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Abstract

3D Morphable Models (3DMMs) provide promising 3D
face reconstructions in various applications. However, ex-
isting methods struggle to reconstruct faces with extreme
expressions due to deficiencies in supervisory signals, such
as sparse or inaccurate landmarks. Segmentation infor-
mation contains effective geometric contexts for face re-
construction. Certain attempts intuitively depend on dif-
ferentiable renderers to compare the rendered silhouettes
of reconstruction with segmentation, which is prone to is-
sues like local optima and gradient instability. In this pa-
per, we fully utilize the facial part segmentation geometry
by introducing Part Re-projection Distance Loss (PRDL).
Specifically, PRDL transforms facial part segmentation into
2D points and re-projects the reconstruction onto the im-
age plane. Subsequently, by introducing grid anchors and
computing different statistical distances from these anchors
to the point sets, PRDL establishes geometry descriptors
to optimize the distribution of the point sets for face re-
construction. PRDL exhibits a clear gradient compared
to the renderer-based methods and presents state-of-the-
art reconstruction performance in extensive quantitative
and qualitative experiments. Our project is available at
https://github.com/wang-zidu/3DDFA-V3.

1. Introduction

Reconstructing 3D faces from 2D images is an essential
task in computer vision and graphics, finding diverse appli-
cations in fields such as Virtual Reality (VR), Augmented
Reality (AR), and Computer-generated Imagery (CGI), etc.
In applications like VR makeup and AR emoji, 3DMMs

*Corresponding author: Xiangyu Zhu

Input Ours

Input Ours

Matching

Matching

Segmentation

3D Face

Segmentation

3D Face

Target Points

Source Points

Source Points

Target Points

Figure 1. We introduce Part Re-projection Distance Loss (PRDL)
for 3D face reconstruction, leveraging the geometric guidance pro-
vided by facial part segmentation. PRDL enhances the alignment
of reconstructed facial features with the original image and excels
in capturing extreme expressions.

[5] are commonly employed for precise facial feature posi-
tioning and capturing expressions. One of the most critical
concerns is ensuring that the reconstructed facial compo-
nents, including the eyes, eyebrows, lips, etc., seamlessly
align with their corresponding regions in the input image
with pixel-level accuracy, particularly when dealing with
extreme facial expressions, as shown in Fig. 1.

Although current methods [11, 14, 17, 19, 25] have made
notable strides in face reconstruction, some issues persist.
On the one hand, existing works often rely on landmarks
[17, 60] and photometric-texture [12, 45] to guide face re-
construction. In the case of extreme facial expressions,
landmarks are sparse or inaccurate and the gradient from
the texture loss cannot directly constrain the shape [59],
posing a challenge for existing methods to achieve precise
alignment of facial features in 3D face reconstruction, as
depicted in Fig. 2(a). On the other hand, many methods
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primarily adopt 3D errors as a quality metric, overlooking
the precise alignment of facial parts. As shown in Fig. 2(b),
when evaluating the REALY [7] benchmark in the eye re-
gion, comparing the results of 3DDFA-v2 [17] and DECA
[14], a lower 3D region error may not lead to better 2D re-
gion alignment. We believe in the potential for a more com-
prehensive utilization of the geometry information inherent
in each facial part segmentation to guide 3D face recon-
struction, addressing the issues mentioned above.

Facial part segmentation [24, 31, 32, 34] has been well
developed, offering precise geometry for each facial feature
with pixel-level accuracy. Compared with commonly used
landmarks, part segmentation provides denser labels cover-
ing the whole image. Compared with photometric texture,
part segmentation is less susceptible to lighting or shadow
interference. Although facial part segmentation occasion-
ally appears in the process of 3D face reconstruction, it is
not fully utilized. For instance, it only serves to enhance
the reconstruction quality of specific regions [25, 48], or
to distinguish the overall texture location for photometric-
texture-loss [26], without delving into the specifics of facial
parts. Attempts [33, 56] to fit 3D parts with the guidance
of segmentation information rely on differentiable render-
ers [15, 42, 46] to generate the silhouettes of the predicted
3D facial regions and optimize the difference between the
rendered silhouettes and the 2D segmentation through In-
tersection over Union (IoU) loss. However, these render-
ers fail to provide sufficient and stable geometric signals
for face reconstruction due to local optima, rendering error
propagation, and gradient instability [22].

This paper leverages the precise and rich geometric in-
formation in facial part silhouettes to guide face reconstruc-
tion, thereby improving the alignment of reconstructed fa-
cial features with the original image and excelling in re-
constructing extreme facial expressions. Fig.1 provides
an overview of the proposed Part Re-projection Distance
Loss (PRDL). Firstly, PRDL samples points within the seg-
mented region and transforms the segmentation information
into a 2D point set for each facial part. The 3D face recon-
struction is also re-projected onto the image plane and trans-
formed into 2D point sets for different regions. Secondly,
PRDL samples the image grid anchors and establishes ge-
ometric descriptors. These descriptors are constructed by
using various statistical distances from the anchors to the
point set. Finally, PRDL optimizes the distribution of the
same semantic point sets, leading to improved overlap be-
tween the regions covered by the target and predicted point
sets. In contrast to renderer-based methods, PRDL exhibits
a clear gradient. To facilitate the use of PRDL, we provide a
new 3D mesh part annotation aligned with semantic regions
in 2D face segmentation [24, 55], which differs from the
existing annotations [30, 49], as shown in Fig.2(c). Besides
the drawbacks of supervisory signals, the challenge of han-

Bad region alignment Bad region alignment Good region alignment

1.441.881.753D region error (mm) ↓
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Figure 2. Drawbacks of existing research and our results. (a)
Present researches fail to reconstruct extreme expressions and per-
form bad region alignment. (b) Inconsistencies between 3D errors
and 2D alignments, such as the eye region in this case. (c) Ge-
ometric optimization of each semantically consistent part is only
achievable through our annotations.

dling extreme expressions arises from data limitations. To
boost studies and address the lack of emotional expression
(e.g., closed-eye, open-mouth, frown, etc.), we synthesize
a face dataset using the GAN-based method [24]. To high-
light the performance of region overlapping, we propose a
new benchmark to quantify the accuracy of 3D reconstruc-
tion parts cling to their corresponding image components on
the 2D image plane. Our main contributions are as follows:
• We introduce a novel Part Re-projection Distance Loss

(PRDL) to comprehensively utilize segmentation infor-
mation for face reconstruction. PRDL transforms the tar-
get and prediction into semantic point sets, optimizing the
distribution of point sets to ensure that the reconstructed
regions and the target share the same geometry.

• We introduce a new synthetic face dataset including
closed-eye, open-mouth, and frown expressions, with
more than 200K images.

• Extensive experiments show that the results with PRDL
achieve excellent performance and outperform the ex-
isting methods. The data and code are available at
https://github.com/wang-zidu/3DDFA-V3.

2. Related Work

2D-to-3D Losses for 3D Face Reconstruction. Landmark
loss [11, 17, 60] stands out as the most widely employed
and effective supervised way for face reconstruction. Some
studies [20, 37] reveal that it can generate 3D faces under
the guidance of sufficient hundreds or thousands landmarks.
Photometric loss is another commonly used loss involving
rendering the reconstructed mesh with texture into an image
and comparing it to the original input. Some researchers fo-
cus on predicting the facial features that need to be fitted
while excluding occlusions [12, 45]. The photometric loss
is susceptible to factors like texture basis, skin masks, and
rendering modes. It emphasizes overall visualization and
may not effectively constrain local details. Perception loss
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Figure 3. Overview of Part Re-projection Distance Loss (PRDL). (a): Transforming facial part segmentation into target point sets {Cp}.
(b): Re-projecting V3d(α) onto the image plane to obtain predicted point sets {V p

2d(α)}. (c): Given anchors A and distance functions
F , the core idea of PRDL is to minimize the difference of every statistical distance from any ai ∈ A to the V p

2d(α) or Cp, leading to
enhanced overlap between the regions covered by the target and predicted point sets.

[11, 14, 16] distinguishes itself from image-level methods
by employing pre-trained deep face recognition networks
[9] to extract high-level features from the rendered recon-
struction results. These features are then compared with the
features from the input. Lip segmentation consistency loss
[48] employs mouth segmentation to help reconstruction.

Differentiable Silhouette Renderers. The development of
differentiable renderers [15, 42, 46] has enriched the super-
vised methods for 3D face reconstruction. These pipelines
make the rasterization process differentiable, allowing for
the computation of gradients for every pixel in the rendered
results. By combining IoU loss with segmentation infor-
mation, the silhouettes produced by these renderers have
been shown to optimize 3D shapes [8, 33, 56]. These ras-
terization processes typically rely on either local [21, 36]
or global [8, 33] geometric distance-based weighted aggre-
gation, generating silhouettes by computing a probability
related to the distance from pixels to mesh faces. However,
to obtain a suitable sharp silhouette, the weight contribution
of each position to the rendered pixel will decrease sharply
with the increase of distance, and the gradient generated by
the shape difference at the large distance will be small or
zero, which makes it difficult to retain accurate geometry
guidance. These renderers also encounter issues such as
rendering error propagation and gradient instability [22].

Synthetic Dataset. Synthetic data [41, 52, 58] is commonly
used to train 3D face reconstruction models [11, 17, 25].
However, these synthetic faces either prioritize the di-
versification of background, illumination, and identities
[41, 52], or concentrate on pose variation [58], contribut-
ing to achieve good results in reconstructing natural facial
expressions but struggling to reconstruct extreme expres-
sions. To overcome these limitations and facilitate the re-
lated research, this paper adopts a GAN-based method [24]
to synthesize realistic and diverse facial expression data, in-
cluding closed eyes, open mouths, and frowns.

3. Methodology
3.1. Preliminaries

We conduct a face model, an illumination model, and a
camera model based on [6, 11, 14, 17].

Face Model. The vertices and albedo of a 3D face is deter-
mined by the following formula:

V3d(α) = R(αa)(V +αidAid +αexpAexp) +αt

Talb(α) = T +αalbAalb

, (1)

where V3d(α) ∈ R3×35709 is the 3D face vertices, V is the
mean shape. Talb(α) ∈ R3×35709 is the albedo, T is the
mean albedo. Aid, Aexp and Aalb are the face identity
vector bases, the expression vector bases and the albedo
vector bases, respectively. αid ∈ R80, αexp ∈ R64 and
αalb ∈ R80 are the identity parameter, the expression pa-
rameter and the albedo parameter, respectively. αt ∈ R3

is the translation parameter. R(αa) ∈ R3×3 is the rotation
matrix corresponding to pitch/raw/roll angles αa ∈ R3.

Camera. We employ a camera with a fixed perspective
projection, which is same as [11, 25]. Using this cam-
era to re-project V3d(α) into the 2D image plane yields
V2d(α) ∈ R2×35709.

Illumination Model. Following [14], we adopt Spherical
Harmonics (SH) [40] for the estimation of the shaded tex-
ture Ttex(α):

Ttex(α) = Talb(α)⊙
9∑

k=1

αk
shΨk(N) , (2)

where ⊙ denotes the Hadamard product, N is the sur-
face normal of V3d(α), Ψ : R3 → R is the SH basis
function and αsh ∈ R9 is the corresponding SH parameter.
In summary, α = [αid,αexp,αa,αt,αsh] is the undeter-
mined parameter.
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3.2. Point Transformation on the Image Plane

Transforming Segmentation to 2D Points. For an in-
put RGB face image I ∈ RH×W×3, the prediction of
a face segmentation method can be represented by a
set of binary tensors M = {Mp|p ∈ P }, where P =
{left eye, right eye, left eyebrow, right eyebrow, up lip,
down lip, nose, skin} and Mp ∈ {0, 1}H×W . Specifi-
cally, M

(x,y)
p = 1 only if the 2D pixel position (x, y)

of Mp belongs to a certain face part p, and otherwise
M

(x,y)
p = 0. M can be transformed into a set of point sets

C ={Cp|p ∈ P }, where Cp = {(x, y)| if M
(x,y)
p = 1}.

In this step, we employ DML-CSR [55] for face segmen-
tation, excluding the ear regions, filtering out noise from
the segmentation, and dynamically removing the forehead
region above the eyebrows based on their position. This
procedure is illustrated in Fig. 3(a). More implementation
details are provided in the supplemental materials.

Facial Part Annotation on 3D Face Model. Our objec-
tive is to leverage {Cp} for guiding 3D face reconstruc-
tion. Thus, we should ensure that the reconstructed mesh
can be divided into regions consistent with the semantics of
the 2D segmentation. Due to the topological consistency
of the face model, every vertex on the mesh can be anno-
tated for a specific region. However, existing annotations
[27, 30, 49] do not conform to widely accepted 2D face
segmentation definitions [24, 32], as shown in Fig.2(c). To
address this misalignment, we introduce new part annota-
tions on both BFM [5] and FaceVerse [51]. We partition the
vertices based on their indices. i ∈ Indp indicates that the
i-th vertex (denoted as v) on the mesh belongs to part p.
{Indp|p ∈ P } can be obtained by:

Iseg = Seg(Render(V3d, T ex))
i ∈ Indp, if Iseg(v) ∈ p

, (3)

where Render(·) generates an image by applying texture
on the mesh, and Seg(·) is responsible for segmenting the
rendered result. We employ different shape V3d and varying
textures Tex to label every v ∈ V3d with hand-crafted mod-
ification. The annotation {Indp} is pre-completed offline
in the training process. Consequently, we utilize {Indp} to
transform the re-projection V2d(α) into semantic point sets
{V p

2d(α)|p ∈ P }. Besides, the upper forehead region situ-
ated above the eyebrows is dynamically excluded to ensure
consistency with target. Points obstructed by hair are re-
moved based on {Cp}, as shown in Fig. 3(b). Please refer
to supplemental materials for annotation details.

3.3. Part Re-projection Distance Loss (PRDL)

This section describes the design of PRDL, focusing on
constructing geometric descriptors and establishing the re-
lation between the prediction {V p

2d(α)} and the ground

truth {Cp} for a given p ∈ P , which is proved instrumental
for face reconstruction.

In a more generalized formulation, considering two point
sets C = {c1, c2, ..., c|C|} and C∗ = {c∗1, c∗2, ..., c∗|C∗|},
we aim to establish geometry descriptions by quantifying
shape alignment between them for reconstruction. C and
C∗ may not possess the same number of points, and their
points lack correspondence. Instead of directly searching
the correspondence between the two sets, we use a set of
fixed points as anchors A = {a1,a2, ...,a|A|} and a collec-
tion of statistical distance functions F = {f1, f2, ..., f|F|}
to construct geometry description tensors Γ(C,A,F) ∈
R|A|×|F | and Γ(C∗,A,F) ∈ R|A|×|F | for C and C∗, re-
spectively (denoted as Γ and Γ∗ for brevity). The value
Γ(i, j) and Γ∗(i, j) at the position (i, j) are determined by:

{
Γ(i, j) = fj(C,ai)

Γ∗(i, j) = fj(C
∗,ai)

, (4)

where every function fj(B, b) ∈ F describes the distance
from a single point b to a set of points B, and fj(B, b) can
be any statistically meaningful distance.

When fitting 3DMM to the segmented silhouettes for
part p, we set C = V p

2d(α) and C∗ = Cp with speci-
fied anchors A and a set of distance functions F . Then
we calculate their corresponding geometry descriptor ten-
sors Γp = Γ(V p

2d(α),A,F) and Γ∗
p = Γ(Cp,A,F). Part

Re-projection Distance Loss (PRDL) Lprdl is defined as:

Lprdl =
∑
p∈P

wp
prdl||Γp − Γ∗

p||22 , (5)

where wp
prdl is the weight of each part p. In this paper, we

set F as a collection of the nearest (fmin), furthest (fmax),
and average (fave) distance, i.e. F = {fmax, fmin, fave}.
We set A as a H × W mesh grid. Then for ∀ai ∈ A, the
optimization objective of Lprdl is to:

 min ||fmin(Cp,ai)− fmin(V
p
2d(α),ai)||22

min ||fmax(Cp,ai)− fmax(V
p
2d(α),ai)||22

min ||fave(Cp,ai)− fave(V
p
2d(α),ai)||22

. (6)

This process is shown in Fig. 3(c). When p = left eye,
PRDL minimizes the length difference between the indigo
and orange lines (also as shown in Fig. 6(a) when p =
right eyebrow). The upper right corner of Fig. 3(c) is a
visualization of Γleft eye with the last channel separately
by reshaping it from R|A|×|F | to RH×W×|F |. It is worth
note that, the points number in V p

2d(α), Cp and A can be
reduced by using Farthest Point Sampling (FPS) [38] to de-
crease computational costs.
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Figure 4. Synthesize emotional expression data.

Figure 5. Examples of our synthetic face dataset.

3.4. Overall Losses

To reconstruct a 3D face from image I , we build frame-
works to minimize the total loss L as follows:

L = λprdlLprdl + λlmkLlmk + λphoLpho

+ λperLper + λregLreg,
(7)

where Llmk is the landmark loss, we use detectors to lo-
cate 240 2D landmarks for Llmk and adopt the dynamic
landmark marching [57] to handle the non-correspondence
between 2D and 3D cheek contour landmarks arising from
pose variations. The photometric loss Lpho and the percep-
tual loss Lper are based on [11, 14]. Lreg is the regular-
ization loss for α. λprdl = 0.8e − 3, λlmk = 1.6e − 3,
λpho = 1.9, λper = 0.2, and λreg = 3e− 4 are the balance
weights. Lprdl and Llmk are normalized by H ×W .

3.5. Synthetic Emotional Expression Data

Benefiting from recent developments in face editing re-
search [24, 47], we can generate realistic faces through seg-
mentation M . We aim to mass-produce realistic and di-
verse facial expression data. To achieve this, we start by
obtaining the segmentation M and landmarks lmk of the
original image I with a segmentation method [55] and a
landmark detector, respectively. Leveraging the location of
landmarks lmk, we apply affine transformation with var-
ious patterns onto the segmentation M , resulting in M ′.
Subsequently, M ′ is fed into the generative network [24]
to produce a new facial expression image I ′, as depicted in
Fig. 4. Based on CelebA [35] and CelebAMask-HQ [24],
we have generated a dataset comprising more than 200K
images, including expressions such as closed-eye, open-
mouth, and frown, as depicted in Fig. 5. This dataset will
be publicly available to facilitate research.

Figure 6. (a): p = right eyebrow when the closest distance (fmin)
is compared. (b): The gradient descent of PRDL for (a). (c):
Γ∗

p is the regression target of PRDL in fmin channel. (d): Mp

is the regression target of renderer-based methods. Γ∗
p is more

informative than Mp.

4. Analysis of PRDL and Related Methods

The Gradient of PRDL. With anchors and distance func-
tions as the bridge, PRDL establishes the geometry de-
scriptions of the two point sets. In Fig. 6, we take p =
right eyebrow as an example to analyze the gradient of
PRDL. When considering fmin and a specific anchor ai ∈
A, fmin identifies cm and vn from Cp and V p

2d(α), respec-
tively, by selecting the ones closest to ai:

m = argmin
j

||ai − cj ||2, cj ∈ Cp, (8)

n = argmin
j

||ai − vj ||2, vj ∈ V p
2d(α). (9)

Under the definition of PRDL, the corresponding energy
function Ei,m,n for ai, cm and vn is:

Ei,m,n = (||ai − cm||2 − ||ai − vn||2)2

= (di,m − di,n)
2,

(10)

where di,m = ||ai−cm||2, di,n = ||ai−vn||2. The gradient
descent of Ei,m,n on vn is:

−∂Ei,m,n

∂vn
= 2(vn − ai)(

di,m

di,n
− 1). (11)

The physical explanation of Eqn. 11 is comprehensible
and concise: the direction of −∇Ei,m,n always aligns with
the line connecting ai and vn, if di,n > di,m, the direction
of −∇Ei,m,n is from vn to ai (as shown in Fig. 6(b)), and
vice versa. In the context of gradient descent, the effect of
−∇Ei,m,n is to make di,n = di,m as much as possible.
Given A and fmin, the gradient descent of Lprdl on vn is
the aggregation of all anchors:

−∂Lprdl

∂vn
= −wp

prdl

∑
i,m

∂Ei,m,n

∂vn

= −wp
prdl

∑
i,m

∇Ei,m,n.
(12)

The scenario with fmax is similar to that of fmin, with
the only distinction lying in the selection of points. fmax
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Table 1. Quantitative comparison on Part IoU benchmark. The best and runner-up are highlighted in bold and underlined, respectively.
R eye denotes the right eye, and similar definitions for the rest are omitted.

Methods
Part IoU(%)↑

R eye L eye R brow L brow Nose Up lip Down lip
avg.± std. avg.± std. avg.± std. avg.± std. avg.± std. avg.± std. avg.± std. avg.

PRNet [13] 65.87±16.36 66.73±14.74 61.46±15.89 59.18±16.31 83.34±4.57 50.88±18.35 58.16±17.72 63.66
MGCNet [45] 64.42±16.02 64.81±16.91 55.25±15.29 61.30±15.58 87.40±3.51 41.16±19.70 66.22±13.83 62.94
Deep3D [11] 71.87±12.00 70.52±12.19 64.66±11.31 64.70±11.98 87.69±3.51 61.21±15.60 65.95±13.08 69.51

3DDFA-v2 [17] 61.39±15.98 57.51±18.09 43.38±25.25 38.85±24.38 80.83±4.92 50.20±17.17 59.01±15.23 55.88
HRN [25] 73.31±11.39 73.61±11.50 67.91±8.26 66.78±10.27 90.00±2.60 63.80±14.16 66.40±11.94 71.69

DECA [14] 58.09±21.40 62.56±19.41 55.27±19.49 51.86±19.93 86.54±9.11 56.39±16.96 62.81±17.66 61.93
Ours (w/o Lprdl) 70.72±9.44 75.69±10.79 71.11±8.58 71.69±8.73 88.35±4.60 57.26±15.97 69.71±10.68 72.08

Ours (w/o Syn. Data) 73.81±10.12 72.55±10.68 72.24±9.23 70.90±8.55 88.71±4.11 57.43±14.37 69.87±10.54 72.22
Ours 74.55±11.46 76.06±10.32 74.00±7.72 74.05±7.70 89.06±3.53 58.16±12.76 70.86±10.34 73.82

Table 2. Quantitative comparison on Realy benchmark. Lower values indicate better results. The best and runner-up are highlighted in
bold and underlined, respectively.

Frontal-view (mm) ↓ Side-view (mm) ↓
Nose Mouth Forehead Cheek Nose Mouth Forehead CheekMethods

avg.± std. avg.± std. avg.± std. avg.± std.
avg.

avg.± std. avg.± std. avg.± std. avg.± std.
avg.

PRNet [13] 1.923±0.518 1.838±0.637 2.429±0.588 1.863±0.698 2.013 1.868±0.510 1.856±0.607 2.445±0.570 1.960±0.731 2.032
MGCNet [45] 1.771±0.380 1.417±0.409 2.268±0.503 1.639±0.650 1.774 1.827±0.383 1.409±0.418 2.248±0.508 1.665±0.644 1.787
Deep3D[11] 1.719±0.354 1.368±0.439 2.015±0.449 1.528±0.501 1.657 1.749±0.343 1.411±0.395 2.074±0.486 1.528±0.517 1.691

3DDFA-v2 [17] 1.903±0.517 1.597±0.478 2.447±0.647 1.757±0.642 1.926 1.883±0.499 1.642±0.501 2.465±0.622 1.781±0.636 1.943
HRN [25] 1.722±0.330 1.357±0.523 1.995±0.476 1.072±0.333 1.537 1.642±0.310 1.285±0.528 1.906±0.479 1.038±0.322 1.468

DECA [14] 1.694±0.355 2.516±0.839 2.394±0.576 1.479±0.535 2.010 1.903±1.050 2.472±1.079 2.423±0.720 1.630±1.135 2.107
Ours (w/o Lprdl) 1.671±0.332 1.460±0.474 2.001±0.428 1.142±0.315 1.568 1.665±0.349 1.297±0.400 2.016±0.448 1.134±0.342 1.528

Ours (w/o Syn. Data) 1.592±0.327 1.339±0.433 1.823±0.407 1.119±0.332 1.468 1.628±0.320 1.229±0.433 1.872±0.407 1.091±0.312 1.455
Ours 1.586±0.306 1.238±0.373 1.810±0.394 1.111±0.327 1.436 1.623±0.313 1.205±0.366 1.864±0.424 1.076±0.315 1.442

also has the capability to constrain V p
2d(α) within the con-

fines of Cp. fave acts on the entire V p
2d(α), striving to bring

its centroid as close as possible to the centroid of Cp. The
introduction of additional anchors and the integration of di-
verse statistical distances in PRDL prevent the optimization
from local optima and provide sufficient geometric signals.
Please refer to supplementary materials for more details.

PRDL vs. Renderer-Based Loss: An intuitive approach
for fitting segmentation is to use the renderer-based IoU
loss, where differentiable silhouette renderers play a crucial
role. Consequently, we delve into the distinctions between
PRDL and renderers. We can reshape Γ∗

p (R|A|×|F | →
RH×W×|F |) to visualize it with the last channel separately.
Fig. 6(c) illustrates the visualization of the fmin channel for
p = right eyebrow, while Fig. 6(d) represents the silhouette
rendered by [33] or [8]. In comparison with the regression
target Mp utilized in renderer-based methods, Γ∗

p in PRDL
is more informative and more conducive to fitting. Please
refer to supplementary materials for more details.

Furthermore, considering existing theoretical analyses
[8, 22, 56], PRDL exhibits several notable advantages.
First, in these renderers, all triangles constituting the ob-
ject influence every pixel within the silhouettes, making it
intricate to isolate specific geometric features. In contrast,
fmin or fmax in PRDL matches the nearest or furthest point
on the object, allowing for a more straightforward mea-
surement of the shape’s boundary characteristics. Secondly,
these renderers either neglect pixels outside any triangles of

the 3D object or assign minimal weights to them, emphasiz-
ing the rendered object region. However, this operation is
equivalent to selectively choosing anchors A in the interior
of the rendered shape, while the external anchors are either
not chosen or treated differently by assigning small weights,
thereby diminishing descriptive power. In Eqn. 11, Eqn. 12
and Fig. 6(b), we have analyzed that external anchors play a
significant role in the fitting process. Ablation study (Fig.8)
also proves that PRDL is more effective than renderer-based
methods like [8, 33, 56].

5. Experiments
5.1. Experimental Settings

Reconstruction Frameworks. We implement PRDL based
on PyTorch [39] and PyTorch3D [42]. We use ResNet-
50 [18] as the backbone to predict α. The input image is
cropped and aligned by [10], and resized into 224× 224.

Data. The face images are from publicly available datasets:
Dad-3dheads [37], CelebA [35], RAF-ML [28], RAF-DB
[29] and 300W [43]. Our synthetic images are mainly from
[24, 35]. We use [58] for face pose augmentation. In total,
our training data contained about 600K face images. We
employ DML-CSR [55] to predict 2D face segmentation.

Implementation Details. Considering the inherent feature
of 2D segmentation, if part p of a face is invisible or oc-
cluded, it may lead to Cp = ∅. In such a situation during
training, we set wp

prdl = 0 for these samples. We use Adam
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Figure 7. Qualitative comparison with the other methods. Our method achieves realistic reconstructions, particularly in the eye region.

[23] as the optimizer with an initial learning rate of 1e− 4.
We use Farthest Point Sampling (FPS) [38] to reduce the
point number of V skin

2d (α) and Cskin to 3000, reducing
computational consumption. Please refer to supplemental
materials for more details.

5.2. Metric

In various VR/AR applications, 3DMMs are crucial in cap-
turing facial motions or providing fine-grained regions cov-
ering facial features. One crucial objective in such applica-
tions is to ensure the alignment of overlapping facial parts
between prediction and input. Widely used benchmarks
[7, 44] typically rely on the 3D accuracy performance of
reconstructions. However, there are instances where incon-
sistencies arise between 3D errors and 2D alignments. As
shown in Fig.2(b), comparing with 3DDFA-v2 [17], DECA
[14] have better 2D eye region overlapping IoU (70.29%
vs. 39.37%) but a higher 3D forehead error (1.88mm vs.
1.75mm). To address this, we introduce Part IoU to em-
phasize the performance of overlap.

Part IoU is a new benchmark to quantify how well the part

reconstruction V p
3d(α) aligns with their corresponding parts

from the original face. The core idea is to measure the over-
lap of facial components between the reconstruction and the
original image using IoU. The ground truth is a binary ten-
sor {Mp} (as defined above). We render V3d(α) with a
mean texture as an image, generate the predicted segmenta-
tion {Mpred

p } with [55]. The use of mean texture focuses
the metric more on overlap effects than other factors, mak-
ing it applicable to methods without texture-fitting [13, 17].
Part IoU IoUp of part p can be obtained by:

IoUp = IoU(Mpred
p ,Mp). (13)

MEAD [50] is an emotional talking-face dataset. We test
Part IoU by selecting 10 individuals from MEAD, each con-
tributing 50 random different images. Part IoU measures the
overlap performance between each part of the reconstruc-
tion and the ground truth. More detail is in the supplemental
materials.

REALY [7] benchmark consists of 100 scanned neutral ex-
pression faces, which are divided into four parts: nose,
mouth, forehead (eyes and eyebrows), and cheek for 3D
alignment and distance error calculation.
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Figure 8. Comparison with the renderer-based geometric guidance
of segmentation.

5.3. Qualitative Comparison

We conduct a comprehensive evaluation of our method
with the state-of-the-art approaches, including PRNet [13],
MGCNet [45], Deep3D [11], 3DDFA-V2 [17], HRN [25]
and DECA [14]. The visualization of HRN and DECA
uses the mid-frequency details and coarse shape (denoted as
HRN-m and DECA-c) since their further steps only change
the renderer’s normal map, while no 3D refinement is made.
As shown in Fig. 7, our results excel in capturing extreme
expressions, even better than HRN-m which has fine recon-
struction steps.

5.4. Quantitative Comparison

On both the Part IoU and REALY [7] benchmarks, our re-
sults outperforms the existing state-of-the-art methods. As
shown in Tab. 1, our method is almost always the highest
overlap IoU across various facial parts with 73.82% total
average, demonstrating PRDL enhances the part alignment
of reconstruction. PRDL also performs the best average 3D
error on the REALY benchmark (1.436mm in frontal-view
and 1.442mm in side-view), as shown in Tab. 2.

5.5. Ablation Study

Ablation for PRDL and Synthetic Data. We conduct
quantitative ablation experiments for PRDL and synthetic
data on REALY and Part IoU. As depicted in Table 1 and
Table 2, only introducing PRDL already yields superior re-
sults compared to all other methods (72.22%, 1.468mm,
and 1.455mm). Introducing synthetic data without PRDL
demonstrates a significant improvement in Part IoU, but not
as effectively as PRDL (72.08% vs. 72.22%). Using both
synthetic data and PRDL could lead to the best result.

Compare with the Differentiable Silhouette Renderers.
SoftRas [33] and DIB-R [8] are the two most widely used
renderers, which serve as the basis for PyTorch3D [42] and
Kaolin [15], respectively. Based on the image-fitting frame-
work [1], we use them to render a silhouette of each face
part and calculate the IoU loss with the ground truth. ReDA
[56] is also a renderer-based method using the geometric
guidance of segmentation. Fig.8 shows that PRDL is sig-
nificantly better than these methods. It is essential to em-

Figure 9. Comparison with the other point-driven-based geometric
guidance of segmentation.

phasize that all the results in Fig.8 and Fig.9 do not include
Llmk, Lpho, and Lper.

Compare with the Other Point-Driven Optimization
Methods. One of the key insights of PRDL is transform-
ing segmentation into points. Thus the 3DMM fitting be-
comes an optimization of two 2D point clouds until they
share the same geometry. While an intuitive idea is in-
corporating the point-driven optimization methods like it-
erative closest points (ICP) [2–4] or chamfer distance [53],
these methods are predominantly rooted in nearest-neighbor
principles, and solely opting for the minimum distance po-
tentially leads to local optima. We compare PRDL with ICP
[54], chamfer distance and density aware chamfer distance
[53] based on [1]. Since the ICP distance can be calculated
from target to prediction or vice versa, we provide both
methods. As depicted in Fig.9, PRDL outperforms other
methods, producing outputs that align more accurately with
the desired geometry. This superiority is attributed to the
use of additional anchors and diverse statistical distances
in PRDL. Referring to Fig.8 and Fig.9, PRDL stands out
as the only loss capable of reconstructing effective results
when the segmentation information is used independently.
More comparison is in the supplemental materials.

6. Conclusions
This paper proposes a novel Part Re-projection Distance
Loss (PRDL) to reconstruct 3D faces with the geometric
guidance of facial part segmentation. Analysis proves that
PRDL is superior to renderer-based and other point-driven
optimization methods. We also provide a new emotional
face expression dataset and a new 3D mesh part annotation
to facilitate studies. Experiments further highlight the state-
of-the-art performance of PRDL in achieving high-fidelity
and better part alignment in 3D face reconstruction.
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