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Abstract

Open-Set Source-Free Domain Adaptation aims to trans-
fer knowledge in realistic scenarios where the target do-
main has additional unknown classes compared to the
limited-access source domain. Due to the absence of infor-
mation on unknown classes, existing methods mainly trans-
fer knowledge of known classes while roughly grouping
unknown classes as one, attenuating the knowledge trans-
fer and generalization. In contrast, this paper advocates
that exploring unknown classes can better identify known
ones, and proposes a domain adaptation model to transfer
knowledge on known and unknown classes jointly. Specif-
ically, given a source pre-trained model, we first introduce
an unknown diffuser that can determine whether classes in
space need to be split and merged through similarity mea-
sures, to estimate and generate a wider class space distri-
bution, including known and unknown classes. Based on
such a wider space distribution, we enhance the reliability
of known class knowledge in the source pre-trained model
through contrastive constraint. Finally, various supervision
information, including reliable known class knowledge and
clustered pseudo-labels, optimize the model for impressive
knowledge transfer and generalization. Extensive experi-
ments show that our network can achieve superior explo-
ration and knowledge generalization on unknown classes,
while with excellent known class transfer. The code is avail-
able at https://github.com/xdwfl/UPUK.

1. Introduction

By transferring knowledge from label-rich source domains
to unlabeled target domains, unsupervised domain adapta-
tion (UDA) has exhibited huge potential to address the chal-
lenges of costly data labeling and domain distribution shifts
in real-world scenarios. Existing methods mainly learn the
domain invariant representation by distribution matching

*Equal contribution.
"The corresponding authors.

xuyang.xd,

chdeng.xd}@gmail.com

T

Source Domain

Transfer

Target Domain

Existing

unknovm c]ass

[ known class ]

Figure 1. Comparison of existing OS-SFDA methods and our pro-
posed method. Existing methods ignore the unknown classes by
grouping unknown classes as one, while our method can further
explore the unknown class information.

[19, 20, 34, 40, 46] and adversarial optimization [7, 21, 35],
to mitigate domain distribution shift. They can achieve im-
pressive transfer effects by following the close-set and real-
time data-accessible assumption, which shares the same
class space in source and target domains, and accesses the
source data at any time. However, in the real world, the
open-set phenomenon, where the target domain has addi-
tional unknown class space to the source domain, always
appears along with limited access to source data [5, 16]. In
such most realistic scenarios, these methods fail to transfer
knowledge without accessing source data and shared class
distribution, making the knowledge transfer in such scenar-
ios challenging.

Recently, to tackle such a challenging and realistic task,
the open-set source-free domain adaptation (OS-SFDA) has
emerged to perform knowledge transfer in the open-set sce-
nario by accessing only the source pre-trained model, not
the source data. Considering the lack of information on tar-
get unknown classes, existing approaches [0, 22, 31, 37]
focus on transferring knowledge of known classes through
pseudo-supervision, while grouping unknown classes as
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one, as seen Fig. 1. However, such a grouping way re-
stricts the thorough exploration of target class informa-
tion, thereby diminishing models’ transfer and generaliza-
tion abilities on known and unknown classes, respectively.

To this end, we present a domain adaptation network
for OS-SFDA, to explore target class space and transfer
knowledge on known and unknown classes jointly. Specif-
ically, given the source pre-trained model, an unknown dif-
fuser is introduced to determine to-be-split/merged classes
through similarity measures, generating a wider class space
distribution, including known and unknown classes. Based
on a wider distribution in the feature space, the reliability
of the known class knowledge from the source pre-trained
model is enhanced through contrastive constraint. Finally,
the reliable known class knowledge, along with the clus-
tered pseudo-labels spanning the extensive class space, can
collaboratively serve as supervision during model optimiza-
tion. This collaborative approach results in notable knowl-
edge transfer and enhanced generalization capabilities. Our
contributions are summarized as follows:

* We propose a domain adaptation network that is the first
to excavate the unknown class space for boosting knowl-
edge transfer and generalization to the target domain in
OS-SFDA.

* We design an unknown diffuser to explore wider and
more precise target class space in the target domain, fur-
ther benefiting known knowledge transfer and unknown
generalization.

* To realize effective known knowledge transfer and un-
known generalization, we utilize the reliable known
knowledge and clustered pseudo-labels in the broader
class space, to serve as supervision during optimization.

* Experiments can demonstrate that our method can ex-
plore target class space precisely, and yield state-of-the-
art results among multiple OS-SFDA benchmarks.

2. Related Work
2.1. Source-Free Domain Adaptation

In recent years, with accessing only the source pre-trained
model for transferring knowledge to the target domain,
source-free domain adaptation (SFDA) methods [4, 16,
27, 41, 43-45, 47]have been widely used for overcom-
ing source data privacy to achieve knowledge transfer in
real-world scenarios. The existing methods are mainly
divided into two categories, including methods based on
pseudo-labeling [14, 16] and based on neighborhood clus-
tering [43, 44]. For the former approaches, the classical
method — SHOT [16] freezes the source classifier and op-
timizes the feature extractor, through mutual information
maximization and source-target feature alignment based on
self-supervised pseudo-labeling. To fully utilize the source
and target domain knowledge, CoWA-JWDS [14] intro-

duces a new sample confidence score — JMDS better to exert
the importance of pseudo-label confidence in distinguishing
samples. For the latter approaches, G-SFDA [43] proposes
a method of clustering target features and semantically sim-
ilar neighborhoods to make the model better adapt to the
target domain. AaD [44] has introduced prediction con-
sistency of local neighborhood features and discrete pre-
diction of different potential features, which achieve effi-
cient feature clustering and distribution to better transfer
knowledge. In addition, there are also some approaches
to tackling SFDA from other aspects. U-SFAN [27] uses
predicted quantified uncertainty to guide target adaptation.
CRS [47] embeds class relationship similarity to transfer
domain-invariant class relationships.

2.2. Open-Set Domain Adaptation

Recently, open-set domain adaptation (OSDA) tackles the
realistic open-set challenge, where the target domain has
additional unknown class space to the source domain. Cur-
rently, existing methods [2, 10, 15, 18, 29, 30, 33, 38]
transfer known class knowledge while grouping unknown
classes as one. For example, OSBP [30] uses pseudo la-
bels to guide classifier learning and to construct constraints
for the optimization of the model. Later, to better utilize
pseudo-labels, STA [18] proposes an end-to-end method
to gradually separate known and unknown classes while
aligning feature distributions. OVANET [29] introduces the
one-vs-all classifier to learn the inter- and intra-class dis-
tance, and minimizes class entropy to distinguish known
and unknown classes. OSLPP [38] learns a common sub-
space from the source and target domains while gradually
selecting and rejecting pseudo-labeled target data to pro-
mote the model’s transfer on known classes. By introducing
adversarial learning, UADAL [10] aligns the source- and
the target-known distribution while segregating the target-
unknown distribution, achieving better knowledge transfer.

2.3. Open-Set Source-Free Domain Adaptation

When the open-set phenomenon appears, along with lim-
ited access to source data, the methods without accessing
source data and shared class distribution cannot transfer fa-
vorable knowledge, causing them to fail in real-world sce-
narios. OS-SFDA [6, 11, 13, 17,22, 26, 37, 42] has emerged
to perform knowledge transfer in the open-set scenario with
accessing only the source pre-trained model, not the source
data. Specifically, the existing methods generally trans-
fer known knowledge and group unknown classes as one.
Among these methods, without source data, FS [13] de-
signs the self-adaptive model to transfer the source task-
specific knowledge to the target domain effectively, and the
target unknown classes are grouped into one class under
the open-set setting due to the lack of unknown class in-
formation. To tackle OS-SFDA, OSHT [6] adopts pseudo-
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labeling for adaptation and the entropy-based metric to re-
ject unknown classes. Distill-SODA [37] introduces novel
style-based adversarial data augmentation and the closed-
set affinity score for better knowledge distillation from a
self-supervised ViT during adaptation. SF-PGL [22] in-
troduces a balanced pseudo-labeling strategy to progres-
sive graph learning for adaptation and distinguishes known
and unknown classes by applying the confidence threshold.
In addition, the SFDA methods [14, 16, 44, 47] separate
known and unknown classes and apply their strategies men-
tioned in Sec. 2.1 for known knowledge transfer under the
open-set setting to tackle the OS-SFDA.

However, under the OS-SFDA setting, where the target
domain has a additional abundant class distribution than
the source domain, mentioned OS-SFDA methods group
unknown classes as one, which restricts the thorough ex-
ploration of target class information, hampering knowledge
transfer and generalization. Our work advocates exploring
unknown classes can better identify known ones. It should
be noted that recently some methods have attempted to ex-
plore unknown classes in OSDA [11, 23, 49], which re-
quires source data access to realize domain adaptation. On
the contrary, our focused OS-SFDA needs no source data
for exploring unknown class space that is more realistic and
challenging, essentially differing from them. Concretely,
their source data access results in the failure to deal with
the most realistic OS-SFDA. Moreover, they utilize ’un-
known class number prior’ to predefine [11, 23] or enumer-
ate [49] unknown class numbers to explore the unknown
class space, whose reliance on unknown prior further lim-
its their scalability in real world. Instead, during unknown
class exploration, our method requires no source data and
unknown class number prior, truly achieving spontaneous
and applicable unknown class exploration in OS-SFDA. We
present a domain adaptation network for OS-SFDA, which
can fully explore the target class space to transfer knowl-
edge on known classes and generalize on unknown classes.

3. Method

In this section, we will introduce the details of our proposed
method, and the framework is depicted in Fig. 2.

Problem Setting. OS-SFDA aims to solve the knowledge-
transferring problem in more realistic scenarios, where the
source data have restricted access, and the target domain
exhibits wider class distribution than the source domain. In
such a task with restricted-accessible source data, we are
given an unlabeled target domain D = {(x!)}!_; with n
target samples, and a pre-trained source model. More im-
portantly, the class space J* of the target domain is broader
than the one )* of the source domain: Yt = Y5 U Y%+ In
other words, in addition to the source domain’s class space
Y#, V! also contains an additional unknown class space
Yukn Here we call ° and Y™ as the target domain’s

known class and unknown class spaces, respectively, whose
numbers of categories are denoted as K, and K,,. The
source domain pre-trained model is obtained by pre-training
on the source domain in )®, mainly consisting of feature ex-
tractor f(-) and classifier g(-). Therefore, it is expected to
enable the source pre-trained model to overcome the class
distribution discrepancy between domains, while achieving
further knowledge transfer on the known classes and explo-
ration on the unknown classes.

3.1. Exploration of the Target Class Space

Inspired by the effectiveness of no-parameter clustering
methods [1, 25, 32, 48] in exploring the class space, we
introduce an unknown diffuser based on the Multilayer Per-
ceptron (MLP), which includes the main network C' and the
sub-network C,ﬁ“b in the current class space, whose goal is
to explore the target class space by inferring the target class
number /. Reasonably, we first initialize the target class
space with the source known class space; that is, we assume
that the initial value of the target class number K is the
number of known classes K,,. The unknown diffuser pro-
gressively explores a wider class space in the target domain
through continuous inferring and optimization of K. Note
that the value of K changes dynamically with the inference
process during training. The unknown diffuser completes
the exploration of the target class space by performing two
training processes: optimization in the latest class space and
hierarchical class exploration.

Optimization in Latest Class Space. Since the target
domain has no labels during exploration, we need to use the
clusters obtained by clustering the target data to guide us in
exploring the target class space. Simultaneously, we trans-
form the exploration of the target class space into the explo-
ration of the target cluster number. In this part, we learn the
discriminative cluster assignments through the constraints
of the feature-cluster assignment, which is beneficial for
exploring the target cluster number. Firstly, the feature is
the output of feature extractor f(-) in the source pre-trained
model, denoted as z; = f(x!) € R, where d is the dimen-
sion of the feature space, ¢ represents the ¢-th sample. The
features of n samples are denoted as Z. Then, the main net-
work C'in the unknown diffuser maps the feature into the
cluster assignment Z = ¢(Z), where ¢(-) is the mapping
operation of C, and the cluster assignment of feature z; is
denoted as z; € RX. The discriminative cluster assign-
ments under the current class space (/) are obtained by
optimizing the cluster assignment under the guidance of the
discriminative feature Z. Specifically, to obtain the pseudo
cluster-assignment YZ = {yZ}" ,,yZ € R, we first use
k-means under current target class space (K) on the fea-
ture set Z. 'I~'hen, according to Y Z, a teacher cluster soft-
distribution Y € R"*¥ is generated based on the feature:

_ 2
Uik = lzi = milly, » (1)

24017



known class space

dog
bike

S Unknown samples grouped
into one class by entropy

explored class space

unexplored known samples

NE high-confidence samples in

known knowledge

dog
bike

known samples pseudo labels

in explored class space

k-means

class

Exploration of the target class space

class . . unknown samples pseudo
labels in explored class space

— 0 @
@9 @0 @ @

contrastive

learing

Knowledge transfer and generalization

Figure 2. The framework of our proposed method. Given the source pre-trained model, we first introduce an unknown diffuser on its initial
known class space. The unknown diffuser can determine whether classes in space need to be split and merged through similarity measures,
to estimate and generate a wider class space distribution, including known and unknown classes. Based on such a wider class space, we
improve the reliability of the known class knowledge inside the source model by contrastive learning. In this way, the reliable known class
knowledge and clustered pseudo-labels over the wider class space, can jointly serve as supervision during model optimization, leading to

powerful knowledge transfer and generalization capabilities.

where ¥; 1, is the k-th element in y,, and y, is the teacher
cluster soft-distribution of feature z;. 1, = Y.+, zF /ny,
is the center feature of the k-th center and ny, is the feature
number of the k-th master cluster. And 2% is the i-th ele-
ment in Z* € R™ Xd which is the feature matrix of those
features with yZ = k. Note that the teacher cluster soft-
distribution of each feature is normalized. Then, we uti-
lize the alignment loss to enforce the consistency of teacher
cluster soft-distribution Y with the cluster assignment Z:

n

Ealg = Z Lalg(xg) = Z 21 . gz (2)
i=1

i=1

The cluster assignment under the current target class
space (K) can be promoted through optimization on ¢(+)
in the training process, so as to promote the exploration of
the target class space.

Hierarchical Class Exploration. To fully explore the
target class space by inferring the precise target class num-
ber K, inspired by [3], the Metropolis-Hastings framework
(M-BH) is utilized as the underlying framework in the class
diffusion process, which computes the Hasting ratio for
changing K through splitting and fusion. Besides that, in-
spired by the hierarchical clustering [39], we design a hi-
erarchical class exploration method to explore the target
class space based on the M-H framework, that performs
splitting and merging on more dispersive and coupled clus-
ters, respectively. Firstly, we obtain the discriminative clus-
ter assignment after splitting/merging in all possible split-

ting/merging cases. We then select the potential clusters
to be split or merged based on the assignment distance be-
tween clusters. In the end, these selected clusters are put
into the candidate set to be split or merged, while we use
the M-H framework [8] on those clusters in the candidate
set to determine the splitting and merging decisions. We as-
sume that the current cluster distributions and those under
all possible splitting/merging cases are called the distribu-
tions before and after splitting/merging.

Specifically, we first obtain the discriminative cluster
distribution after splitting/merging in all possible split-
ting/merging cases, in which the cluster before split-
ting/merging is already learned above. Then, the cluster
distribution after merging can be acquired directly by merg-
ing the assignments of two clusters. However, obtaining the
sub-cluster distribution after splitting is apparently unrea-
sonable, by randomly dividing the target data in the master
cluster. For subsequent convenience, we define the clusters
before/after splitting as the master cluster and sub-cluster,
respectively. To gain the discriminative sub-cluster distribu-
tion, we introduce the sub-network C$“? into the unknown
diffuser, and C’,ﬁ“b contains K sub-clustering layers with the
output dimension equaling to 2. One of these sub-network
C,ﬁ“b is applied on each master cluster to generate the sub-

cluster assignment Z~ = ¢;**(Z"), in which ¢ (-)
represents the operation of the k-th sub-network applying
on the k-th master cluster. Then, to obtain the pseudo-sub-
cluster assignment, the k-means first is performed on the

bk
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feature matrix Z* of the k-th master cluster, similar to clus-
ter optimization with Eq. (1), Subsequently, a teacher sub-

cluster assignment Y € R™*2 s also generated for the
k-th master cluster:

Al L (3)

~ - . . .Sk
where ¥ ; 1s the i-th row and j-th column element in Y .

n? is the center feature of the j-th sub-cluster in k-th master
cluster. And we utilize the alignment loss to optimize them:

K ng

Ly =% =" gy, @)

k=11i=1

bk

where 25"*F is the i-th element in Z~ . The training
process on the sub-network C’,‘z“b is synchronous with the
one on the main network C.

In addition, hierarchical clustering [39] gradually divides
data by merging pairs of clusters with smaller distances or
splitting the two most distant sub-clusters in one cluster.
According to the assignment distance between clusters, the
candidate sets to be split/merged are generated, inspired by
the hierarchical clustering. In our method, to explore more
different classes, those cluster pairs (sub-cluster pairs) with
far assignment distances are considered as those likely to
be split. While those with close assignment distances are
considered as those likely to be merged due to high simi-
larity between two main clusters. The candidate sets to be
split/merged based on this can be written as:

OSED = {(k"la kQ)‘ € arg SortnifED(nk'lankg)}a (5)

merg
CSLY = {k| € argsort,,, — ED(n}, n5)},  (©)

where ED(-,-) computes the Euclidean distance of the
cluster embedding center. n;y are the number of cluster(s)
with potential to be merged and split.

After obtaining the candidate set, we can infer more ac-
curate K and explore a more accurate target class space, by
calculating the Hasting ratio from the M-H framework [8]
among (sub)cluster pairs in the candidate set and compar-
ing it with 1. More details are provided in the supplemen-
tary material. In this way, we use the inferred latest target
class number K to update the unknown diffuser (the output
dimension of C' and the number of sub-clustering layers) at
the next optimization step.

During the optimization in the latest more accurate class
space, we learn the discriminative cluster distribution un-
der the latest updated target class number K. According to
these cluster distributions, we decide the splitting and merg-
ing decisions to change the target class number K in the
process of hierarchical class exploration. The more precise
K and corresponding cluster assignments are generated,
through operating these two processes iteratively, which is
beneficial to fully explore the target class space.

Algorithm 1 The training procedure of our proposed model

Input: data, source pre-trained model, main network C' and

sub-network C ,ﬁ“b of unknown diffsuer

1: // Exploration of the target class space

2: for iter; = 1 to iter"*” do

3:  Obtain clustered pesudo-distribution Y and Y by
k-means _ _

4. Optimize C and C3** guided by Y and Y* in
Egs. (2) and (4)

5:  Determine CSyyp / CSperg by similarity measure-
ment in Egs. (5) and (6)

6:  Diftuse the class space by updating K on CSg, /
CSperg, based on M-H framework
Update the unknown diffuser by the updated K

8: end for

9: // Knowledge transfer and generalization

10: for itery = 1toitery** do

11:  Promote reliability of known knowledge by con-
trastive constraint in Eq. (7)

12:  Jointly optimize C' and the pre-trained model in the
explored class space via Ly, and L4 in Eq. (8)

13: end for

3.2. Knowledge Transfer and Generalization

After exploring the target class space in Sec. 3.1, we aim to
transfer knowledge on known classes more effectively and
improve the model’s generalization on unknown classes. In
this subsection, we promote the reliability of known knowl-
edge and further optimize over wider class distribution.
Promotion of Known Knowledge Reliability. To better
utilize known knowledge, we hope to improve the reliabil-
ity of known knowledge obtained by the classification layer
of the pre-trained source model during training. The input
of the model is all target samples, including known and un-
known samples, from which we need to select the known
ones. According to the logit output of known samples hav-
ing smaller entropy than the unknown ones, we select the
top 50% of samples with the lowest entropy as known sam-
ples, which are placed in set M. After selection, the con-
trastive constraint £.,,, is utilized on M to enhance the dis-
crimination of the known samples. Concretely, it brings
the known features of similar predictions closer and those
of dissimilar predictions farther away, achieving discrim-
ination feature assignment to strengthen the reliability of
known knowledge. The contrastive constraint is written as:

Econ:_zp?pj+zp?p;7 (7)
ieM ieM

where p;, = o(g(z;)) € R?) is the output of classifier g and
o is the softmax function.
Optimization over Wider Class Distribution. After
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that, we optimize the unknown diffuser over the wider class
space by taking advantage of the reliable known knowledge
and alignment constraint on the explored space. In such an
optimization based on the explored wider class space, we
first select the high-confidence known samples as the re-
liable known knowledge. Then, we hope to use the hard
pseudo-labels of the high-confidence known samples as su-
pervision information, thereby leveraging them for better
knowledge transfer on the explored class space. Specif-
ically, for a known sample, we take the maximum logit
output by the classifier in the source pre-trained model as
its confidence. And the known sample is considered as
the high-confidence known sample when it is greater than
a manually-set confidence threshold, whose hard pseudo-
label is represented by the one-hot paradigm y” (z? € H).
Note that H is the set of the high-confidence known sam-
ples. Therefore, we can perform better knowledge transfer
on the explored class space by leveraging the reliable known
knowledge y” obtained on the source pre-trained model. In
addition, we also perform alignment constraint on the ex-
plored class space, similar to Eq. (2), to complete the trans-
fer on known samples further and achieve generalization on
unknown samples. Finally, we leverage the supervision of
the high-confidence known sample labels and the alignment
constraint, to jointly achieve superior knowledge transfer on
known classes and generalization on unknown classes over
the wider class space:

H n
L= Ekt + Ealg = Zth(gzay?) + ZLalg(xiz?)

i=1

H ni na
= Zth(gia yil) + Z Lalg(xz‘l) + Z Lalg($§2)7

ji=1 j2=1

known unknown

®)
where Ly, represents the guidance of high-confidence
known samples, which is the cross-entropy loss between
their pseudo-labels and soft distributions. L, is the align-
ment constraint to achieve superior knowledge transfer on
known classes and generalization on unknown classes. Zz;
represents the soft-distribution output by the main network
C on the explored class space. n; and n, represent the num-
ber of known and unknown samples, respectively.

4. Experiments
4.1. Experimental Setup

Datasets. We evaluate our method on three benchmark
datasets for OS-SFDA through experiments, which are
Office-31 [28], Office-Home [36], and VisDA-C 2017 [24].
Due to limited space, the results and analysis on VisDA-C
2017 are summarized in supplementary material.

e Office-31 [28] consists of three domains (Amazon, We-

bcam, DSLR), with 31 classes and 4652 images of com-
mon objects. Following the protocols [18] on Office-31
and Office-Home, we select the first 20 classes as the
shared classes of the source and target domain while the
remaining 11 classes are considered unknown.

* Office-Home [36] is a more challenging dataset. It con-
tains four domains (Art, Product, Clipart, RealWorld)
with 65 classes and 15500 images of common objects.
Like Office-31, we select the first 25 classes as classes
shared by the source and target domain, and the remain-
ing 40 classes are considered unknown.

Baselines. For OS-SFDA, we compare our method with
the clustering on Resnet [9], the classic method SHOT [16],
and the advanced method AaD [44], which do sufficient
experiments under the OS-SFDA setting. In addition, our
method uses the unknown diffuser based on clustering
(class number-agnostic) to explore the target class space.
For a fair comparison, we thoroughly compare our method
with the no-parameter clustering methods (FINCH [32],
COMIC [25], DenMune [1]).

Evaluation. As shown in Tab. 1 and Tab. 2, we report
domain adaptation results for OS™ and UN K, which rep-
resent the average accuracy of the known and the unknown
class, respectively. Simultaneously, HOS = 262?1%
is denoted as the harmonic mean between OS™ and UNK,
which is the key indicator for evaluating performance.
Moreover, the inferred target class number K and accuracy
ACC are used to evaluate the effectiveness of exploring the
target class space in Tab. 3 and Tab. 4. The setting of ACC
follows the previous protocols [12].

Implementation Details. For the source pre-trained
model, we utilize the backbone of ResNet-50 [9] for Office-
31 and Office-Home. For a fair comparison, we use the
same network architecture with SHOT [16] and AaD [44],
which includes a backbone and two additional fully con-
nected layers. We adopt SGD with a momentum of 0.9 and
a batch size of 64 for all datasets. The learning rate is set to
le-3 on all datasets for all layers of the backbone, and the
last two added fully-connected layers are applied le-2. We
train 15 epochs for all datasets. The unknown diffuser in-
cludes one convolutional layer with 256 hidden dimensions.
For a fair comparison, our network and the compared no-
parameter clustering methods use the same input features,
output by the source pre-trained model.

4.2. Results and Analysis

As shown in Tab. 1 and Tab. 2, the UNK and HOS for
our method are much higher than SHOT on all datasets.
Our method achieves 10.4% and 2.3% relative improve-
ments over the state-of-art AaD for average OS* and HOS
on Office-31, respectively. On the relatively small-scale
Office-31 with fewer classes, our method demonstrates
competitiveness across various indicators, standing in con-
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method  |SF A—D A—-W D—A D—-W W—A W—D Avg
OS* UNK HOS|OS* UNK HOS|OS* UNK HOS|OS* UNK HOS|OS* UNK HOS|OS* UNK HOS|OS* UNK HOS
Cluster | X [10.0 64.0 17.0| 7.0 61.0 13.0{5.0 69.0 10.0/8.0 49.0 14.0| 5.0 64.0 10.0{10.0 47.0 17.0{7.5 59.0 13.5
SHOT |v|87.2 50.0 55.7(89.0 38.6 53.8(78.2 44.2 56.597.4 72.3 83.0(73.5 47.6 57.8|89.6 75.0 81.7|85.8 54.6 64.8
AaD v'169.9 86.7 77.4162.0 83.9 71.3|60.8 81.8 69.8|83.2 97.4 89.8|58.4 81.5 68.0(82.3 95.2 88.3(69.4 87.8 77.4
Ours(w/o s)| v [78.4 73.4 75.8/87.9 90.3 89.1|72.3 76.1 74.1{92.8 80.5 86.2|70.9 76.8 73.7(85.8 79.8 82.7(81.4 79.5 80.3
Ours(w/ s) | v [82.3 71.8 76.7|90.0 72.0 80.0{72.0 79.4 75.5|79.5 87.3 83.2|74.2 82.7 78.2|80.6 88.3 84.3|79.8 80.3 79.7

Table 1. Accuracy (%) on Office-31 for OS-SFDA. The three indicators(OS*, UNK, HOS) have been explained in Sec. 4.1. ‘w/o s’ and
‘w/ s’ indicate with or without supervision using reliable known knowledge. Note that ‘A—D’ represents that the model per-trained on the

source domain Amazon transfers to the target domain DSLR. Bold and  _’ represent the best and second results, respectively.

method ISF Ar—Cl Ar—Pr Ar—Rw Cl—Ar Cl—Pr Cl—Rw Avg (first 6 tasks)
OS* UNK HOS|OS* UNK HOS|OS* UNK HOS|OS* UNK HOS|OS* UNK HOS|OS* UNK HOS|OS* UNK HOS

Cluster |X|6.0 63.0 11.0/5.0 55.0 10.0/4.0 62.0 8.0 8.0 59.0 14.0{5.0 55.0 9.0 |5.0 56.0 8.0 |55 583 10.0
SHOT |v'[67.0 28.0 39.5|81.8 26.3 39.8|87.5 32.1 47.0|66.8 46.2 54.6|77.5 27.2 40.2|80.0 25.9 39.1|76.8 31.0 43.4
AaD v |50.5 67.4 57.7|64.0 66.4 65.1(72.2 69.5 70.8|47.1 80.3 59.3|64.7 68.2 66.4|65.0 71.0 67.8|60.6 70.5 64.5
Ours(w/o s)| v |47.6 69.2 56.4|70.0 81.8 75.4|70.6 85.6 77.4|60.3 74.7 66.7(65.6 82.7 73.2|72.1 84.2 77.664.4 79.7 71.1
Ours (w/s) |V [49.0 64.8 55.8(68.1 88.0 76.7|71.5 86.6 78.4|61.3 72.6 66.4|66.5 81.6 73.1(71.6 84.8 77.6|64.7 79.7 71.3
method ISF Pr—Ar Pr—Cl Pr—Rw Rw—Ar Rw—Cl Rw—Pr Avg (all tasks)
OS* UNK HOS|OS* UNK HOS|OS* UNK HOS|OS* UNK HOS|OS* UNK HOS|OS* UNK HOS|OS* UNK HOS

Cluster |X|8.0 53.0 15.0/6.0 50.0 10.0/5.0 61.0 9.0 8.0 51.0 13.0{5.0 64.0 10.0|5.0 50.0 10.0|/5.8 56.6 10.6
SHOT |v/[66.3 51.1 57.7|59.3 31.0 40.8(85.8 31.6 46.2|73.5 50.6 59.9(65.3 28.9 40.1|84.4 28.2 42.3|74.6 33.9 45.6
AaD v |46.9 83.1 60.0(45.0 72.6 55.6(69.0 72.3 70.6|56.0 77.4 65.0|48.3 67.6 56.4|67.7 69.3 68.5|58.0 72.1 63.6
Ours(w/o s)| v |60.0 76.7 67.3]52.6 66.2 58.6|70.7 85.1 77.2|56.5 83.3 67.4]49.1 70.7 57.9|66.1 82.1 73.2|61.8 78.5 69.0
Ours(w/ s) |V |55.9 85.6 67.6(45.4 70.2 55.1|73.9 83.9 78.6|56.7 84.1 67.8|49.3 74.6 59.4|69.5 80.0 74.4|61.6 79.7 69.2

Table 2. Accuracy (%) on Office-Home for OS-SFDA. Note that ‘Ar—Cl1’ represents that the model per-trained on the source domain Art
transfers to the target domain Clipart. The representations of OS*, UNK, HOS, ‘w/o s’, and ‘w/ s’ are the same with Tab. 1.

trast to methods such as AaD and SHOT, where only one
indicator exhibits competitive performance. SHOT tends to
excel in OS*, while AaD typically performs well on UNK.
In contrast, our method displays a well-balanced perfor-
mance across different measurement dimensions, achiev-
ing competitive results overall. For the more challenging
Office-Home, our method displays more apparent superi-
ority, which achieves 61.6%, 79.7%, and 69.2% average
accuracy for OS*, UNK, and HOS, with 3.6%, 7.6%, and
5.6% relative improvement compared with AaD. Further-
more, our method outperforms all no-parameter clustering
methods (FINCH, DenMune, and COMIC) for ACC and K
on all tasks in Tab. 3 and Tab. 4. The above results demon-
strate the superiority and effectiveness of our method.
Impact of Exploration for the Target Class Space.
Compared with OS-SFDA methods (SHOT and AaD) that
group all target unknown classes as one, our method tends
to explore class space and excavate different unknown
classes, which has great application value in more real-
istic scenarios. The experimental results show that our
method achieves excellent improvement over the state-of-
the-art method AaD for the known accuracy OS* on the
more challenging Office Home. In addition, the unknown
accuracy UNK for our method is much higher than SHOT

on Office-31 and AaD on Office-Home. This phenomenon
shows that our method can improve knowledge transfer
on known classes when exploring class space and simul-
taneously improve generalization on unknown classes. To
more fully demonstrate the effectiveness and advancement
of our exploration, we compare our method with classi-
cal no-parameter clustering methods for exploring the class
space. Concretely, ours provides the more precise inferred
target class number K and higher accuracy ACC on all
tasks, where the precision of K represents the efficacy in ex-
ploring the target class space, as discussed in Sec. 3.1. The
above analysis conclusively demonstrates that our method
of exploring class space is exceptionally effective, improv-
ing knowledge transfer and generalization.

Effect of Reliable Known Knowledge as Supervision.
As introduced in Sec. 3.2, we hope to utilize the reliable
known knowledge to optimize the unknown diffuser for bet-
ter knowledge transfer and generalization. Concretely, our
method that uses the reliable known knowledge(ours (w/ s)
) outperforms all compared methods(including ours(w/o s))
on more challenging Office-Home for average HOS, ACC,
and K in Tabs. 1 to 4. Therefore, the more effectiveness
brought by reliable known knowledge (‘ours (w/ s)’) con-
firms it guides the model for better known and unknown
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Figure 3. (a) t-SNE of SHOT on R—P. (b) t-SNE of AaD on R—P. (c) t-SNE of our method on R—P. (d) Parameter analysis on A—W.

Methods | A—D | A—-W | D—A | D—»W | W—A | W=D
FINCH |31.0(8)| 8.0(2) [23.0(7)|12.0(3)|28.0(9)|23.0(5)
DenMune | 20.0(5) |52.0(15)|58.0(29) [46.0(14) [ 65.0(35) | 22.0(5)
COMIC |56.8 (22)|47.3 (24)|16.1 (40)|46.4 (20)|12.1 (32)|56.6 (22)
Ours(w/o s)| 69.0(24) | 80.6(28) | 60.4(37) | 82.5(30) | 59.6(38) | 68.9(27)
Ours(w/ s) | 71.2(25)|73.3(28) | 63.1(37) | 76.3(32) | 64.2(38) | 74.5(28)

Table 3. Accuracy ACC(%) and the inferred target class number
K on Office-31. Note that the values before ‘( )’ and inside ‘( )’
represent the performance ACC and K, respectively.

Methods | Ar—Cl | Ar—Pr |[Ar—Rw| CI—-Ar | Cl—Pr |Cl-Rw
FINCH 5.04) | 7.03) | 6.03) | 8.03) | 7.04) | 7.0(4)
DenMune |15.0(12)(58.0(45)|54.0(39)| 16.0(7) [55.0(40)|40.0(32)
COMIC | 6.9(65) [50.3(92)|9.43(34)| 4.0(1) [10.4(51)| 2.3(2)
Ours(w/o §)|35.5(69)|60.5(77)|59.1(77) |47.3(61) |58.9(74)|55.6(60)
Ours(w/ s) [35.9(69)(61.4(80)(61.3(77)|46.9(62)|58.9(78)|61.0(60)
Methods | Pr—Ar | Pr—Cl |Pr—Rw |Rw—Ar|Rw—Pr|Rw—Cl
FINCH | 12.04) | 5.04) | 4.02) | 11.0(4) | 12.0(7) | 7.0(4)
DenMune | 16.0(7) | 7.0(6) |52.0(37)[26.0(13)| 9.0(8) [62.0(43)
COMIC | 42(2) |3.7(24) | 5.7(14) | 4.1(1) |5.2(43) [13.3(65)
Ours(w/o s)|48.5(51)|37.2(56)|63.6(75) |38.1(28) [21.6(50)|50.4(75)
Ours(w/ s) [47.8(51)|35.5(56)|64.0(68)|44.2(35)|21.9(50)|51.8(75)

Table 4. ACC(%) and K on Office-Home.

class discrimination, achieving better knowledge transfer on
known classes and generalization on unknown classes.
Parameter Analysis. We study the impact of supervi-
sion information on unknown diffuser optimization during
training by applying a variable parameter to the supervi-
sion loss. As shown in Fig. 3(d), the chart indicates that
when there is no supervision information, the optimization
cannot be completed well to obtain a favorable transfer ef-
fect on known or unknown classes. As the parameters in-
crease within a certain range, UNK and HOS also improve;
but parameters that are too large will lead to poor opti-
mization results. In addition, it can be seen that OS* is
not sensitive to this parameter, and its change trend is rela-
tively stable. Therefore, we should select appropriate high-

confidence known pseudo-labels as supervision information
to prevent model overfitting for better guiding the optimiza-
tion of unknown diffuser.

Effectiveness of the Unknown Diffuser. Tabs. 1 to 4
show our superior performance in exploring unknown class
space and domain adaptation in OS-SFDA. The superiority
in unknown class exploration indicates that our unknown
diffuser can excavate potential unknown classes under the
guidance of current discriminative class distributions based
on the Metropolis-Hastings (M-H) framework. The impres-
sive domain adaptation effects based on the explored wider
space also demonstrate the necessity of using the unknown
diffuser for unknown class exploration.

Visualization of features. As shown in Fig. 3(a)-(c),
t-SNE visualizations indicate that compared with existing
methods, our method explores a more accurate and exten-
sive class space, exhibiting remarkable class discrimination.

5. Conclusion

In this paper, we propose a domain adaptation network in
OS-SFDA for exploring unknown classes, thereby jointly
benefiting known knowledge transfer and unknown general-
ize. We introduce an unknown diffuser into the source pre-
trained model to excavate a wider target class space. And,
the reliable known class knowledge and clustered pseudo-
labels over the wider class space are captured to serve as su-
pervision during model optimization, realizing impressive
knowledge transfer and generalization. Extensive experi-
ments verify the superiority of our method.
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