr; however
they lack sufficient capabilities to handle hallucinations and
generalize across diverse images and texts partially because
they compute scalar similarities merely using embeddings
learned from tasks unrelated to image captioning evalua-
tion. In this study, we propose Polos, a supervised auto-
matic evaluation metric for image captioning models. Po-
los computes scores from multimodal inputs, using a paral-
lel feature extraction mechanism that leverages embeddings
trained through large-scale contrastive learning. To train
Polos, we introduce Multimodal Metric Learning from Hu-
man Feedback (M2LHF), a framework for developing met-
rics based on human feedback. We constructed the Polaris
dataset, which comprises 131K human judgments from 550
evaluators, which is approximately ten times larger than
standard datasets. Our approach achieved state-of-the-
art performance on Composite, Flickr8K-Expert, Flickr8K-
CF, PASCAL-50S, FOIL, and the Polaris dataset, thereby
demonstrating its effectiveness and robustness.

1. Introduction
Extensive research on image captioning has yielded a wide
array of practical applications in society, spanning from as-
sisting people who are blind to facilitating dialog about im-
ages and answering questions derived from visual content
(e.g., [21, 24, 68]). To effectively advance the develop-
ment of image captioning models, it is crucial to establish
an automatic evaluation metric that closely aligns with hu-
man judgment. Previous research has shown that classical
automatic evaluation metrics [10, 12, 40, 51, 64] exhibit
weak correlation with human judgments [10, 26]. This has
prompted the introduction of data-driven automatic evalu-
ation metrics [26, 34, 77, 78]. However, by merely mea-
suring the similarity of embeddings learned from tasks un-
related to image captioning, these metrics potentially mis-
judge caption quality, which raises concerns about their ac-
curacy in evaluating image captioning models. Further-

Figure 1. Our supervised metric Polos computes evaluation scores
from multimodal inputs by integrating human feedback within the
novel framework M2LHF. Polos is capable of modeling intricate
relationships within the vector space of text-image pairs as well as
text-text pairs, thereby effectively evaluating the depicted samples.

more, some experiments have identified the limitations of
these metrics regarding handling hallucinations adequately.

Although recent similarity-based [26, 31, 34, 77, 78] and
learning-based [35, 55] metrics have demonstrated perfor-
mance superior to classic metrics, they are still not com-
pletely satisfactory. For instance, while the correlation be-
tween the state-of-the-art (SOTA) metric and human judg-
ments on the Flickr8K dataset [27] is only about 0.56, the
correlation coefficient among human judgments is approx-
imately 0.73 [10]. This discrepancy may emerge because
similarity-based metrics merely compute cosine similarity
from well-known embeddings (e.g., [16, 19, 52]) learned
from tasks unrelated to image captioning evaluation, which
potentially leads to a misrepresentation of caption qual-
ity. Moreover, many learning-based metrics are specifically
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for limited settings (e.g., closed-vocabulary settings), and
therefore fail to accommodate diverse images and texts.

In this paper, we propose Polos, a supervised automatic
evaluation metric for image captioning models. Alongside
this, we introduce Multimodal Metric Learning from Hu-
man Feedback (M2LHF), a framework used to develop a
practical supervised metric for image captioning. Fig.1 il-
lustrates our proposed metric Polos and the M2LHF frame-
work. As a key contribution, our proposed metric fuses both
similarity-based and learning-based approaches. Previous
similarity-based approaches merely compute scalar similar-
ities using classic methodologies (e.g., cosine similarity and
optimal transport), whereas our metric models intricate re-
lationships in the vector space of text-image pairs and text-
text pairs. This is achieved through the parallel feature ex-
traction mechanism that leverages SimCSE [22] and CLIP
[52], which we provide details for in Section 3.3.

To train a metric that embodies the aforementioned char-
acteristics through the M2LHF approach, we have con-
structed the Polaris dataset, which contains a diverse range
of human judgments. Compared with existing datasets, Po-
laris contains a greater diversity of captions and a more
extensive range of evaluations. Notably, our dataset com-
prises 131K human judgments, whereas even the largest
existing dataset [1] contains only approximately 12K in to-
tal. Regarding the total number of evaluators involved, even
the CapEval1K dataset [35], which has the largest number
of evaluators to the best of our knowledge, was assessed
by only five evaluators. By contrast, our dataset is dis-
tinguished by its assessment by a much higher number of
evaluators at 550 evaluators. Furthermore, our dataset is su-
perior to existing datasets such as [1, 10, 27, 35] in terms of
the inclusion of diverse captions, which were collected from
humans and generated from ten image captioning models,
including modern models.

The main contributions of this paper1 are as follows :

• We propose Polos2, a supervised automatic evaluation
metric for image captioning models.

• We introduce M2LHF, a novel framework used to de-
velop a practical metric for image captioning.

• We introduce a parallel feature extraction mechanism
that leverages text embeddings [43] pretrained with
SimCSE and vision-language embeddings [52].

• We constructed the Polaris dataset, which contains
131,020 human judgments from 550 evaluators.

• We achieved SOTA performance on image captioning
benchmarks including Composite, Flickr8K-Expert,
and Flickr8K-CF, PASCAL-50S, FOIL, and Polaris.

1Project page: https://yuiga.dev/polos
2Practical visiOn-and-Language evaluatiOn metic for image caption-

ing modelS

2. Related Work
Data-driven metrics can be broadly divided into similarity-
based metrics [26, 31, 34, 77] and learning-based metrics
[35, 53, 55]. Similarity-based metrics compute similarities
using classic approaches such as cosine similarity and opti-
mal transport in an unsupervised manner, whereas learning-
based metrics compute scores in a supervised manner.

Standard and similarity-based metrics. Standard auto-
matic metrics for evaluating image captioning models in-
clude BLEU [51], ROUGE [40], METEOR [12], CIDEr
[64], and SPICE [10], which are primarily based on ei-
ther n-grams or scene graphs. Extensions to these stan-
dard metrics, such as CIDEr-R [49] and JaSPICE [65], have
also been proposed. Despite their widespread use, in sev-
eral studies, researchers have highlighted the limitations
of these metrics, indicating their suboptimal performance
[26, 34, 53, 55, 56]. This has led to the emergence of data-
driven metrics such as BERTScore [77] and MoverScore
[78]. Additionally, there are similar metrics that leverage
image features directly, such as [26, 29, 31, 34, 35].

CLIPScore [26] evaluates captions in an unsupervised
manner by computing their similarity with embeddings de-
rived from CLIP [52]. Its distinctive feature is its capacity
not only to evaluate based on a reference-with-image man-
ner but also in a reference-free context. Similarly, PAC-
S [55] fine-tunes CLIP on generated image-text pairs and
evaluates captions in the same manner. However, these de-
pendences solely on the computation of cosine similarity
between CLIP embeddings could potentially constrain its
effectiveness and robustness across diverse scenarios.

MID[31] uses the negative Gaussian cross-mutual infor-
mation using CLIP features. It was proposed as a bridge be-
tween reference-with-image and reference-free metrics and
has demonstrated strong performance across multiple image
captioning benchmarks. However, it is crucial to highlight
that MID relies solely on the text embeddings provided by
CLIP for processing text data, which could potentially lead
to suboptimal evaluation. This concern stems from the fact
that CLIP is predominantly trained on a dataset that com-
prises mainly short noun phrases, which means that it is
possibly suboptimal for evaluating the longer sentences typ-
ically generated by image captioning models [55].

Learning-based metrics. Limited learning-based met-
rics exist for image captioning models; however multiple
learning-based metrics exist in the field of evaluation of
text generation [45, 56, 59, 70–72], including RUSE [59]
and COMET [53]. COMET is a metric trained using hu-
man judgments that has demonstrated robust performance
in evaluating machine translations. COMET comprises
both an estimator model that directly predicts human judg-
ments and a ranking model that predicts the quality order of
the generated translations.
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By contrast, a few learning-based metrics exist that were
specifically designed for image captioning [32, 35, 36]. One
such metric is UMIC [35], which is among the few learning-
based metrics tailored for evaluating image captioning mod-
els. UMIC is a fine-tuned UNITER [14] model designed
to rank captions against each other using CapEval1K. How-
ever, as we argue later, such ranking models have shortcom-
ings when they process multiple potential references, such
as varying focal points in captions and subjective variations
in expression. Furthermore, UMIC is only a straightforward
fine-tuned UNITER model and it cannot adequately handle
diverse images and text, such as those associated with an
open-vocabulary setting.

Datasets and benchmarks. Standard datasets commonly
used for the evaluation of image captioning include
Flickr8K-Expert, Flickr8K-CF [27], Composite [1] and
PASCAL-50S [64]. The Flickr8K-Expert and Flickr8K-
CF datasets comprise a significant amount of human judg-
ments on captions provided by humans. However, these
datasets do not contain any captions generated by models,
which presents an issue from the perspective of the domain
gap when using them for training metrics. The Compos-
ite dataset [1] encompasses 12K human judgments across
images collected from MSCOCO [41], Flickr8k [27], and
Flickr30k [73]. Although each image initially contains five
references, only one reference was selected for human judg-
ments within the dataset. The CapEval1k dataset was in-
troduced by [35] for training automatic evaluation metrics.
We note that the CapEval1K dataset has several limita-
tions: it is a closed dataset, uses outdated models such as
[11, 28, 54], and includes only 1K human judgments. In
stark contrast, our Polaris dataset offers significant advan-
tages: it is openly accessible, incorporates inferences from
modern models [17, 37, 38, 62, 66, 67, 69, 75], and includes
a substantial 131K human judgments. A meta-analysis of
these datasets can be found in Appendix B.1.

Standard datasets for image captioning include MS-
COCO, nocaps [7], Flickr30K, and CC3M [57]. The no-
caps dataset contains a greater diversity of classes than MS-
COCO, which enables a more comprehensive evaluation of
image captioning models’ ability to generate diverse cap-
tions. Our Polaris dataset is built on inferences from MS-
COCO and nocaps to ensure caption diversity.

3. Methodology

3.1. Meta-Analysis

When designing automatic evaluation metrics, the decision
to use an unsupervised or supervised approach is important.
As detailed in previous research [74], this binary distinc-
tion can be further decomposed into four categories: regres-
sion, ranking, matching, and generation. We will discuss
the above categories in the following subsections.

Concat & MLP

CLIP RoBERTa

Text Encoder Pretrained with
SimCSE

.

Image Encoder

CLIP

Aggregation

Feed-Forward Network

Figure 2. Overview of the proposed metric. In alignment with the
principles of M2LHF, Polos computes the evaluation ŷ based on
multimodal inputs and regresses the human evaluation. The pro-
posed metric extracts effective features for caption evaluation us-
ing the difference and Hadamard product of features derived from
both CLIP and RoBERTa.

Unsupervised approaches. In the domain of unsuper-
vised approaches, metrics such as BERTScore [77], CLIP-
Score [26], and BARTScore [74] are prominent. However,
each of these metrics has its limitations for evaluating image
captioning models. For instance, matching models such as
BERTScore measure the similarity between tokens, which
makes them ill-suited to explicitly handling images. Simul-
taneously, CLIPScore, which computes the similarity be-
tween sentence embeddings and image embeddings, has a
major drawback. Because CLIP was designed to match an
entire image to a text description, it has shortcomings re-
garding capturing the fine-grained alignment between spe-
cific image regions and text spans as indicated in [23, 79].
This limitation suggests that there is potential to improve
performance, particularly by transitioning to a supervised
approach. Similarly, unsupervised generation models such
as BARTScore encounter challenges in the evaluation of im-
age captioning models. This difficulty stems from the lim-
ited availability of large-scale, pretrained, and lightweight
multimodal encoders.

Supervised approaches. Based on the above discussion,
we believe that supervised metrics have distinct advantages.
Both regression and ranking models are viable options;
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however, we believe that regression models are better suited
for evaluating image captioning models that involve multi-
ple references because ranking models cannot adequately
handle multiple potential references, such as varying areas
of interest in captions and inherent subjectivity in expres-
sion. For instance, the comparison of captions with dif-
ferent focal points lacks substantive meaning and ranking
subjective expressions is difficult. Although COMET [53]
introduces both ranking and regression models, the task of
evaluating machine translation with limited interpretation
differs significantly from our task. This distinction is a fac-
tor that prevents the straightforward adoption of a ranking
model. Given these considerations, in this study, we pro-
pose a metric based on regression.

3.2. Metric Design

Reference-free vs reference-with-image. In several
studies, researchers have introduced reference-free metrics
for image captioning [26, 35, 55]. However, these met-
rics have not achieved performance comparable with met-
rics that consider references. Additionally, the performance
of reference-free metrics heavily relies on the alignment ca-
pabilities between image and language features. This is ev-
ident from the fact that, on the FOIL dataset, CLIP-S under-
performs compared with traditional metrics such as CIDEr
[26]. Such results suggest potential limitations in handling
hallucinations, which poses a significant challenge in the
field of image captioning. Given these considerations, we
chose not to adopt the reference-free problem setting.

Limitations of CLIP text embeddings. As previously
highlighted, many data-driven metrics do not have adequate
generalization capabilities across diverse image and text
types. This inadequacy partly stems from the sole use of
text embeddings from the CLIP text encoder. CLIP pro-
vides versatile textual and visual features, as demonstrated
by their performance in various tasks. However, the CLIP
model, pretrained on web-collected image-caption pairs, is
likely to be suboptimal for evaluation metrics because these
annotations typically lack the richness and descriptiveness
necessary for evaluating generated long captions, as indi-
cated in [55]. Consequently, we posit that sentence embed-
dings pretrained with supervised SimCSE [22] may be a
more advantageous approach than CLIP. This is partially
supported by the observation that SimCSE outperformed
previous sentence embedding techniques in the semantic
text similarity task [2–6, 13, 47].

3.3. Proposed Method: Polos and M2LHF

We propose Polos, a supervised automatic evaluation met-
ric tailored for image captioning models. Fig.2 shows the
overview of the proposed Polos. To enhance robustness
and practicality, we also present Multimodal Metric Learn-
ing from Human Feedback (M2LHF), a novel framework

for developing metrics based on human feedback. Within
M2LHF, a metric computes the evaluation ŷ based on mul-
timodal input x and directly regresses the human evaluation
y. Our method is inspired by automatic evaluation met-
rics for machine translation, such as COMET and BLEURT
[56], which were explicitly designed to predict human judg-
ments. However, our framework differs from previous
works [53, 56, 59] in that it handles both images and text,
and learns directly from human judgments based on mul-
timodal inputs. We consider that our approach, which ap-
plies regression using both image and language features, is
considered to be broadly applicable to automatic evaluation
metrics that have learnable parameters.

We define the input x to the model as follows:

x =

{
xcand,

{
x
(i)
ref

}N

i=1
,ximg

}
, (1)

where xcand ∈ {1, 0}V×L represents the candidate,
{x(i)

ref} ∈ {1, 0}N×V×L represents the i-th reference out
of N , and ximg ∈ R3×H×W represents the image. Here,
V,L,N,H and W denote vocabulary size, maximum token
length, number of reference sentences in one sample, and
height and width of the image, respectively.

As previously emphasized, selecting an appropriate
method for sentence embedding necessitates careful con-
sideration. In this study, we use both the CLIP text encoder
and RoBERTa trained with supervised SimCSE to obtain
sentence embeddings. Initially, using RoBERTa pretrained
with supervised SimCSE, we extract sentence embedding
crb ∈ RL×dR and {r(i)rb }Ni=1 ∈ RN×L×dR from xcand and
{x(i)

ref}Ni=1, respectively. Note that dR represents the out-
put dimension of RoBERTa and the sentence embeddings
are derived from the [CLS] token of inputs into RoBERTa.
Following this, using the CLIP text encoder, we derive lan-
guage feature cclip ∈ RdCLIP and r

(i)
clip ∈ RdCLIP from

xcand and x
(i)
ref , respectively, where dCLIP denotes the out-

put dimension of the CLIP encoders. Additionally, utilizing
the pretrained CLIP image encoder (ViT-B/16), we obtain
image features v ∈ RdCLIP from ximg.

3.3.1 Parallel Feature Extraction Mechanism

In alignment with the principles of M2LHF, we also pro-
pose a parallel feature extraction mechanism. This mech-
anism serves as a multimodal extension of the RUSE
method[53, 59], employing both difference and Hadamard
products. It extracts effective features for caption evalua-
tion by utilizing the difference and Hadamard product of
features derived from both CLIP and RoBERTa. Given that
CLIP is designed to minimize the cosine similarity between
corresponding language and image features, the Hadamard
product applied to CLIP features is considered to be effec-
tive. Additionally, the difference and Hadamard product
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operations generate vectors that encapsulate similarity be-
cause each element of the vector can be amplified or atten-
uated in relation to the others.

Initially, given the following inputs:{
cclip, r

(i)
clip, crb, r

(i)
rb , v

}
, (2)

the proposed framework first computes h(i)
inter as:

h
(i)
inter = [F (cclip, r

(i)
clip); F (cclip,v); F (crb, r

(i)
rb )]. (3)

Here, F is the following function:

F (c, r) = [c; r; |c− r|; c⊙ r] , (4)

where ⊙ denotes the Hadamard product.
Subsequently, we apply the MLP to h

(i)
inter to compute

h(i), which effectively captures the similarity among the
multimodal features for the i-th reference. Note that we
chose MLP because pilot experiments demonstrated its su-
perior performance compared with Transformer [63].

Finally, we compute the evaluation score ŷ as:

ŷ = Aggregate
i

(σ(MLP(h(i)))), (5)

where σ denotes the sigmoid function, which scales the out-
put to the range [0, 1]. In this context, Aggregate denotes
an aggregation function. This function can encompass vari-
ous operations, such as calculating the maximum or average
value. Notably, in our experimental setup, we opted for the
max function.

For the loss function, we adopted the mean squared error,
which is a standard choice in regression problems because
of its effectiveness in quantifying the variance between pre-
dicted and human judgments. Our implementation details
can be found in Appendix E.

4. Experimental Evaluation
4.1. Setups

Polaris dataset. In this study, we introduce the Polaris
dataset, which consists of image-caption pairs and human
judgments on the appropriateness of the captions. Train-
ing supervised models to predict human judgments bene-
fits significantly from a large-scale corpus that contains di-
verse captions. However, to the best of our knowledge, there
are few open datasets with diverse captions. Therefore, we
constructed the Polaris dataset, which contains a total of
131,020 human judgments collected from 550 evaluators.

In comparison with existing datasets, which comprise
the inference results of image captioning models and are
suitable for metric training, Polaris is distinguished by its
exceptional diversity of captions and broader spectrum of

evaluations. Our dataset, which comprises over 131K hu-
man judgments, significantly surpasses the largest dataset
suitable for metric training, which contains only around
12K judgments [1]. Regarding the diversity of evaluations,
the Polaris dataset had an average of eight evaluators per
caption, which provides a more comprehensive judgment
than the Flickr8K dataset, which had an average of only
three evaluators per caption. Even the CapEval1K dataset,
one of the largest in terms of evaluator participation, only
involved five evaluators, which underscores the extensive
nature of Polaris with its inclusion of 550 evaluators. More-
over, Polaris differentiates itself from existing datasets such
as [1, 10, 27, 35] by being openly accessible, constructed
with modern models, and incorporating a wide range of di-
verse captions.

The Polaris dataset comprises captions generated by the
ten standard models: SAT [69], M2-Transformer [17],
VinVL [75], GRIT [62], BLIPbase, BLIPlarge [37], GIT
[66], OFA [67], BLIP-2flan, and BLIP-2opt [38]. Within
this set, BLIPbase and BLIPlarge refer to versions of BLIP
that employ ViT-B and ViT-L as their image encoders. Sim-
ilarly, BLIP-2flan and BLIP-2opt denote versions of BLIP-
2 that adopt Flan-T5 [15] and OPT [76] as their Large
Language Models (LLMs), respectively. We selected these
models because they are standard image captioning models.
Additionally, we also chose older models to ensure diver-
sity in the quality of their output sentences. We included
inference results for each model, as performed on the MS-
COCO [41] and nocaps [7] datasets in the Polaris dataset.
We selected MS-COCO because it is the standard dataset
for image captioning, whereas we chose nocaps because of
its greater diversity of classes compared with MS-COCO.

For a given image, human evaluators assessed the ap-
propriateness of its caption using a five-point scale, taking
into account factors such as fluency, relevance, and descrip-
tiveness. We used a crowdsourcing service to collect these
evaluations. In the Polaris dataset, we transformed the hu-
man judgments, which were rated on a five-point scale, to
values in the range [0, 1] using min-max normalization. To
eliminate unreliable data, we excluded data from evaluators
who exhibited suspicious behavior, such as extremely short
response times or consistently providing identical values.
The statistical information and details of the Polaris dataset
can be found in Appendix B.

Baseline metrics. We adopted BLEU [51], ROUGE [40],
METEOR [12], CIDEr [64] and SPICE [10] because they
are standard metrics for image captioning tasks. Addi-
tionally, we included MoverScore [78], BERTScore [77],
BARTScore [74], ViLBERTScore [34], TIGEr [29], LEIC
[18], CLIPScore [26], MID [31], UMIC [35] and PAC-
S [55] as baseline metrics because they are representative
metrics for image captioning.
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Composite
Flickr8K
(Expert)

Flickr8K
(CF)

Polaris

Classic metrics
BLEU [51] 30.6 30.8 16.4 46.3
ROUGE [40] 32.4 32.3 19.9 46.3
CIDEr [64] 37.7 43.9 24.6 52.1
METEOR [12] 38.9 41.8 22.2 51.2
SPICE [10] 40.3 44.9 24.4 51.0
SPARCS [20] 43.1 48.1 10.4 43.3
Similarity-based metrics
MoverScore [78] 30.1 46.7 22.8 46.4
BERTScore [77] 30.1 46.7 22.8 51.6
BARTScore [74] 43.5 37.8 24.3 47.3
LEIC [18] – – 29.5 –
TIGEr [29] 45.4 – – –
ViLBERTScore [34] 52.4 50.1 – –
CLIP-S [26] 53.8 51.2 34.4 52.3
RefCLIP-S [26] 55.4 53.0 36.4 52.3
MID [31] 55.7 54.9 37.3 51.3
Learning-based metrics
PAC-S [55] 55.7 54.3 36.0 52.5
UMIC [35] 56.1 46.8 30.1 49.8
RefPAC-S [55] 57.3 55.9 37.6 56.0

57.6 56.4 37.8 57.8Polos (Ours) (+0.3) (+0.5) (+0.2) (+1.8)

Table 1. Correlation coefficients between various metrics and hu-
man judgments. The symbol ‘–’ indicates non-executable code or
unavailable data. Bold font indicates the highest recorded value
and underlining indicates the second-highest value.

Benchmarks. To assess the practicality of a supervised
metric, it is essential to evaluate the metric using both in-
domain and out-of-domain datasets. Particularly in the
context of supervised automatic evaluation, cases exist in
which supervised metrics seemingly outperform unsuper-
vised metrics on test sets (in-domain). However, as we
demonstrate in the following section, this does not in-
herently imply better performance on out-of-domain data.
Given that supervised metrics are frequently applied to out-
of-domain data, those that lack robustness can be impracti-
cal. Therefore, evaluating zero-shot performance in super-
vised models is paramount. In this study, in addition to the
Polaris dataset, we used Composite, Flickr8K, PASCAL-
50S and FOIL to evaluate zero-shot performance.

4.2. Correlation with Human Judgments

4.2.1 Caption-level Likert judgments

We conducted comparative experiments with baselines
across Composite, Flickr8K-Expert, Flickr8K-CF, and the
Polaris dataset. The results are presented in Table 1,
which details the comparison of Kendall’s τ with the base-
lines across the aforementioned datasets. Following the
methodology of previous research [10, 26, 31], we used τb
(Kendall-B) for the Flickr8K-CF dataset and τc (Kendall-
C) for all other datasets. Notably, our proposed metric

achieved SOTA results with scores of 57.6, 56.4, 37.8, and
57.8 for Composite, Flickr8K-Expert, Flickr8K-CF and the
Polaris dataset, respectively. Specifically, our metric out-
performed RefPAC-S by margins of 0.3, 0.5, 0.2, and 1.8
points on Composite, Flickr8K-Expert, Flickr8K-CF, and
the Polaris dataset, respectively. This indicates that our su-
pervised metric is superior to other supervised metrics such
as RefPAC-S. Moreover, we achieved better performance
than reference-free metrics such as PAC-S and intermediary
metrics (metrics positioned between reference-with-image
and reference-free metrics) such as MID. This highlights
the critical role of incorporating references. See B.5 for a
comparison of Polos and other metrics trained on Polaris.

Fig.3 shows various examples of the proposed metric for
the Polaris dataset (further results are provided in Appendix
G). First, Fig.3 (a) shows the sample that human evalua-
tors deemed high quality. In this sample, xcand captured
the image content suitably, which resulted in a high human
judgment of 0.750. CLIP-S assessed it at 0.402, whereas
our proposed method aligned more closely with the human
evaluation with a score of 0.745. Fig.3 (b) illustrates sam-
ples rated as mediocre by human evaluators because of par-
tial accuracy. For instance, the veracity of the phrase “hang-
ing on a tree” could not be confirmed by the image content,
which led to a moderate human score of 0.450. RefPAC-
S and RefCLIP-S overestimated the caption with scores of
0.825 and 0.746, respectively, whereas our proposed metric
provided a more judicious score of 0.513, thereby reflecting
its effectiveness in recognizing “normal” quality captions.
Fig.3 (c) shows examples labeled as poor by human evalua-
tors. A discrepancy, such as misidentifying the animal in the
reference, resulted in a low human score of 0.071. Again,
RefPAC-S and PAC-S assessments overestimated the cap-
tion, with scores at 0.903 and 0.856, respectively, whereas
Polos assigned a more realistic score of 0.173, effectively
capturing the hallucination error. These results show that
our proposed metric appropriately handled multimodalities
and produced evaluation scores close to human judgments.

Fig.3 (d) illustrates a sample for which the proposed met-
ric did not perform as expected. In Fig.3 (d), x(1)

ref and x
(2)
ref

were described as “A cardboard box with a brown teddy
bear and items in it outside on a curb” and “a box full of
stuffed animals and other children’s items,” respectively.
Conversely, xcand was described as “a brown teddy bear
sitting in a cardboard box.” For this sample, the average of
human judgments was xcand as 0.50. We believe that this
was because the box contained various items in addition to
the teddy bear. By contrast, our proposed metric evaluated
this sample with a score of 0.790, which indicates a notable
disparity from human judgment. Similarly, RefPAC-S and
RefCLIP-S output scores of 0.847 and 0.751, respectively,
which also demonstrates a discrepancy between them and
human judgment. Given the failure of our metric and the
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(a)

Human
 0.750

PAC-S
 0.612

CLIP-S
 0.402

Polos (Ours)
 0.745

RefPAC-S
 0.670

RefCLIP-S
 0.703

White plate full of
fries next to a
sandwich.

a close-up of a
sandwich and
some fries.

A cute little dog
biting on something
a person is holding.

A black and
white cat
sleeping on a
blue blanket.

Polos (Ours)
 0.173

RefPAC-S
 0.903

RefCLIP-S
 0.343

Human
 0.071

PAC-S
 0.856

CLIP-S
 0.200

Polos (Ours)
 0.513

RefPAC-S
 0.825

RefCLIP-S
 0.746

Human
 0.450

PAC-S
 0.756

CLIP-S
 0.562

(c)

(b)

(d)

Human
 0.500

PAC-S
 0.812

CLIP-S
 0.429

Polos (Ours)
 0.790

RefPAC-S
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A cardboard box
with a brown teddy
bear and items in it
outside on a curb
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bananas.

a bunch of
bananas are
hanging on a
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Figure 3. Examples of successful and failed cases from the Polaris dataset. Values in blue indicate critical errors, and values in red
represent those closest to the human judgments. Underlined words indicate significant inaccuracies in the candidate captions. These results
demonstrate that our proposed metric effectively handled multimodal inputs and yielded evaluation scores that aligned closely with human
judgment. Note that x(1)

ref and xcand denote one of the reference captions and the candidate caption, respectively.

HC HI HM MM Mean
Classic metrics
BLEU [51] 60.4 90.6 84.9 54.7 72.7
METEOR [12] 63.8 97.7 93.7 65.4 80.2
ROUGE [40] 63.7 95.3 92.3 61.2 78.1
SPICE [10] 63.6 96.3 86.7 68.3 78.7
CIDEr [64] 65.1 98.1 90.5 64.8 79.6
Similarity-based metrics
ViLBERTScore [34] 49.9 99.6 93.1 75.8 79.6
BERTScore [77] 65.4 98.1 96.4 60.3 80.1
MoverScore [78] 65.1 97.1 93.2 65.6 80.3
TIGEr [29] 56.0 99.8 92.8 74.2 80.7
CLIP-S [26] 56.5 99.3 96.4 70.4 80.7
RefCLIP-S [26] 64.5 99.6 95.4 72.8 83.1
MID [31] 67.0 99.7 97.4 76.8 85.2
Learning-based metrics
PAC-S [55] 60.6 99.3 96.9 72.9 82.4
RefPAC-S [55] 67.7 99.6 96.0 75.6 84.7
UMIC [35] 66.1 99.8 98.1 76.2 85.1

70.0 99.6 97.4 79.0 86.5Polos (Ours) (+3.0) (+1.2) (+1.3)

Table 2. Pascal50-S accuracy results (five references).

CLIPScore family, the primary cause of these failures is
likely to be an overemphasis on objects that are prominently
visible, which results in overlooking the broader context of
the image. This is likely to be caused by CLIP’s shortcom-
ings in capturing the fine-grained alignment between spe-
cific image regions and text, as indicated in [23, 79].

4.2.2 Pairwise ranking on Pascal-50S

Pascal-50S [64] introduced an alternative evaluation frame-
work for accuracy, which comprised 4K pairwise prefer-
ence judgments between two captions. These judgments
encompass four distinct scenarios: pairs of HC (human cor-
rect) captions, HI pairs (both human-written, with one in-

correct), HM pairs (one from a human and the other gener-
ated by a machine), and MM pairs (both generated by ma-
chines). The caption that received the majority vote was
deemed the preferred choice, with ties resolved randomly.
In our study, following the procedure in [26], we calcu-
lated the average over five evaluations randomly selected
from 48 candidates. Table 2 shows the accuracy results for
PASCAL-50S. In our experiments, we achieved SOTA re-
sults with accuracies of 70.0%, 79.0%, and 86.5% for HC,
MM, and Mean, respectively. The results in Tables 1 and
2 demonstrate that our proposed metric outperformed the
baselines in terms of zero-shot performance. These results
provide strong evidence that our metric is both robust and
practical, thereby serving as a potent automatic evaluation
metric for image captioning.

4.2.3 Sensitivity to hallucination

1-ref 4-ref
BLEU [51] 66.5 82.6
ROUGE [40] 71.7 79.3
METEOR [12] 78.8 82.6
CIDEr [64] 82.5 90.6
SPICE [10] 75.5 86.1
BARTScore [74] 85.3 91.1
MoverScore [78] 88.4 88.4
BERTScore [77] 88.6 92.1
CLIP-S [26] 87.2 87.2
MID [31] 90.5 90.5
PAC-S [55] 89.9 89.9
RefCLIP-S [26] 91.0 92.6
RefPAC-S [55] 93.7 94.9
Polos (Ours) 93.3 95.4

Table 3. FOIL hallucination pair-
wise detection accuracy results.

Previous studies [26, 31]
measured how evaluation
metrics handle hallucina-
tions in captions using
the FOIL (Find One mis-
match between Image and
Language caption) dataset
[58]. Following the pro-
cedure used in [26], we
evaluated 32K test im-
ages with either one or
four references. Subse-
quently, we computed the
accuracy of various met-
rics to evaluate their ef-
fectiveness in consistently
awarding higher scores to
the true candidate compared with the FOIL dataset.
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Table 3 presents the accuracy results for the FOIL
dataset. Our proposed method outperformed previous met-
rics, achieving SOTA results in the 4-ref setting. Specifi-
cally, it achieved an accuracy of 93.3% in the 1-ref setting
and 95.4% in the 4-ref setting. As previously mentioned,
CLIP-S lags behind the traditional metric CIDEr, whereas
our method outperformed it in both the 1-ref and 4-ref set-
tings. Moreover, compared with reference-with-image met-
ric RefPAC-S as well as the intermediary metric MID, our
approach led by 0.6 and 4.9 points in the 4-ref setting.

4.3. Ablation Study
We conducted three ablation studies to demonstrate the ef-
fectiveness of our proposed method. Table 4 presents the
results of the ablation studies.

Parallel feature extraction ablation. We investigated the
performance of our parallel feature extraction mechanism
by excluding the Hadamard product and difference, specifi-
cally by modifying F (c, r) (eq.4) to the function F ′(c, r) =
[c; r]. The correlation coefficients between Metric (i) and
human judgments were lower by 18.3, 15.4, and 6.4 points
compared to Metric (vi) for the Composite, Flickr8K, and
Polaris, respectively. These indicate that our parallel fea-
ture extraction mechanism provided superior performance.

M2LHF ablation. We investigated the performance of
M2LHF by modifying our model to make predictions based
solely on text, excluding any of the following: ximg,
(cclip, {r(i)clip}Ni=1), or (crb, {r(i)rb }Ni=1). Initially, by omit-
ting ximg, we assessed the significance of the image fea-
ture. Compared to Metric (vi), the correlation coefficients
between Metric (ii) and human judgments were lower by
0.4, 1.4, and 0.7 points on Composite, Flickr8K, and Polaris
respectively. These results suggest that the image feature
played a pivotal role in enhancing the performance of our
proposed metric. Subsequently, we evaluated the contribu-
tion of each module by excluding either CLIP or RoBERTa.
Relative to Metric (vi), the correlation coefficients between
Metric (iii) and human judgments decreased by 2.6, 3.2,
and 2.4 points. Similarly, the exclusion of RoBERTa led
to a decrease in performance. Although we observed that
RoBERTa pretrained by SimCSE was found to enhance per-
formance, these results highlighted CLIP as the most influ-
ential feature extractor. Overall, these results validated the
efficacy of the image feature and each module, underscoring
that the introduction of M2LHF contributed to the perfor-
mance improvement of the proposed metric.

Aggregation mechanism ablation. We investigated the
impact on performance by setting the Aggregate function
to either Max or Mean. The correlation coefficients be-
tween Metric (v) and human judgments were lower by
2.5, 1.0, and 5.7 points compared with Metric (vi) for the
Composite, Flickr8K, and the Polaris dataset, respectively.

Metric P ximg CLIP RoBERTa Aggregate Composite Flickr8K Polaris
(i) ✓ ✓ ✓ Max 39.3 41.0 51.4
(ii) ✓ ✓ ✓ Max 56.8 55.5 57.1
(iii) ✓ ✓ Max 55.0 53.2 55.4
(iv) ✓ ✓ ✓ Max 56.0 55.0 57.4
(v) ✓ ✓ ✓ ✓ Mean 55.1 55.4 52.1
(vi) ✓ ✓ ✓ ✓ Max 57.6 56.4 57.8

Table 4. Ablation study results: performance of M2LHF and the
parallel feature extraction and comparison of the effects of using
either the Max or Mean within the Aggregate function. ‘P’ indi-
cates the use of the parallel feature extraction mechanism

These results indicate that using the Max function as the
Aggregate function provided superior performance.
4.4. Discussion and Limitations

Although our metric generated compelling results, our ap-
proach has some limitations. As shown in Fig.3, our met-
ric demonstrated a tendency to overestimate captions that
lacked intricate details. This phenomenon is likely to be
attributed to its excessive focus on prominently visible ob-
jects; hence it consequently overlooked the broader context
within the image. As discussed in Section 4.2.1, this lim-
itation may be attributed to CLIP’s inherent limitations in
capturing the fine-grained alignment between specific im-
age regions and their corresponding textual descriptions.
Despite this, we firmly believe that this study represents a
significant stride toward the development of a more prac-
tical metric for image captioning models. In future work,
we plan to extend our metric by enhancing the fine-grained
alignment, drawing inspiration from methods such as Re-
gionCLIP [79].

5. Conclusion
In this paper, we introduced Polos, an automatic evalua-
tion metric for image captioning. The contribution of this
paper is fourfold: i) the introduction of M2LHF, a novel
framework used to develop a practical metric for image cap-
tioning; ii) the introduction of a parallel feature extrac-
tion mechanism that leverages CLIP and RoBERTa pre-
trained with SimCSE; iii) the construction of the Polaris
dataset, containing a total of 131,020 human judgments col-
lected from 550 evaluators; and iv) achieving SOTA per-
formance on image captioning benchmarks including Com-
posite, Flickr8K-Expert, and Flickr8K-CF, PASCAL-50S,
FOIL, and the Polaris dataset.

Acknowledgments
This work was supported by a grant from Apple, Inc. Any
views, opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors
and should not be interpreted as reflecting the views, poli-
cies or position, either expressed or implied, of Apple, Inc.
This work was also partially supported by JSPS KAKENHI
Grant Number 23H03478, JST CREST, and NEDO.

13566



References
[1] Somak Aditya, Yezhou Yang, Chitta Baral, Cornelia Fer-

muller, et al. From Images to Sentences through Scene
Description Graphs using Commonsense Reasoning and
Knowledge. arXiv preprint arXiv:1511.03292, 2015. 2, 3, 5

[2] Eneko Agirre, Carmen Banea, Claire Cardie, Daniel Cer, and
Mona Diab. SemEval-2014 Task 10: Multilingual Semantic
Textual Similarity. In SemEval, pages 81–91, 2014. 4

[3] Eneko Agirre, Carmen Banea, et al. SemEval-2015 Task 2:
Semantic Textual Similarity, English, Spanish and Pilot on
Interpretability. In SemEval, pages 252–263, 2015.

[4] Eneko Agirre, Carmen Banea, et al. SemEval-2016 Task
1: Semantic Textual Similarity, Monolingual and Cross-
Lingual Evaluation. In SemEval, pages 497–511, 2016.

[5] Eneko Agirre, Daniel Cer, Mona Diab, and Aitor Agirre.
SemEval-2012 Task 6: A Pilot on Semantic Textual Simi-
larity. In SemEval, pages 385–393, 2012.

[6] Eneko Agirre, Daniel Cer, Mona Diab, Aitor Agirre, and
Weiwei Guo. SEM 2013 Shared Task: Semantic Textual
Similarity. In SEM, pages 32–43, 2013. 4

[7] Harsh Agrawal, Karan Desai, et al. nocaps: Novel Object
Captioning at Scale. In ICCV, pages 8948–8957, 2019. 3, 5

[8] Hiba Ahsan, Daivat Bhatt, Kaivan Shah, and Nikita Bhalla.
Multi-Modal Image Captioning for the Visually Impaired. In
NAACL-HLT, pages 53–60, 2021. 1

[9] Jean Alayrac, Jeff Donahue, Pauline Luc, et al. Flamingo: A
Visual Language Model for Few-shot Learning. In NeurIPS,
volume 35, pages 23716–23736, 2022. 1

[10] Peter Anderson, Basura Fernando, Mark Johnson, et al.
SPICE: Semantic Propositional Image Caption Evaluation.
In ECCV, pages 382–398, 2016. 1, 2, 5, 6, 7, 3

[11] Peter Anderson, Xiaodong He, et al. Bottom-Up and Top-
Down Attention for Image Captioning and Visual Question
Answering. In CVPR, pages 6077–6086, 2018. 3

[12] Satanjeev Banerjee et al. METEOR: An Automatic Metric
for MT Evaluation with Improved Correlation with Human
Judgments. In ACL, pages 65–72, 2005. 1, 2, 5, 6, 7

[13] Daniel Cer, Mona Diab, et al. SemEval-2017 Task 1: Seman-
tic Textual Similarity Multilingual and Crosslingual Focused
Evaluation. In SemEval, pages 1–14, 2017. 4

[14] Yen Chen, Linjie Li, Licheng Yu, Ahmed Kholy, Faisal, Zhe
Gan, Yu Cheng, et al. UNITER: Universal Image-text Rep-
resentation Learning. In ECCV, pages 104–120, 2020. 3

[15] Hyung Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi
Tay, et al. Scaling Instruction-finetuned Language Models.
arXiv preprint arXiv:2210.11416, 2022. 5

[16] Alexis Conneau, Kartikay Khandelwal, et al. Unsupervised
Cross-lingual Representation Learning at Scale. In ACL,
pages 8440–8451, 2020. 1

[17] Marcella Cornia, Matteo Stefanini, Lorenzo Baraldi, et al.
Meshed-Memory Transformer for Image Captioning. In
CVPR, pages 10578–10587, 2020. 3, 5, 1, 2

[18] Yin Cui, Guandao Yang, Andreas Veit, Xun Huang, and
Serge Belongie. Learning to Evaluate Image Captioning. In
CVPR, pages 5804–5812, 2018. 5, 6

[19] Jacob Devlin, Ming-Wei Chang, et al. BERT: Pre-training of
Deep Bidirectional Transformers for Language Understand-
ing. In NAACL-HLT, pages 4171–4186, 2019. 1

[20] Joshua Feinglass and Yezhou Yang. SMURF: SeMantic and

linguistic UndeRstanding Fusion for Caption Evaluation via
Typicality Analysis. In IJCNLP, pages 2250–2260, 2021. 6

[21] Adam Fisch, Kenton Lee, Ming Chang, Jonathan Clark, and
Regina Barzilay. CapWAP: Image Captioning with a Pur-
pose. In EMNLP, pages 8755–8768, 2020. 1

[22] Tianyu Gao, Xingcheng Yao, and Danqi Chen. SimCSE:
Simple Contrastive Learning of Sentence Embeddings. In
EMNLP, pages 6894–6910, 2021. 2, 4

[23] Xiuye Gu, Tsung Lin, Weicheng Kuo, and Yin Cui.
Open-vocabulary Object Detection via Vision and Language
Knowledge Distillation. In ICLR, 2022. 3, 7

[24] Danna Gurari, Yinan Zhao, Meng Zhang, and Nilavra Bhat-
tacharya. Captioning Images Taken by People Who Are
Blind. In ECCV, pages 417–434, 2020. 1

[25] Simao Herdade, Armin Kappeler, Kofi Boakye, et al. Image
Captioning: Transforming Objects into Words. In NeurIPS,
volume 32, pages 11137–11147, 2019. 1

[26] Jack Hessel, Ari Holtzman, et al. CLIPScore: A Reference-
free Evaluation Metric for Image Captioning. In EMNLP,
pages 7514–7528, 2021. 1, 2, 3, 4, 5, 6, 7

[27] Micah Hodosh, Peter Young, and Julia Hockenmaier. Fram-
ing Image Description as a Ranking Task: Data, Models and
Evaluation Metrics. JAIR, 47:853–899, 2013. 1, 2, 3, 5

[28] Lun Huang, Wenmin Wang, Jie Chen, and Xiao Wei. At-
tention on Attention for Image Captioning. In ICCV, pages
4634–4643, 2019. 3

[29] Ming Jiang, Qiuyuan Huang, Lei Zhang, Xin Wang, et al.
TIGEr: Text-to-image Grounding For Image Caption Evalu-
ation. In EMNLP, 2019. 2, 5, 6, 7

[30] Motonari Kambara et al. Case Relation Transformer: A
Crossmodal Language Generation Model for Fetching In-
structions. IEEE RAL, 6:8371–8378, 2021. 1

[31] Jin Kim et al. Mutual Information Divergence: A Unified
Metric for Multimodal Generative Models. In NeurIPS, vol-
ume 35, pages 35072–35086, 2022. 1, 2, 5, 6, 7

[32] Yongil Kim, Yerin Hwang, Hyeongu Yun, Seunghyun Yoon,
et al. PR-MCS: Perturbation Robust Metric for MultiLingual
Image Captioning. In EMNLP, pages 12237–12258, 2023. 3

[33] Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Wein-
berger. From Word Embeddings To Document Distances.
PMLR, 37:957–966, 2015. 1

[34] Hwanhee Lee, Seunghyun Yoon, et al. ViLBERTScore:
Evaluating Image Caption Using Vision-and-Language
BERT. In Eval4NLP, pages 34–39. 1, 2, 5, 6, 7

[35] Hwanhee Lee, Seunghyun Yoon, et al. UMIC: An Unrefer-
enced Metric for Image Captioning via Contrastive Learning.
In ACL, pages 220–226, 2021. 1, 2, 3, 4, 5, 6, 7

[36] Tomer Levinboim, Ashish V. Thapliyal, Piyush Sharma, and
Radu Soricut. Quality Estimation for Image Captions Based
on Large-scale Human Evaluations. In NAACL, pages 3157–
3166, 2021. 3

[37] Junnan Li et al. BLIP: Bootstrapping Language-image
Pre-training for Unified Vision-language Understanding and
Generation. In ICML, pages 12888–12900, 2022. 3, 5, 2

[38] Junnan Li, Dongxu Li, et al. BLIP-2: Bootstrapping
Language-Image Pre-training with Frozen Image Encoders
and Large Language Models. In ICML, 2023. 3, 5, 1, 2

[39] Jingyu Li, Zhendong Mao, Shancheng Fang, et al. ER-SAN:
Enhanced-Adaptive Relation Self-Attention Network for Im-
age Captioning. In IJCAI, pages 1081–1087, 2022. 1

13567



[40] Chin Lin. ROUGE: A Package For Automatic Evaluation Of
Summaries. In ACL, pages 74–81, 2004. 1, 2, 5, 6, 7

[41] Tsung Lin, Michael Maire, Serge Belongie, Lubomir Bour-
dev, Ross Girshick, et al. Microsoft COCO: Common Ob-
jects in Context. In ECCV, pages 740–755, 2014. 3, 5

[42] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee.
Visual Instruction Tuning. In NeurIPS, 2023. 3

[43] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, et al.
RoBERTa: A Robustly Optimized BERT Pretraining Ap-
proach. arXiv preprint arXiv:1907.11692, 2019. 2

[44] Yunpeng Luo, Jiayi Ji, Xiaoshuai Sun, Liujuan Cao, et al.
Dual-Level Collaborative Transformer for Image Caption-
ing. In AAAI, volume 35, pages 2286–2293, 2021. 1

[45] Mounica Maddela, Yao Dou, David Heineman, and Wei Xu.
LENS: A learnable evaluation metric for text simplification.
In ACL, pages 16383–16408, July 2023. 2

[46] Aly Magassouba, Komei Sugiura, and Hisashi Kawai. Mul-
timodal Attention Branch Network for Perspective-Free Sen-
tence Generation. In CoRL, pages 76–85, 2019. 1

[47] Marco Marelli, Stefano Menini, Marco Baroni, et al. A SICK
Cure for the Evaluation of Compositional Distributional Se-
mantic Models. In LREC, pages 216–223, 2014. 4

[48] Yue Ming, Nannan Hu, Chunxiao Fan, Jiangwan Zhou, and
Hui Yu. Visuals to Text: A Comprehensive Review on Au-
tomatic Image Captioning. JAS, 9(8):1339–1365, 2022. 1

[49] Gabriel Oliveira, Esther Colombini, and Sandra Avila.
CIDEr-R: Robust Consensus-based Image Description Eval-
uation. In W-NUT, pages 351–360, 2021. 2

[50] OpenAI. GPT-4V (ision) System Card. 2023. 3
[51] Kishore Papineni, Salim Roukos, Todd Ward, and Wei Zhu.

BLEU: a Method for Automatic Evaluation of Machine
Translation. In ACL, pages 311–318, 2002. 1, 2, 5, 6, 7

[52] Alec Radford, Jong Wook Kim, Chris Hallacy, et al. Learn-
ing Transferable Visual Models from Natural Language Su-
pervision. In ICML, pages 8748–8763, 2021. 1, 2

[53] Ricardo Rei, Craig Stewart, Ana Farinha, and Alon Lavie.
COMET: A Neural Framework for MT Evaluation. In
EMNLP, pages 2685–2702, 2020. 2, 4

[54] Steven Rennie, Etienne Marcheret, Youssef Mroueh, Jerret
Ross, and Vaibhava Goel. Self-critical Sequence Training
for Image Captioning. In CVPR, pages 7008–7024, 2017. 3

[55] Sara Sarto et al. Positive-Augmented Contrastive Learning
for Image and Video Captioning Evaluation. In CVPR, pages
6914–6924, 2023. 1, 2, 4, 5, 6, 7, 3

[56] Thibault Sellam, Dipanjan Das, and Ankur Parikh.
BLEURT: Learning Robust Metrics for Text Generation. In
ACL, pages 7881–7892, 2020. 2, 4

[57] Piyush Sharma et al. Conceptual Captions: A Cleaned, Hy-
pernymed, Image Alt-text Dataset for Automatic Image Cap-
tioning. In ACL, pages 2556–2565, 2018. 3

[58] Ravi Shekhar, Sandro Pezzelle, Yauhen Klimovich, et al.
FOIL it! Find One Mismatch Between Image and Language
caption. In ACL, pages 255–265, 2017. 7

[59] Hiroki Shimanaka et al. RUSE: Regressor Using Sentence
Embeddings for Automatic Machine Translation Evaluation.
In WMT18, pages 751–758, 2018. 2, 4

[60] Oleksii Sidorov, Ronghang Hu, Marcus Rohrbach, et al.
TextCaps: A Dataset for Image Captioning with Reading
Comprehension. In ECCV, pages 742–758, 2020. 1

[61] Matteo Stefanini, Marcella Cornia, Lorenzo Baraldi, et al.

From Show to Tell: A Survey on Deep Learning-based Im-
age Captioning. PAMI, 45(1):539–559, 2022. 1

[62] Masanori Suganuma, Takayuki Okatani, et al. GRIT: Faster
and Better Image Captioning Transformer Using Dual Visual
Features. In ECCV, pages 167–184, 2022. 3, 5, 1, 2

[63] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, et al. Attention Is All You Need. In NIPS,
volume 30, pages 5998–6008, 2017. 5

[64] Ramakrishna Vedantam, Lawrence Zitnick, and Devi Parikh.
CIDEr: Consensus-based Image Description Evaluation. In
CVPR, pages 4566–4575, 2015. 1, 2, 3, 5, 6, 7

[65] Yuiga Wada, Kanta Kaneda, et al. JaSPICE: Automatic Eval-
uation Metric Using Predicate-Argument Structures for Im-
age Captioning Models. In CoNLL, 2023. 2

[66] Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li,
Kevin Lin, et al. GIT: A Generative Image-to-text Trans-
former for Vision and Language. TMLR, 2022. 3, 5, 2

[67] Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai Bai,
et al. OFA: Unifying Architectures, Tasks, and Modalities
Through a Simple Sequence-to-sequence Learning Frame-
work. In ICML, pages 23318–23340, 2022. 3, 5, 2

[68] Julia White, Gabriel Poesia, Robert Hawkins, et al. Open-
domain Clarification Question Generation Without Question
Examples. In EMNLP, pages 563–570, 2021. 1

[69] Kelvin Xu, Jimmy Ba, Ryan Kiros, et al. Show, Attend and
Tell: Neural Image Caption Generation with Visual Atten-
tion. In ICML, pages 2048–2057, 2015. 3, 5, 1, 2

[70] Wenda Xu, Xian Qian, Mingxuan Wang, et al. SESCORE2:
Learning Text Generation Evaluation via Synthesizing Real-
istic Mistakes. In ACL, pages 5166–5183, 2023. 2

[71] Wenda Xu, Yi-Lin Tuan, Yujie Lu, et al. Not All Errors
are Equal: Learning Text Generation Metrics using Stratified
Error Synthesis. In EMNLP, pages 6559–6574, 2022.

[72] Wenda Xu, Danqing Wang, et al. INSTRUCTSCORE: To-
wards Explainable Text Generation Evaluation with Auto-
matic Feedback. In EMNLP, pages 5967–5994, 2023. 2

[73] Peter Young et al. From Image Descriptions to Visual Deno-
tations: New Similarity Metrics for Semantic Inference over
Event Descriptions. TACL, 2:67–78, 2014. 3

[74] Weizhe Yuan, Graham Neubig, et al. BARTScore: Evalu-
ating Generated Text as Text Generation. In NeurIPS, vol-
ume 34, pages 27263–27277, 2021. 3, 5, 6, 7

[75] Pengchuan Zhang, Xiujun Li, Xiaowei Hu, et al. VinVL: Re-
visiting Visual Representations in Vision-language Models.
In CVPR, pages 5579–5588, 2021. 3, 5, 2

[76] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe,
et al. OPT: Open Pre-trained Transformer Language Models.
arXiv preprint arXiv:2205.01068, 2022. 5

[77] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Weinberger,
and Yoav Artzi. BERTScore: Evaluating Text Generation
with BERT. In ICLR, 2020. 1, 2, 3, 5, 6, 7

[78] Wei Zhao et al. MoverScore: Text Generation Evaluating
with Contextualized Embeddings and Earth Mover Distance.
In EMNLP-IJCNLP, pages 563–578, 2019. 1, 2, 5, 6, 7

[79] Yiwu Zhong, Jianwei Yang, Pengchuan Zhang, Chunyuan
Li, et al. RegionCLIP: Region-based Language-image Pre-
training. In CVPR, pages 16793–16803, 2022. 3, 7, 8, 2

13568


	. Introduction
	. Related Work
	. Methodology
	. Meta-Analysis
	. Metric Design
	. Proposed Method: Polos and M2LHF
	Parallel Feature Extraction Mechanism


	. Experimental Evaluation
	. Setups
	. Correlation with Human Judgments
	Caption-level Likert judgments
	Pairwise ranking on Pascal-50S
	Sensitivity to hallucination

	. Ablation Study
	. Discussion and Limitations

	. Conclusion
	. Additional Related Work
	. Polaris Dataset
	. Meta-Analysis
	. Statistics and Details
	. Image Captioning Models
	. Annotation Process
	. Training on Polaris

	. Gameability in Image Captioning
	. Error Analysis
	. Implementation Details
	. Evalatuation of LLMs
	. Additional Qualitative Results



