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Abstract

Panorama video recently attracts more interest in both
study and application, courtesy of its immersive experience.
Due to the expensive cost of capturing 360◦ panoramic
videos, generating desirable panorama videos by prompts
is urgently required. Lately, the emerging text-to-video
(T2V) diffusion methods demonstrate notable effectiveness
in standard video generation. However, due to the signifi-
cant gap in content and motion patterns between panoramic
and standard videos, these methods encounter challenges in
yielding satisfactory 360◦ panoramic videos. In this paper,
we propose a pipeline named 360-Degree Video Diffusion
model (360DVD) for generating 360◦ panoramic videos
based on the given prompts and motion conditions. Specifi-
cally, we introduce a lightweight 360-Adapter accompanied
by 360 Enhancement Techniques to transform pre-trained
T2V models for panorama video generation. We further
propose a new panorama dataset named WEB360 consist-
ing of panoramic video-text pairs for training 360DVD,
addressing the absence of captioned panoramic video
datasets. Extensive experiments demonstrate the superior-
ity and effectiveness of 360DVD for panorama video gen-
eration. Our project page is at https://akaneqwq.
github.io/360DVD/.

1. Introduction
With the recent advancements in VR technology, 360-
degree panoramic videos have been gaining increasing pop-
ularity. This video format which offers audiences an im-
mersive experience, is helpful for various applications, in-
cluding entertainment, education, and communication. To
capture details of the entire scene, 360◦ videos are typically
recorded using an array of high-resolution fisheye cameras
that yields a 360◦ × 180◦ field-of-view (FoV) [1], which
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is quite costly in both time and resources. Therefore, the
generation of 360◦ panoramic videos is urgently required
for border applications, while panoramic video generation
receives little attention in studies to date.

Thanks to the emerging theory and training strategies,
text-to-image (T2I) diffusion models [26, 27, 31, 32, 35]
demonstrate remarkable image generation capacity from
prompts given by users, and such impressive achievement in
image generation is further extended to text-to-video (T2V)
generation. Various T2V diffusion models [3, 16, 37, 46,
52, 60] are recently proposed with adopting space-time sep-
arable architectures, wherein spatial operations are inher-
ited from the pre-trained T2I models to reduce the complex-
ity of constructing space-time models from scratch. Among
these, AnimateDiff [16] enables the capability to gener-
ate animated images for various personalized T2I models,
which alleviates the requirement for model-specific tuning
and achieves compelling content consistency over time.

Although T2V methods on standard videos are widely
studied, there is no method proposed for panorama video
generation. One potential approach is to leverage existing
powerful T2V models, e.g., AnimateDiff to directly gen-
erate the equirectangular projection (ERP) of panoramic
videos. Since ERP is a commonly adopted format for
storing and transmitting panoramic videos, each frame is
treated by ERP as a rectangular image with an aspect ra-
tio of 1:2, which aligns well with the output format of ex-
isting standard T2V models. However, due to the signif-
icant differences between panoramic videos and standard
videos, existing methods suffer challenges in directly pro-
ducing satisfactory 360◦ panoramic videos. Concretely, the
main challenges include three aspects: (1) The content dis-
tribution of ERPs differs from standard videos. ERPs re-
quire a wider FoV, reaching 360◦ × 180◦. (2) The motion
patterns of ERPs are different from standard videos, with
movements often following curves rather than straight lines.
(3) The left and right ends of ERPs should exhibit continuity
since they correspond to the same meridian on the Earth.

Therefore, we propose a specifically designed method
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“a city under blue sky, the city includes tall buildings and a car driving down the street”
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“a group of hot air balloons flying over a lush green field”
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“a large mountain lake, the lake surrounded by hills and mountains”

“the top of a snow covered mountain range, with the sun shining over it”

“the city under cloudy sky, a car driving down the street with buildings”

“a green island in the middle of the ocean, filled with stars in the sky”

“a large mountain lake, the lake surrounded by hills and mountains”

“a night scene of a green and purple aurora bore over a body of water”

“a volcano with smoke coming out, mountains under clouds, at sunset”

“a desert with sand dunes, blue cloudy sky”
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“a very large, lightly room, windows, wooden doors, carpet, ceiling lights”

L
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“a forbidden castle high up in the green mountains under blue sky”

Figure 1. Main results. Our 360DVD creates text-aligned, coherent, and high-quality 360◦ panorama videos. Furthermore, 360DVD can
cooperate with multiple personalized text-to-image models and consistently generate stylized panorama videos.

named 360-Degree Video Diffusion (360DVD) for gener-
ating panorama videos. We first introduce a plug-and-play
module named 360-Adapter to address challenge mentioned
above. Our 360-Adapter receives zero values or motion
conditions (e.g., optical flow) as input and outputs motion
features, which are fed into the frozen denoising U-Net at
different levels of the encoder. This transformation is aimed
at converting the T2V model into a panoramic video gen-
eration without altering the foundational generative capa-
bilities. In addition, we introduce 360 Enhancement Tech-
niques including two mechanisms to enhance continuity at
both ends of ERPs from both macro and micro perspec-
tives, and a latitude-aware loss function for encouraging the
model to focus more on low-latitude regions. Cooperated
with carefully designed techniques, our 360DVD generates
text-aligned, coherent, high-quality, 360◦ panorama videos
with various styles, as shown in Fig. 1.

Furthermore, we collect a panorama dataset named
WEB360 including ERP-formatted videos from the inter-
net and games for training our method. WEB360 involves
approximately 2,000 video clips with each clip consist-
ing of 100 frames. Considering the domain gap between
panoramic and standard images, to enhance the accuracy
and granularity of captions, we introduce a GPT-based 360
Text Fusion module for obtaining detailed captions. Our
contributions can be summarized as follows:

• We introduce a controllable 360◦ panorama video genera-
tion diffusion model named 360DVD, achieved by adopt-
ing a controllable standard T2V model with a trainable
lightweight 360-Adapter. Our model can generate text-
guided panorama videos conditioned on desired motions.

• We design 360 Enhancement Techniques including a
latitude-aware loss and two mechanisms to enhance the
content and motion quality of generated panorama videos.

• We propose a new high-quality dataset named WEB360
comprising approximately 2,000 panoramic videos, with
each video accompanied by a detailed caption enhanced
through 360 Text Fusion.

• Experiments demonstrate that our 360DVD is capable of
generating high-quality, high-diversity, and more consis-
tent 360◦ panorama videos.

2. Related Works

2.1. Text-to-Image Diffusion Model

The Denoising Diffusion Probabilistic Model [9, 17, 39] has
proven to be highly successful in generating high-quality
images, outperforming previous approaches such as gener-
ative adversarial networks (GANs)[11, 57], variational au-
toencoders (VAEs)[20, 38], and flow-based methods [5].
With text guidance during training, users can generate im-
ages based on textual input. Noteworthy examples include
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GLIDE [27], DALLE-2 [31], Imagen [35]. To address
the computational burden of the iterative denoising process,
LDM [32] conducts the diffusion process on a compressed
latent space rather than the original pixel space. This ac-
complishment has prompted further exploration in extend-
ing customization [14, 34], image guidance [53, 55], precise
control [25, 26, 58] and protection [56].

2.2. Text-to-Video Diffusion Model

Despite significant advancements in Text-to-Image (T2I)
generation, Text-to-Video (T2V) generation faces chal-
lenges, including the absence of large-scale, high-quality
paired text-video datasets, the inherent complexity in mod-
eling temporal consistency, and the resource-intensive na-
ture of training. To address these challenges, many works
leverage the knowledge from pre-trained T2I models, and
they manage training costs by executing the diffusion pro-
cess in the latent space. Some methods [15, 29, 48, 49, 54]
utilize T2I models in zero-shot or few-shot ways. However,
these methods often suffer from suboptimal frame consis-
tency due to insufficient training. To address this limita-
tion, another category of T2V diffusion models typically
adopts space-time separable architectures. These mod-
els [3, 37, 46, 60] inherit spatial operations from pre-trained
T2I models, reducing the complexity of constructing space-
time models from scratch. Given that most personalized T2I
models are derived from the same base one (e.g. Stable Dif-
fusion [32]), AnimateDiff [16] designs a motion modeling
module that trained with a base T2I model and could ani-
mate most of derived personalized T2I models once for all.
There are also efforts focused on enhancing control in T2V
models. Gen-1 [13], MCDiff [6], LaMD [18] and Video-
Composer [47] introduce diverse conditions to T2V models.
Despite these advancements, the aforementioned methods
demand extensive training and lack a plug-and-play nature,
making it challenging to apply them to a diverse range of
personalized T2I models.

2.3. Panorama Generation

GAN-based methods for generating panoramic images have
been widely studied [2, 4, 7, 10, 12, 23, 24, 28, 40, 41,
43, 50]. For instance, OmniDreamer [2] accepts a sin-
gle NFoV image as an input condition and introduces a
cyclic inference scheme to meet the inherent horizontal
cyclicity of 360-degree images. ImmenseGAN [12] fine-
tunes the generative model using a large-scale private text-
image pair dataset, making the generation more control-
lable. Text2Light [7] introduces a zero-shot text-guided
360-image synthesis pipeline by utilizing the CLIP model.
Very recently, diffusion models have achieved promising re-
sults in panoramic image generation. DiffCollage [59] uses
semantic maps as conditions and generates images based
on complex factor graphs using retrained diffusion mod-

els. PanoGen [21] employs a latent diffusion model and
synthesizes new indoor panoramic images through recur-
sive image drawing techniques based on multiple text de-
scriptions. PanoDiff [45] achieves a multi-NFoV synthesis
of panoramic images through a two-stage pose estimation
module. IPO-LDM [51] uses a dual-modal diffusion struc-
ture of RGB-D to better learn the spatial distribution and
patterns of panoramic images. StitchDiffusion [44] em-
ploys a T2I diffusion model, ensuring continuity at both
ends through stitching. However, to date, panoramic video
generation has received limited attention. To the best of our
knowledge, we are the first to leverage diffusion models for
panoramic video generation.

3. Method
In this section, we begin with a concise review of the latent
diffusion fusion model and AnimateDiff [16]. Following
that, we introduce the construction method of the WEB360
dataset. We then provide an overview of 360DVD and elab-
orate on the implementation details of 360-Adapter. Finally,
we describe the 360 enhancement techniques aimed at en-
riching the panoramic nature of the video.

3.1. Preliminaries

Latent Diffusion Model. Given an input signal x0, a diffu-
sion forward process in DDPM [17] is defined as:

pθ(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI), (1)

for t = 1, . . . , T , where T is the total timestep of the dif-
fusion process. A noise depending on the variance βt is
gradually added to xt−1 to obtain xt at the next timestep
and finally reach xT ∈ N (0, I). The goal of the diffusion
model is to learn to reverse the diffusion process (denois-
ing). Given a random noise xt, the model predicts the added
noise at the next timestep xt−1 until the origin signal x0:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), (2)

for t = T, . . . , 1. We fix the variance Σθ(xt, t) and utilize
the diffusion model with parameter θ to predict the mean of
the inverse process µθ(xt, t). The model can be simplified
as denoising models ϵθ(xt, t), which are trained to predict
the noise of xt with a noise prediction loss:

L = Ex0,y,ϵ∼N (0,I),t[∥ϵ− ϵθ(xt, t, τ θ(y))∥22], (3)

where ϵ is the added noise to the input image x0, y is the
corresponding textual description, τ θ(·) is a text encoder
mapping the string to a sequence of vectors.

Latent Diffusion Model (LDM) [32] executes the denois-
ing process in the latent space of an autoencoder, namely
E(·) and D(·), implemented as VQ-GAN [19] or VQ-
VAE [42] pre-trained on large image datasets. During the
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training of the latent diffusion networks, an input image x0

is initially mapped to the latent space by the frozen encoder,
yielding z0 = E(x0). Thus, the training objective can be
formulated as follows:

L = EE(x0),y,ϵ∼N (0,I),t[∥ϵ− ϵθ(zt, t, τ θ(y))∥22]. (4)

In widely-used LDM Stable Diffusion (SD), which our
method is based on, ϵθ(·) is implemented with a modified
UNet [33] that incorporates four downsample/upsample
blocks and one middle block, resulting in four resolution
levels within the networks’ latent space. Each resolution
level integrates 2D convolution layers as well as self- and
cross-attention mechanisms. Text model τ θ(·) is imple-
mented using the CLIP [30] ViT-L/14 text encoder.
AnimateDiff. AnimateDiff inflates base SD by adding
temporal-aware structures and learning reasonable motion
priors from large-scale video datasets. Since the original
SD can only process 4D image data batches, while T2V
task takes a 5D video tensor as input. It transforms each 2D
convolution and attention layer in the original image model
into spatial-only pseudo-3D layers. The motion module is
inserted at every resolution level of the U-shaped diffusion
network, using vanilla temporal transformers consisting of
several self-attention blocks operating along the temporal
axis. The training objective of AnimateDiff can be written
as:

L = EE(x1:N
0 ),y,ϵ∼N (0,I),t[||ϵ−ϵθ(z

1:N
t , t, τ θ(y))||22], (5)

where x1:N
0 is the sampled video data, z1:N0 is the latent

code which x1:N
0 are encoded into via the pre-trained au-

toencoder, z1:Nt is the latent code obtained by perturbing
the initial latent code z1:N0 with noise at timestep t. During
training, the pre-trained weights of the base T2I model are
frozen to keep its feature space unchanged.

3.2. WEB360 Dataset

Diverse text-video pairs datasets are essential for training
open-domain text-to-video generation models. However,
existing 360◦ panorama video datasets lack corresponding
textual annotations. Moreover, these datasets are often con-
strained either in scale or quality, thereby impeding the up-
per limit of high-quality video generation.

To address the aforementioned challenges and achieve
high-quality 360 panorama video generation, we introduce
a novel text-video dataset named WEB360. This dataset
comprises 2114 text-video pairs sourced from open-domain
content, presented in high-definition (720p) ERP format.
Our dataset creation process involved extracting 210 high-
resolution panoramic video clips from the ODV360 [4]
training set. Additionally, we collected over 400 original
videos from YouTube. Due to the complex scene transi-
tions present in the original videos, which pose challenges

a night time view of a 
city with a lot of lights

an aerial view of a 
building at night

an aerial view of a 
parking lot at night

a night time view 
of a city with 
buildings and lights

an aerial view of a 
city street at night

ChatGPT

an aerial view of a city at 
night, the city including 
buildings, lights, a parking 
lot and a street

Please give me the summarization of 
provided captions of different views. 
Each view groups include four views 
captured from the center of a same 
scene. 

Figure 2. 360 Text Fusion. The captions of four images with a
FoV of 90 are fed into ChatGPT to generate a new 360◦ summa-
rization. Compared to the caption of ERP at the bottom right, 360
Text Fusion allows for more fine-grained captions.

for models in learning temporal correlations, we perform a
manual screening process to split the original videos into
1904 single-scene video clips. We employ BLIP [22] to an-
notate the first frame of the 2104 video clips. However,
we observed that direct application of BLIP to ERP im-
ages often resulted in bad captions. Therefore, we propose
a panoramic image caption method named 360 Text Fusion,
based on ChatGPT.
360 Text Fusion. We find that directly using BLIP [22] to
label ERP has drawbacks. On one hand, errors may arise
due to the distortion caused by the polarities, leading to
misidentifications such as labeling “person” as “dog”. On
the other hand, the captions generated by BLIP lack gran-
ularity, making them insufficient for providing a detailed
description of the current scene. Thus, we propose 360 Text
Fusion (360TF) method, as shown in Fig. 2. To deal with
the irregular distortion of ERP, we turn to less-distorted per-
spective images. We first project the original ERP image to
four non-overlapping perspective images at 0 degrees lon-
gitude, with a FoV of 90. The four images are then fed into
BLIP to be captioned. By pre-informing ChatGPT about the
task and providing examples, these four captions are collec-
tively input to ChatGPT, which then generates a summary of
the scene as our final caption. In comparison to directly us-
ing BLIP to label the entire image, our 360TF demonstrates
a significant advantage in granularity.

3.3. 360-degree Video Diffusion Model

An overview of the 360-degree Video Diffusion Model (360
DVD) is presented in Fig. 3, which is composed of a pre-
trained denoising U-Net and 360-Adapter. The pre-trained
denoising U-Net adopts a structure identical to that of Ani-
mateDiff. In every resolution level of the U-Net, the spatial
layer unfolds pre-trained weights from SD, while the tem-
poral layer incorporates the motion module of AnimateDiff
trained on a large-scale text-video dataset.

During the training process, we first sample a video x1:N
0
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Figure 3. Overview of 360DVD. 360DVD leverages a trainable 360-Adapter to extend standard T2V models to the panorama domain
and is able to generate high-quality panorama videos with given prompts and optional motion conditions. In addition, 360 Enhancement
Techniques are proposed for quality improvement in the panorama perspective.

from the dataset. The video is encoded into latent code z1:N0

through pre-trained VAE encoder E(·) and noised to z1:Nt .
Simultaneously, the corresponding text y for the video is
encoded using the text encoder τ θ(·) of the CLIP. The video
is also input into a motion estimation network to generate
corresponding motion conditions c, which are then fed into
the 360-Adapter F360(·). Finally, noised latent code z1:Nt ,
timestep t, text embedding τ θ(y), and the feature maps f360
generated by 360-Adapter are collectively input into the U-
Net ϵ(·) to predict the noise strength added to the latent
code. As we aim to preserve the priors learned by SD and
AnimateDiff on large datasets, we freeze their weights dur-
ing the training process. If we use a simple L2 loss term,
the training objective is given as follows:

L = EE(x1:N
0 ),y,ϵ∼N (0,I),t[||ϵ− ϵθ(z

1:N
t , t, τ θ(y), f360)||22].

(6)
To ensure satisfactory generation of 360◦ panoramic

videos without motion control input, we set the input of the
360-Adapter to zero with a probability P during training.
This strategy aims to encourage the model to learn represen-
tations that are not solely reliant on motion conditions, en-
hancing its ability to generate compelling panoramic videos
without explicit motion guidance.

In inference, users have the option to selectively provide
text prompts and motion guidance to carry out denoising
over a total of T steps. Here, we employ DDIM [39] to
accelerate the sampling process. The estimated latent code
ẑ1:N0 is then input into a pre-trained VAE decoder to decode
the desired 360◦ panoramic videos x̂1:N

0 . Due to constraints
such as resolution limitations imposed by existing SD and
considerations regarding GPU memory usage, the experi-
mental results presented in this paper showcase a resolution
of 512 × 1024. In practical applications, super-resolution
methods [8, 40] can be employed to upscale the generated
results to the desired size.
360-Adapter. Our proposed 360-Adapter is simple and

Motion

Pixel Unshuffle

Downsample

Conv

Spatial Conv

Temporal Conv

ReLU

Downsample

Pre-trained 
Image Layer

Pre-trained 
Motion Module

𝑧t
1:N

⨁
⨁
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0
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d
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Figure 4. Overview of 360-Adapter. 360-Adapter is a simple but
effective module in which intermediate features are fed into the
U-Net encoder blocks for modulation.

lightweight, as shown in Fig. 4. The original condition input
has the the same resolution as the video of H×W . Here, we
utilize the pixel unshuffle [36] operation to downsample it to
H/8 × W/8. Following that are four 360-Adapter blocks,
we depict only one for simplification in Fig. 4. To main-
tain consistency with the U-Net architecture, the first three
360-Adapter blocks each include a downsampling block. In
each 360-Adapter block, one 2D convolution layer and a
residual block (RB) with pseudo-3D convolution layers are
utilized to extract the condition feature fk360. Finally, multi-
scale condition features f360 = {f1360, f2360, f3360, f4360} are
formed. Suppose the intermediate features in the U-Net en-
coder block is fenc = {f1enc, f2enc, f3enc, f4enc}. f360 is then
added with fenc at each scale. In summary, the condition
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feature extraction and conditioning operation of the 360-
Adapter can be defined as the following formulation:

f360 = F360(c), (7)

f̂ ienc = f ienc + f i360, i ∈ {1, 2, 3, 4}. (8)

In the previous description, we omit some details. Our
motion condition c is a 5D tensor, assuming its size is
batch× channels× frames× height× width. We first
reshape it into a 4D tensor of size (batch × frames) ×
channels × height × width to allow it to be fed into the
2D convolution layer and restore it to 5D to go through the
RB with pseudo-3D convolution layers. Subsequently, in
the RB, we employ a 1 × 3 × 3 pseudo-3D convolution
to extract features in the spatial dimension, followed by a
3×1×1 pseudo-3D convolution to model information along
the temporal dimension. The resulting features are reshaped
back to (batch× frames)× channels× height×width
to add the output of the skip connection. Finally, condi-
tion features are reshaped back into a 5D vector of size
batch × channels × frames × height × width to align
with the U-Net encoder intermediate features.

3.4. 360 Enhancement Techniques

Latitude-aware Loss. When projecting panoramic videos
into ERPs, meridians are mapped as vertically spaced lines
with a constant interval, while parallels are mapped as hor-
izontally spaced lines with a constant interval. This projec-
tion method establishes a straightforward mapping relation-
ship, but it is neither equal-area nor conformal, introduc-
ing significant distortion, particularly in the polar regions.
To make the denoiser pay more attention to low-latitude re-
gions with less distortion, which is more crucial for human
visual perception, we introduce a latitude-aware loss:

L = EE(x1:N
0 ),y,ϵ∼N (0,I),t[||W ⊙ (ϵ− ϵ̂θ)||22], (9)

where ϵ̂θ = ϵθ(z
1:N
t , t, τ θ(y), f360), and W is a weight

matrix used to perform element-wise product, defined as:

Wi,j = cos (
2i−H/8 + 1

H/4
π), (10)

where i ∈ [0, H/8), j ∈ [0,W/8), H/8 and W/8 is the
height and width of latent code z1:Nt . The visualized result
of W is shown in Fig. 5, where pixels in low and middle
latitudes are given more weight during training.
Latent Rotation Mechanism. Because ERPs can be con-
sidered as the unfolding of a spherical surface along a
meridian, they are meant to be wraparound consistent, im-
plying that their left and right sides are continuous. How-
ever, during the process of video generation, the left and
right sides are physically separated. Inspired by PanoD-
iff [45], we employ a latent rotation mechanism to enhance

Longitude
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𝜃 𝜃

Figure 5. Left: the visualization of weight matrix W, brighter
colors indicate values closer to 1, while darker colors suggest val-
ues closer to 0. Right: a schematic diagram of the latent rotation
mechanism. In each iteration, the far left portion of angle θ is
shifted to the far right.

the macroscopic coherence between the left and right ends
of the video. During the inference process, we perform a
horizontal rotation at an angle of θ on z1:Nt and motion con-
dition c, at each denoising step. As illustrated in Fig. 5,
the content on the far left is shifted to the far right, where
we use x1

0 to replace z1:Nt for a better visual effect of its
continuity. During the training process, we also randomly
rotate the training videos along with the motion condition
by a random angle as a data augmentation strategy.
Circular Padding Mechanism. Although the previous la-
tent rotation mechanism achieves semantic continuity at a
macroscopic level, achieving pixel-level continuity is chal-
lenging. Therefore, in the inference process, we adopt a
mechanism of circular padding by modifying the padding
method of the convolution layers. We observe that the early
stages of 360◦ video generation often involve layout mod-
eling, while the later stages focus on detail completion. To
maintain the stable video generation quality of 360DVD, we
only implement the circular padding mechanism in the late
⌊T
2 ⌋ steps of a total of T denoising steps.

4. Experiment

4.1. Implementation Details

Training Settings. We choose Stable Diffusion v1.5 and
Motion Module v14 as our base model. We utilize the
panoramic optical flow estimator PanoFlow [45] to generate
motion conditions. We train the 360-Adapter using the pro-
posed WEB360 dataset. The resolution is set to 512×1024,
the length of frames to 16, the batch size to 1, the learning
rate to 1 × 10−5, and the total number of training steps to
100k, probability P = 0.2. We use a linear beta schedule as
AnimateDiff, where βstart = 0.00085 and βend = 0.012.
Inference Settings. We use DDIM with 25 sampling steps,
and the scale for text guidance is 7.5, the angle θ = π/2. We
collect several personalized Stable Diffusion models from
CivitAI to verify the effectiveness and generalizability of
our method, including Realistic Vision, Lyriel, ToonYou,
and RCNZ Cartoon.
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“the top of a snow covered mountain range, with the sun shining over it”
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“a group of hot air balloons flying over a green field under cloudy blue sky”
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“a green island in the middle of the ocean, filled with stars in the sky”

“a view of fireworks exploding in the night sky over a city, as seen from a plane”

Figure 6. Qualitative comparisons with baseline methods. 360DVD successfully produces stable and high-quality panorama video over
various prompts while other methods are failed.

Figure 7. Qualitative comparisons of optical flow. 360DVD generates panorama videos with reasonable motion patterns consistent with
the conditioned optical flow.

4.2. Qualitative Results

Due to space limitations, we only display several frames of
each video. We strongly recommend readers refer to our
project page for more results and better visual quality.

Prompt-guided Panorama Video Generation. We present
several prompt-guided 360◦ panorama video generation re-
sults across different personalized models in Fig. 1. The
figure shows that our method successfully turns person-
alized T2I models into panorama video generators. Our
method can produce impressive generation results ranging
from real to cartoon styles, from natural landscapes to cul-
tural scenery. This success is attributed to the fact that our

method preserves the image generation priors and temporal
modeling priors learned by SD and AnimateDiff on large-
scale datasets.

Motion-guided Panorama Video Generation. We show-
case panoramic video generation results guided by three
typical optical flow maps, as shown in Fig. 7. The opti-
cal flow maps in the first row indicate the primary motion
areas in the Arctic, where we can observe significant move-
ment of clouds in the sky. The optical flow maps in the
second row and third row indicate motion areas primarily in
the Antarctic, where we can see the movement of trees and
hot air balloons near the Antarctic.
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Video Criteria Panorama Criteria

Index Methods Graphics Quality Frame Consistency End Continuity Content Distribution Motion Pattern

A AnimateDiff 11.3% 15.3% 5.3% 4.8% 4.4%
B A+LoRA 14.1% 10.5% 6.0% 12.1% 6.5%
C B+360ET 23.0% 9.7% 16.9% 16.1% 14.5%
D Ours 51.6% 64.5% 71.8% 67.0% 74.6%

Table 1. User preference studies. More raters prefer videos generated by our 360DVD, especially over panorama criteria including if
generated videos have left-to-right continuity, the panorama content distribution, and the panorama motion pattern.

4.3. Comparison

We compare our results with native AnimateDiff, Animate-
Diff with a LoRA for panorama image generation from Civ-
itAI named LatentLabs360, AnimateDiff with panoramic
LoRA, and our proposed 360 Enhancement Techniques
(loss excepted). We can observe that the results gener-
ated by the native AnimateDiff have a very narrow field
of view, which does not align with the content distribu-
tion of panoramic videos. When AnimateDiff is augmented
with panoramic LoRA, it produces videos with a broader
field of view; however, the two ends of videos lack conti-
nuity, and object movements are highly random. Our pro-
posed 360ET method significantly enhances the continuity
between two ends of the videos but fails to address issues
such as non-compliance with panoramic motion patterns
and poor cross-frame consistency. Notably, our 360DVD
can generate videos that best adhere to the content distri-
bution and motion patterns of panoramic videos. We are
pleased to discover that, thanks to the high-quality train-
ing data provided by WEB360, the videos generated by
360DVD exhibit more realistic colors and nuanced lighting,
providing an immersive experience.

4.4. Ablation Study

We primarily conducted ablation studies on the proposed
360 Text Fusion strategy, the pseudo-3D layer in the 360-
Adapter, and the latitude-aware loss, as illustrated in Fig. 8.
Given the prompt “a car driving down a street next to a for-
est”, the first row without 360TF can not generate the car
because of low-quality captions in the training process. The
second row without pseudo-3D layer can generate a car, but
due to the lack of temporal modeling, the results exhibit
flickering. The third row without latitude-aware loss can
produce relatively good results, but it still falls slightly short
in terms of clarity, field of view, and other aspects compared
to the last row with the complete 360DVD.

4.5. User Study

31 participants were surveyed to evaluate the graphics qual-
ity, cross-frame consistency, left-right continuity, content
distribution, and motion patterns of 8 sets of generated
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“a car driving down a street next to a forest”

Figure 8. Ablation studies on 360 Text Fusion (360TF), pseudo-
3D layer in 360-Adapter (Pseudo-3D), and latitude-aware loss
(Lat. Loss).

results. For each criterion, they selected the video they
deemed most fitting for the theme of high-quality 360-
degree panoramic videos. The data presented in Table 1 in-
dicates that our model outperforms the other three methods
significantly across all five dimensions. Simultaneously, our
proposed 360ET can remarkably improve video quality, and
left-right continuity, solely based on the native AnimateDiff
and panoramic LoRA.

5. Conclusion
In this paper, we introduce 360DVD, a pipeline for
controllable 360◦ panorama video generation. Our
framework leverages text prompts and motion guid-
ance to animate personalized T2I models. Utilizing
the proposed WEB360 dataset, 360-Adapter, and 360
Enhancement Techniques, our framework can generate
videos that adhere to the content distribution and motion
patterns in real captured panoramic videos. Extensive
experiments demonstrate our effectiveness in creating
high-quality panorama videos with various prompts
and styles. We believe that our framework provides a
simple but effective solution for panoramic video gener-
ation, and leads to inspiration for possible future works.
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