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Abstract

This work proposes the first online asymmetric semi-
supervised framework, namely A-Teacher, for LiDAR-based
3D object detection. Our motivation stems from the obser-
vation that 1) existing symmetric teacher-student methods
for semi-supervised 3D object detection have characterized
simplicity, but impede the distillation performance between
teacher and student because of the demand for an identical
model structure and input data format. 2) The offline asym-
metric methods with a complex teacher model, constructed
differently, can generate more precise pseudo labels, but
is challenging to jointly optimize the teacher and student
model. Consequently, in this paper, we devise a different
path from the conventional paradigm, which can harness
the capacity of a strong teacher while preserving the advan-
tages of jointly updating the whole framework. The essence
is the proposed attention-based refinement model that can
be seamlessly integrated into a vanilla teacher. The refine-
ment model works in the divide-and-conquer manner that
respectively handles three challenging scenarios including
1) objects detected in the current timestamp but with sub-
optimal box quality, 2) objects are missed in the current
timestamp but are detected in supporting frames, 3) objects
are neglected in all frames. It is worth noting that even
while tackling these complex cases, our model retains the
efficiency of the online semi-supervised framework. Exper-
imental results on Waymo [38] show that our method out-
performs previous state-of-the-art HSSDA [17] for 4.7 on
mAP (L1) while consuming fewer training resources.

1. Introduction
Recent years have witnessed the rapid development of au-
tonomous driving. The perception algorithm is the starting
point of the whole system. 3D object detection with point
clouds is the predominant part of many perception systems
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Figure 1. Illustration of the teacher-student semi-supervised
framework: a) offline symmetric paradigm, b) offline asymmetric
paradigm, c) online symmetric paradigm, d) the proposed online
asymmetric design.

attributed to the robustness of LiDAR sensors. A plethora of
models have been proposed to improve the efficiency [5, 13,
15, 25, 33, 45] and effectiveness [10, 16, 30, 50, 51, 57] of
point cloud detection methods. Despite evaluation metrics
like mAP [2] being continuously improved, it is still chal-
lenging to handle all cases in real-world scenarios. This
naturally leads to the question: what is the next potential
path for evolving LiDAR-based object detection?

Recent strides in artificial general intelligence (AGI)
like ChatGPT [23] and SAM [11] prove that data-driven
with semi-supervised learning could be a promising answer.
Upon revisiting the developing routes in LiDAR-based 3D
object detection, we also note a burgeoning interest in
semi-supervised approaches within the research commu-
nity. Among them, the teacher-student framework emerges
as the predominant branch, and has developed three main
streams. As illustrated in Fig. 1, based on whether the
teacher model is frozen, the semi-supervise approaches are
divided into offline, i.e., (a) and (b), and online methods
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i.e., (c). The offline one only annotates the unlabeled data
a few times in the whole training process [3], discarding
online updating of the teacher model. Therefore, a power-
ful but complex teacher with a refinement model is recently
exploited to improve the quality of pseudo labels [9, 19]
(Fig. 1(b)). This provides another taxonomy and forms
symmetric and asymmetric architectures, i.e. (a) v.s. (b).

Delving into the three existing frameworks, it is observed
that each of them has pros and cons. The offline symmet-
ric method, i.e., Fig. 1(a), is characterized by its simplicity.
However, its effectiveness is constrained, primarily due to
the limited capacity of the teacher model which is restricted
to the information gleaned from the small amount of labeled
data. The online symmetric method, depicted in Fig.1(c),
represents an enhancement over the offline symmetric coun-
terpart Fig. 1(a) by updating the teacher model. This adap-
tive approach enables the teacher to assimilate knowledge
from unlabeled data [17, 24, 37, 40]. However, to main-
tain training efficiency and meet the demand of EMA [39],
the complexity of the teacher model is constrained, which
generally adopts the same architecture as the student. An-
other different path is the offline asymmetric method, i.e.,
Fig. 1(b), which leverages future frames to augment the
performance of the current timestamp with an auxiliary re-
finement model [9, 19, 29, 48]. To ensure the efficacy of
the refinement model, a powerful but complex multi-object
tracker (MOT) is typically used to refine the box sequences.
Therefore, it is unlikely to jointly train the student, teacher,
and refinement models. A question is: Can we harness the
temporal refinement benefits from asymmetric architecture
while simultaneously facilitating online updates to enable
the teacher to absorb knowledge from unlabeled data?

We show the answer is affirmative by proposing an on-
line asymmetric semi-supervised framework for LiDAR-
based object detection, which seeks to capture the temporal
refinement benefits of offline asymmetric paradigm while
incorporating continuous teacher updates of online symmet-
ric designs. As previously discussed, the barrier to achiev-
ing this goal is the lack of a light refinement model. Hence
in this work, we propose an efficient attention-based refine-
ment model to aggregate temporal information. The refine-
ment model consists of three essential components, each
enhancing the quality of pseudo labels from different per-
spectives. Specifically, the propagation-based aggregation
module refines successfully detected objects in the current
timestamp by propagating the boxes to supporting frames
and then merging box-sequence information. Conversely,
the dreaming-based box aggregation tries to recall the false
negatives by clustering boxes detected in the supporting
frames and verifying their presence in the current times-
tamp. Last but not least, for objects missed in both current
and supporting frames, we introduce spatio-temporal de-
formable aggregation to fuse features from different frames.

The enhanced representations contribute to reducing false
negatives. Importantly, our proposed refinement model dis-
cards the need for complex tracking designs, enabling joint
training with the teacher-student network. By applying the
proposed framework to PV-RCNN [36], the model achieves
improvements of 18.9 L1 mAP on Waymo [38] benchmark
compared with the supervised baseline.

In summary, our main contributions are as follows:
1) We propose an attention-based lightweight refinement
model to improve the quality of pseudo labels generated
by the teacher model; 2) We design an online asymmetric
semi-supervised framework for LiDAR-based object detec-
tion, which can simultaneously absorb the temporal refine-
ment benefits of offline asymmetric paradigm and contigu-
ous joint update in online design; 3) We conduct extensive
experiments to demonstrate the effectiveness of our frame-
work on different single- or multi-frame based methods, in-
cluding PV-RCNN [35], Second [47], and Voxel-RCNN [7].

2. Related Work
2.1. LiDAR-based 3D Object Detection

LiDAR-based object detection plays an essential role in au-
tonomous driving. Recent years have witnessed rapid de-
velopment in this field, and the research interest can be
roughly divided into point-based methods [27, 28, 49, 55],
voxel-based methods [22, 32, 52, 54], and hybrid one that
combines both of them [7, 20]. In particular, PointNet[26]
and PointRCNN[34] directly extract features from the raw
point clouds to effectively retain the geometric information.
VoxelNet[59] convert point clouds into voxels and then effi-
ciently process the voxels with convolution layers [47]. PV-
RCNN [35] and PV-RCNN++ [36] combine the advantages
of the two streams, which can simultaneously guarantee
computational efficiency and flexible receptive field. An-
other stand-alone interest in LiDAR-based object detection
is leveraging temporal information from continuous sen-
sor recording, which benefits location robustness and speed
estimation. DSVT [41] and SST [8] simply concatenate
point clouds of different timestamps. CenterFormer[60]
uses transformer layers to align and fuse bird’s eye view
(BEV) features from different frames. MPPNet [4] uses an
online tracker to link objects in the temporal dimension.

2.2. Semi-Supervised Object Detection

Semi-supervised learning, which aims to absorb nutrients
from both labeled and unlabeled data, has achieved aston-
ishing improvements in recent years. 3D object detection,
especially with LiDAR sensors, benefits a lot from the rapid
development of semi-supervised learning, since it is im-
possible to annotate extremely massive data from vehicles.
Semi-supervised methods thus become economical choices.
The related works can be categorized into two categories,
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Figure 2. Overview of the proposed online asymmetric semi-supervised framework. (1) The vanilla teacher generates the candidate
boxes of t − k, · · · , t + k frames. (2) The efficient refinement model that includes PBA, DBA and STA is proposed to generate pseudo
labels. (3) Merge the pseudo labels from each refinement component and filter the low-quality pseudo labels. (4) The student model is
supervised by the pseudo labels generated by the teacher and refinement model. (5) The teacher is updated with student’s weights by EMA.

where the consistency-based methods [18, 46, 58] apply
different perturbations and augmentations to the input data,
and then optimize the model by minimizing the consistency
loss, and the pseudo-label based methods [1, 14, 37, 43, 44]
first train a teacher with the labeled dataset, then a student
model is trained on the unlabeled dataset which has pseudo
annotated by the teacher.

In particular, SESS [56] designs a consistency loss to op-
timize the model with the input data of different augmenta-
tions. 3DIoUMatch [37, 40] proposes a filtering strategy
to improve performance by filtering out low-quality pseudo
labels. DetMatch [24] simultaneously predicts 2D and 3D
bounding boxes on the unlabeled images and point clouds,
showing that 2D visual tasks also help 3D point cloud object
detection. Proficient Teachers [53] first applies data aug-
mentation to generate multiple point clouds and then uses
teachers from different training periods to predict pseudo
boxes, which improves the recall of pseudo label genera-
tion. HSSDA [17] proposes a hierarchical threshold learn-
ing strategy to separate the pseudo labels for different tasks.
NoiseDet [6] builds the noise-resistant instance supervision
module and pixel-wise feature consistency constraints to
generate and purify pseudo labels. In this work, we for
the first time propose an online asymmetric semi-supervised
framework for LiDAR-based object detection.

3. Methodology
3.1. Preliminary and Overview

Our model employs the teacher-student paradigm to con-
struct a LiDAR-based semi-supervised learning framework.
Given the labeled data Dl = {xl

i,y
l
i}

Nl

i=1 and unlabeled
data Du = {xu

i }
Nu

i=1 (Nu ≫ Nl), the teacher model is
first trained on Dl to generate pseudo labels yu

i on Du, and
then the student model learns knowledge from both Dl and
Du. During training, the teacher model is iteratively up-
dated with exponential moving average (EMA) [39],

θstea ← αθs−1
tea + (1− α)θsstu, (1)

where θtea and θstu represent the parameters of the teacher
and student models, respectively. α is a smoothing coeffi-
cient, s is the training step. In the context of LiDAR-based
3D object detection, the input data x is point cloud scans,
and the label y includes location, size, heading angle (yaw),
and category information of objects.

As shown in Fig 2, we propose an online asymmetric
framework, where the teacher adopts an attention-based re-
finement model to summarize information from past and
future timestamps (supporting frames) with the goal of im-
proving the quality of the pseudo label on the current frame.
Specifically, our semi-supervised framework contains four
essential steps: 1) Firstly, the vanilla teacher, which is a
single-frame detector, predicts bounding boxes for all input
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frames ranging from t−k to t+k. 2) Secondly, the proposed
attention-based refinement model, detailed in Sec. 3.2, ag-
gregates past and future information to refine the detection
results from the vanilla single-frame detector. 3) Thirdly,
a dual-threshold strategy is introduced to filter low-quality
proposals and generate the pseudo labels for training the
student model, which is further elaborated in Sec.3.3. 4)
Lastly, we update the teacher model based on Eq. 1.

3.2. Asymmetric Teacher

This section elaborates on the proposed asymmetric teacher,
dubbed A-Teacher, designed for refining the pseudo labels
generated by the vanilla single-frame detector. As illus-
trated in Fig. 2, A-Teacher consists of three pivotal com-
ponents: 1) the Propagation-based Box Aggregation (PBA)
module focuses on improving the quality of the detected
boxes in the current frame by propagating the boxes to sup-
porting frames and then extracting target-related informa-
tion. 2) the Dreaming-based Box Aggregation (DBA) mod-
ule is introduced to address the false negatives in the current
frame by aggregating detected boxes in supporting frames
as dreaming queries and then verifying their presence in the
current timestamp. The word “dreaming” is used to convey
the idea that DBA creates ex nihilo for the current frame. 3)
the Spatio-Temporal feature Aggregation (STA) module is
proposed to alleviate the objects neglected in both the cur-
rent frame and any supporting frames by fusing point cloud
features from all frames using deformable attention.

3.2.1 Propagation-based Box Aggregation

For objects detected in the current frame, we endeavor to
improve its quality, e.g., heading and size, by fusing its rep-
resentations from both past (t − k ∼ t − 1) and future
(t + 1 ∼ t + k) supporting frames. Prior to merging the
features of a specific object, the prerequisite is to find its
locations in other frames. An intuitive but cost choice is
to use a tracker to assign unique identities to each object.
However, in pursuit of efficiency, we propose realizing this
function by spatial-aware cross-attention.

In specific, given the predicted 3D boxes of each frame,
we first extract the corresponding appearance features using
Voxel RoI pooling [7],

f ji = RoIPooling(bj
i,F

j) ∈ Rh, (2)

where j ∈ (t−k, t+k) indicates a timestamp. bj
i and sparse

voxel features Fj∈ RNj
spa×dspa denote the ith detected box

and voxel feature of the jth frame, respectively. To incor-
porate more geometry and semantic information, we extend
the appearance embedding f ji with the predicted classifica-
tion score sji, object category cji and 3D size bj

i of the box,

f̂ ji = [f ji ,Linear(s
j
i),Linear(c

j
i),Linear(b

j
i)] ∈ Rd, (3)

where Linear is a linear projection layer. [·, ·] indicates con-
catenating the embeddings along the channel dimension.
Then, for a box bt

i in the current frame t, we aggregate its
temporal features by spatial-aware cross-attention,

f̄ ti = Softmax

(
f̂ ti K

j̸=t

√
d
− τ ti D

t
i

)
Vj̸=t, (4)

where Kj̸=t,Vj̸=t ∈ RNj̸=t×d and coefficient τ ti are gener-
ated by mapping the box embeddings (Eq. 3) with a linear
layer on f̂ j̸=t

i and f̂ j=t
i respectively. Softmax denotes soft-

max layer. Dt
i is the distances between bt

i and the boxes
correspond with Kj̸=t and Vj̸=t, which is introduced to in-
ject the spatial relation to attention learning. Finally, we
pass the concatenated features [̂f ti , f̄

t
i ] into linear layers to

obtain the refined classification score ŝti and the offset ∆t
i

of the original box bt
i . Eventually, the box is updated to

Ppba by the predicted offset. Please refer to [13] for more
details about merging bt

i and ∆t
i .

3.2.2 Dreaming-based Box Aggregation

To address objects that were overlooked in the current
timestamp but successfully detected in supporting past or
future frames, we introduce the Dreaming-based Box Ag-
gregation module to mitigate these false negatives. The
essence is propagating the unmatched boxes from the sup-
porting frames to retrieve and confirm their presence in the
current frame. As previously mentioned, one intuitive way
to achieve this goal is using a tracker for box propagation
and association. However, due to its computational cost,
this approach was ruled out as an option. Similar to the
propagation-based box aggregation described in Sec. 3.2.1,
it can also be accomplished through a straightforward cross-
attention between f̂ j̸=t

u ∈ RM×d and Ft (resembling a re-
verse process of Sec. 3.2.1). Nevertheless, it’s important to
note that an object may be detected in different supporting
frames, the mentioned cross-attention between f̂ j̸=t

u and Ft

would introduce redundant computation.
For the sake of efficiency and to encode richer texture

and motion information, we first squeeze the unmatched
boxes in supporting frames to a predefined dreaming queries
Qt

dre ∈ RNdre×d, where Ndre ≪ M . Specifically, we first
conduct cross-attention between Qt

dre and f̂ j̸=t
u ,

Q̄t
dre = Softmax(

Qt
dreK

j̸=t
u√

d
)Vj̸=t

u , (5)

where Kj̸=t
u ,Vj̸=t

u ∈ RM×d are obtained by applying a
Linear layer on f̂ j̸=t

u . The next step is propagating the
dreaming queries to the current frame to recall the unde-
tected boxes. In specific, we project unmatched boxes Bj̸=t

u

to the current timestamp based on transformation matrix
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Et+k→t. Taking the t+ k frame as an example,

Btu = Et+k→tBt+k
u , (6)

where Et+k→t is the transformation matrix that maps the
coordinates between different frames. Given that an in-
stance with the same identity in adjacent supporting frames
may have close spatial locations, their projected boxes in
the current timestamp tend to overlap. We thus employ
Non-Maximum suppression (NMS [31]) on Btu to gener-
ate the sparse pseudo counterpart B̂tu for the current times-
tamp. Subsequently, Voxel RoI pooling and linear layers
are applied to Ft based on B̂tu to obtain the key Kt

pse and
value Vt

pse associated with the pseudo boxes. We enlarge
the boxes to encode more context information. Finally, a
DETR-like decoder is used to predict the new boxes,

Pdba = Decoder(Q̄t
dre,K

t
pse,V

t
pse). (7)

3.2.3 Spatio-Temporal Deformable Aggregation

When dealing with objects located far away from the ego
vehicle or those that are partially occluded, detection based
on a single frame may not be able to obtain sufficient in-
formation. In such seniors, the objects might be omitted in
both current and supporting frames. To address this chal-
lenge, we propose to align the features of multiple frames
to construct a more comprehensive representation of the
objects. To compensate for the motion information, we
align the BEV feature of different temporal frames from the
vanilla teacher to the current timestamp with the transfor-
mation matrix Et′→t,

Ft′→t
bev = Et′→tF

t′

bev ∈ R(L∗dspa)×W×H. (8)

For methods utilizing sparse-conv [47] like our baseline PV-
RCNN [35], we only save the sparse features of the support-
ing frames to save memory. Before the temporal transfor-
mation, we first convert the sparse features to BEV repre-
sentation by padding empty voxels and squeezing the fea-
ture along the height dimension. The transformation matrix
is obtained based on the ego vehicle’s poses. While this ap-
proach is effective for static objects, it is less suitable for
moving objects due to their relative motions. Therefore, we
first predict the offset between the supporting and the cur-
rent timestamp,

O = Conv([Ft−k→t
bev , ...,Ft

bev, ...,F
t+k→t
bev ]). (9)

Then we aggregate the BEV features of different frames via
deformable convolution,

F̂t
bev = DeformConv([Ft−k→t

bev , ...,Ft
bev, ...,F

t+k→t
bev ],O).

(10)
Finally, we apply a center-based detection head [54] to ob-
tain the final detection results Psta.

3.3. Pseudo Label Generation

Given the pseudo boxes generated by our proposed
attention-based refinement modules, the subsequent phase
involves merging and filtering these boxes to retain those
of high quality. First, we design the priority-guided NMS
to eliminate redundant predictions. Specifically, when ex-
ploiting non-maximum suppression, the priority parameter
αi is added to the confidence scores of the predicted boxes
from each refinement module. According to our design
logic, the priority parameters are assigned values of 2, 1,
and 0 for PBA, DBA, and STA, respectively. Then inspired
by HSSDA [17], we introduce a dual-threshold strategy for
each category to selectively choose high-quality boxes for
copy-paste augmentation. In particular, for each category,
we apply thresholds λhigh, λlow on the classification scores
of each candidate box. Objects with a score above λhigh,
are considered more informative and are employed in copy-
paste augmentation, which is crucial for LiDAR-based 3D
detection. Conversely, objects with classification scores
falling below λlow are excluded to guarantee the quality of
pseudo labels. All boxes with higher classification scores
than λlow are retained for semi-supervised training.

3.4. Loss

Loss for the Vanilla Teacher. For the supervised training
on labeled data of the vanilla teacher, the loss function re-
mains consistent with our baseline PV-RCNN [35],

Ll = Lrpn(ỹ,y
l) + Lrcnn(ỹ,y

l), (11)

where ỹ is the prediction and yl is the ground truth of la-
beled data. Lrpn and Lrcnn indicates the losses used in PV-
RCNN [35]. Please refer to PV-RCNN [35] for details.
Loss for the Refinement Model. For the training of the
proposed refinement model on the labeled data, its loss con-
tains three components corresponding to each module,

Lr = Lpba + Ldba + Lsta, (12)

where Lpba, Ldba, Lsta denote losses for the propagation-
based aggregation, dreaming-based aggregation and spatio-
temporal aggregation modules, respectively. Lpba contains
the offset loss Lo

pba and confidence loss Lc
pba,

Lo
pba = SmoothL1(∆,∆gt),

Lc
pba = BinaryCrossEntropy(s, sgt),

(13)

where ∆gt and sgt denote the corresponding label. Please
refer to [13] for more details. We obtain Lpba by summing
the offset and confidence losses Lpba = Lo

pba + Lc
pba.

For Ldba, we utilize the Hungarian algorithm [12] for
object assignment, subsequently followed by the loss com-
putation as outlined in [42]. As in [54], Lsta contains both
heatmap loss and regression loss.
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Method Sensors Veh. (L1) Veh. (L2) Ped. (L1) Ped. (L2) Cyc. (L1) Cyc. (L2) L1
mAP mAPH mAP mAPH mAP mAPH mAP mAPH mAP mAPH mAP mAPH mAP

PV-RCNN[35] L 48.5 46.2 45.5 43.3 30.1 15.7 27.3 15.9 4.5 3.0 4.3 2.9 27.7
DetMatch[24] LC 52.2 51.1 48.1 47.2 39.5 18.9 35.8 17.1 - - - - -
HSSDA†[17] L 56.4 53.8 49.7 47.3 40.1 20.9 33.5 17.5 29.1 20.9 27.9 20.0 41.9
A-Teacher (ours) L 56.5 54.5 49.2 47.5 48.1 27.3 40.8 23.1 35.1 27.1 33.7 26.1 46.6
Improvements - +8.0 +8.3 +3.7 +4.2 +18.0 +11.6 +13.5 +7.2 +30.6 +24.1 +29.4 +23.2 +18.9

Table 1. Comparision with state-of-the-art methods on Waymo. We use † to denote the test-time-augmentation (TTA).

Loss for the Semi-supervised Training. For training on
the unlabeled data, the student model exploits pseudo labels
yu generated by the teacher model for calculating the loss,

Lu =
∑
j

ωjLrpn(ỹ
u
j ,y

u
j ) + ωjLrcnn(ỹ

u
j ,y

u
j ), (14)

where ωj denotes the weight coefficient. In our method, we
consider the classification score as the weight coefficient to
measure the quality of pseudo labels.

4. Experiment
4.1. Experimental Setup

We train and evaluate our method on the large-scale
Waymo [38] dataset, which contains a total of 1150 scenes
with 798 ones for training, and the other 202 ones for val-
idation. For fair comparisons, we use the same labeled
and unlabeled splits as HSSDA [17] in training. Specif-
ically, 7 sequences(1%) (1388 point cloud scenes) of the
798 training sequences are selected as labeled data. We
evaluate our method with the official metrics provided by
Waymo [38] including average precision (AP) and average
precision weighted by heading (APH) in LEVEL 1 (L1)
and LEVEL 2 (L2) for Vehicle, Pedestrian and Cyclist. For
supervised learning, we follow the official setting of PV-
RCNN[35] to train the vanilla teacher on the 1% labeled
data. For the efficiency of training, we only use the previ-
ous and last timestamp (i.e., k = 1) to construct supporting
frames. At the training stage, we use Adam with a one-cycle
learning rate schedule. Specifically, we train the teacher
and refinement model for 30 epochs in labeled data and 10
epochs for semi-supervised learning. The learning rate is
0.01. To enhance the robustness of our refinement model,
we conduct data augmentations including random apply-
ing jittering noise to candidate boxes and random dropping
point clouds within candidate boxes.

4.2. Comparison with State-of-the-arts

We compare the proposed A-Teacher with recent state-of-
the-art (SOTA) semi-supervised approaches that also use
PV-RCNN [35] as the baseline and evaluate on Waymo [38]
dataset. As shown in Tab. 1, our semi-supervised frame-
work obtains gains of 8.0 and 18.9 on Veh.(L1) mAP and

overall mAP over the supervised baseline PV-RCNN [35].
Our method also surpasses previous SOTA methods Det-
Match [24] and HSSDA [17] on almost all metrics. Notably,
DetMatch [24] is multimodal, leveraging camera and Li-
DAR data, while HSSDA [17] employs test time augmenta-
tion (TTA) with random flip, rotate, and scaling for pseudo
label generation. Differently, we neither use visual informa-
tion from images nor exploit complex TTA. Even with such
a simpler setting than DetMatch [24] and HSSDA [17], our
model still shows superior performances, demonstrating the
effectiveness of our framework. Notably, compared with
HSSDA which exploits test time augmentation (TTA), the
proposed method saves 15.9 % training resources, i.e., 71.1
V100 GPU hours of our A-Teacher v.s. 84.6 V100 GPU
hours of HSSDA [17]. Specifically, the computational re-
quirement of our refinement module amounts to 0.37× that
of the teacher model. In comparison, HSSDA [17] employs
test-time augmentation for refinement, incurring a compu-
tational expense that is 2× of the teacher model. In the
following sections, we conduct more experiments to reveal
the significance of each proposed component. The ablation
study is conducted on “1% labeled + 4% unlabeled” setting
unless otherwise specified.

4.3. Component-wise Analysis

To demonstrate the superiority of our online asymmetric
architecture, we intentionally degenerate our model to its
online symmetric and offline asymmetric counterparts. As
depicted in Tab. 2 ②, we remove the refinement model to
construct the online symmetric counterpart. The results re-
veal that without temporal information, the online symmet-
ric counterpart degrades the performances of all categories
(② v.s. ⑩). The offline asymmetric counterpart, which
refrains from updating the teacher model, unsurprisingly
yields inferior results compared to our proposed framework
(③ v.s. ⑩)), primarily due to the limited capability of the
teacher model. Then, we conduct a detailed analysis of
each component within the proposed refinement model. In
comparison to the baseline (①), the performance notably
enhances as components are incorporated (④-⑩). Further-
more, PBA (④), DBA (⑤), and STA (⑥) contribute gains
of 5.5, 4.5, and 4.9 on Veh.(L1)mAP, respectively, further
affirming the effectiveness of our method.
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# PBA DBA STA Up Veh. (L1) Veh. (L2) Ped. (L1) Ped. (L2) Cyc. (L1) Cyc. (L2)
mAP mAPH mAP mAPH mAP mAPH mAP mAPH mAP mAPH mAP mAPH

① - - - - 48.5 46.2 45.5 43.3 30.1 15.7 27.3 15.9 4.5 3.0 4.3 2.9
② - - - On 52.4 50.2 45.5 43.5 36.6 23.7 30.8 20.0 10.5 7.9 10.1 7.6
③ ✓ ✓ ✓ Off 52.9 50.6 45.9 44.1 38.2 24.1 32.1 20.2 8.5 6.8 8.2 6.5
④ ✓ - - On 54.0 51.7 46.9 44.9 40.0 24.9 33.7 20.1 11.8 9.0 11.4 8.7
⑤ - ✓ - On 53.0 50.8 45.9 44.0 41.7 25.8 35.1 21.7 11.7 9.1 11.3 8.7
⑥ - - ✓ On 53.4 51.1 46.4 44.3 41.3 24.9 34.8 21.0 13.5 10.6 13.0 10.2
⑦ ✓ ✓ - On 53.5 51.2 46.5 44.5 42.9 27.1 36.2 22.9 13.9 9.9 13.3 9.6
⑧ ✓ - ✓ On 54.1 51.8 46.9 45.0 42.7 27.0 36.1 22.7 15.0 11.2 14.4 10.8
⑩ ✓ ✓ ✓ On 54.4 52.1 47.3 45.3 43.1 27.4 36.4 23.1 14.7 11.1 14.2 10.7

Table 2. Component-wise Analysis. ① is the results of training with labeled data. ② and ③ degenerate our framework to online symmetric
and offline asymmetric counterparts. The other experiments show the influence of each proposed component. “Up” denotes the EMA.

Training Data Veh. (L1) Veh. (L2) Ped. (L1) Ped. (L2) Cyc. (L1) Cyc. (L2) L1
mAP mAPH mAP mAPH mAP mAPH mAP mAPH mAP mAPH mAP mAPH mAP

Baseline (1%) 48.5 46.2 45.5 43.3 30.1 15.7 27.3 15.9 4.5 3.0 4.3 2.9 27.7
5% (1+4%) 54.4 52.1 47.3 45.3 43.1 27.4 36.4 23.1 14.7 11.1 14.2 10.7 37.4

Improvement +5.9 +5.9 +1.8 +2.0 +13.0 +11.7 +9.1 +7.2 +10.2 +8.1 +9.9 +7.8 +9.7
20% (1+19%) 55.8 53.6 48.6 46.7 45.5 31.7 38.5 26.8 27.7 22.1 26.6 21.3 43.0
Improvement +7.3 +7.4 +3.1 +3.4 +15.4 +16.0 +11.2 +10.9 +23.2 +19.1 +22.3 +18.4 +15.3

100% (1+99%) 56.5 54.5 49.2 47.5 48.1 27.3 40.8 23.1 35.1 27.1 33.7 26.1 46.6
Improvement +8.0 +8.3 +3.7 +4.2 +18.0 +11.6 +13.5 +7.2 +30.6 +24.1 +29.4 +23.2 +18.9

Table 3. Influence of unlabeled data volume. Keeping the labeled data unchanged, we increase the unlabeled data to see the impact.

Model Veh. (L1) Ped. (L1)
mAP mAPH mAP mAPH

Second [47] (1%) 39.8 38.7 22.2 11.1
5%(1% +4%) 43.6 42.7 28.9 13.8
Improvement +3.8 +4.0 +6.7 +2.7

Voxel-RCNN [7] (1%) 50.6 49.5 43.6 32.0
5%(1% +4%) 55.4 54.4 49.4 35.7
Improvement +4.8 +4.9 +5.8 +3.7

Table 4. Apply our framework to other detection methods.

4.4. Further Analysis

Different Volume of Unlabeled Data. We then conduct
experiments to study the impact of varying volumes of un-
labeled data. As depicted in Tab. 3, when training on 1%
labeled data, the baseline achieves 48.5 Veh.(L1) mAP and
27.7 overall mAP(L1), respectively. When providing 4%
unlabeled data to the model, our A-Teacher achieves gains
of 5.9 and 9.7 on Veh.(L1) mAP and overall mAP(L1).
More unlabeled data consistently improves our model, par-
ticularly benefiting the challenging categories of Pedestrian
and Cyclist. Experimental results affirm the effectiveness
of our approach in assimilating knowledge from unlabeled
data, where even a small amount of 4% unlabeled data
brings considerable gains. It’s worth noting that the ob-
served enhancement rate is more pronounced for challeng-
ing categories like Pedestrian and Cyclist compared with
Vehicle, potentially stemming from an imbalanced distribu-
tion of categories. We leave this to future study.

Apply A-Teacher to other Methods. To verify the gener-
alization of the proposed A-Teacher, we apply our frame-
work to other representative detection methods including
Voxel-RCNN [7] and Second [47]. Notably, the baseline
PV-RCNN [35] in previous experiments are point-voxel hy-
brid architecture. Differently, both of Voxel-RCNN [7] and
Second [47] adopt the voxel-based design. For the sake of
simplicity, we exclusively conduct experiments with “1%
labeled + 4% unlabeled” data setting. As illustrated in
Tab. 4, with our proposed semi-supervised framework, both
of Second and Voxel-RCNN achieve impressive improve-
ments, which proves the generalization of our method.
Quality of Pseudo Labels. As discussed earlier and quali-
tative analysis in Fig. 3, PBA enhances the quality of candi-
date boxes (Fig. 3 left) detected by the single-frame detector
in the current frame. DBA and STA successfully recall ig-
nored boxes of the current frame (Fig. 3 mid). Additionally,
our refinement model effectively eliminates false positives
(Fig. 3 right). Furthermore, it is observed that most semi-
supervised 3D object detection approaches typically em-
ploy a pre-defined threshold on classification scores to filter
pseudo labels. Hence, we conduct experiments to analyze
the quality of pseudo labels under different filter thresholds.
As depicted in Fig. 4, it is evident that our A-Teacher ex-
hibits superior precision compared with the vanilla teacher
across different thresholds. This observation underscores
the efficacy and robustness of our refinement model. The
analyses presented in Fig. 4 and Fig. 3 affirm the effective-
ness of A-Teacher in enhancing pseudo labels.
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Figure 3. Pseudo labels visualization. The green boxes represent the ground truth, the blue boxes denote the candidate predictions
generated by the vanilla teacher, and the red boxes indicate the pseudo labels generated by the proposed attention-based refinement model.
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Figure 4. Precision of pseudo labels. We compare the quality of
pseudo labels generated by the vanilla teacher (dashed lines) and
that after the refinement model (solid lines) under different filter
thresholds applied to classification scores. The shadow region in-
dicates the improvements brought by our refinement model.

Model Veh. (L1) Ped. (L1) Cyc. (L1)
mAP mAPH mAP mAPH mAP mAPH

PV.(4f) 49.8 47.3 37.5 18.3 9.6 5.8
5%(1%+4%) 55.8 53.4 41.9 20.9 20.0 19.3
Improvement +6.0 +6.1 +4.4 +2.6 +10.4 +13.5

Table 5. Apply our framework to the multi-frame method. We
extend the student, i.e., single frame PV-RCNN (PV.) [35], to its 4
frames version and keep the refinement model unchanged.

Extension to Multi-frame 3D Object Detection. Fol-
lowing the common settings in the LiDAR-based semi-
supervised detection methods, we use a single-frame ob-
ject detector as the student model in previous experiments
and analyses. It is also known that multi-frame input is in-
dispensable to achieve state-of-the-art performance. There-
fore, we apply the proposed A-Teacher to the PV-RCNN of
the 4-frame version to demonstrate the effectiveness of our
framework. As shown in Tab. 5, even with the multi-frame
student model, our A-Teacher can still bring clear promo-
tion, which implies the universality of our approach and the

potential to apply to most advanced 3D detection methods.

Methods Veh. (AP) Ped. (AP) Cyc. (AP) mAP
Baseline (labeled only) 71.19 26.44 58.04 51.89

NoiseDet [6] 75.26 37.96 60.77 58.00
A-Teacher (ours) 77.42 39.49 64.65 60.52 (+8.63)

Table 6. Results on ONCE dataset (“Small” setting).

Extension to ONCE dataset. To further demonstrate our
method’s generalization, we conduct experiments on the
ONCE dataset [21]. As shown in Tab. 6, our method
achieves a mAP gain of 8.63 overall, reaffirming its efficacy.
Notably, it surpasses the most recent paper NoiseDet [6].

5. Conclusion
In this paper, we propose the first online asymmetric semi-
supervised framework for LiDAR-based 3D object detec-
tion. The cores of our success are the efficient refinement
model and the capability of accessing future frames with the
help of the masterly designed attention-based refinement
model. Analytical experiments exhibit the precise pseudo
labels generated by A-Teacher and the reason behind them.
Furthermore, extension experiments demonstrate the effec-
tiveness and generality of our A-Teacher in improving dif-
ferent detectors with single- or multi-frame input.
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