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“Close-up of Caucasian mother and baby girl sitting at windowsill and reading book. Young woman educating daughter at home.”
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Figure 1. Example video results generated by the proposed TF-T2V on text-to-video generation and compositional video synthesis tasks
without training on any video-text pairs.

Abstract

Diffusion-based text-to-video generation has witnessed
impressive progress in the past year yet still falls behind
text-to-image generation. One of the key reasons is the
limited scale of publicly available data (e.g., 10M video-
text pairs in WebVid10M vs. 5B image-text pairs in LAION),
considering the high cost of video captioning. Instead, it
could be far easier to collect unlabeled clips from video
platforms like YouTube. Motivated by this, we come up
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with a novel text-to-video generation framework, termed
TF-T2V, which can directly learn with text-free videos.
The rationale behind is to separate the process of text
decoding from that of temporal modeling. To this end, we
employ a content branch and a motion branch, which are
jointly optimized with weights shared. Following such a
pipeline, we study the effect of doubling the scale of train-
ing set (i.e., video-only WebVid10M) with some randomly
collected text-free videos and are encouraged to observe
the performance improvement (FID from 9.67 to 8.19 and
FVD from 484 to 441), demonstrating the scalability of
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our approach. We also find that our model could enjoy
sustainable performance gain (FID from 8.19 to 7.64 and
FVD from 441 to 366) after reintroducing some text labels
for training. Finally, we validate the effectiveness and
generalizability of our ideology on both native text-to-video
generation and compositional video synthesis paradigms.
Code and models will be publicly available at here.

1. Introduction
Video generation aims to synthesize realistic videos that

possess visually appealing spatial contents and temporally
coherent motions. It has witnessed unprecedented progress
in recent years with the advent of deep generative tech-
niques [22, 53], especially with the emergence of video
diffusion models [4, 34, 40, 54, 60, 67, 78]. Pioneering
approaches [28, 33, 67] utilize pure image diffusion models
or fine-tuning on a small amount of video-text data to syn-
thesize videos, leading to temporally discontinuous results
due to insufficient motion perception [39, 79]. To achieve
plausible results, current text-to-video methods like Vide-
oLDM [4] and ModelScopeT2V [54] usually insert tem-
poral blocks into latent 2D-UNet [43] and train the model
on expansive video-text datasets, e.g., WebVid10M [2]. To
enable more controllable generation, VideoComposer [58]
proposes a compositional paradigm that incorporates addi-
tional conditions (e.g., depth, sketch, motion vectors, etc.)
to guide synthesis, allowing customizable creation.

Despite this, the progress in text-to-video generation still
falls behind text-to-image generation [42, 43]. One of the
key reasons is the limited scale of publicly available video-
text data, considering the high cost of video captioning [83].
Instead, it could be far easier to collect text-free video clips
from media platforms like YouTube. There are some works
sharing similar inspiration, Make-A-Video [50] and Gen-
1 [12] employ a two-step strategy that first leverages a large
(∼1B parameters) diffusion prior model [42] to convert text
embedding into image embedding of CLIP [41] and then
enters it into an image-conditioned generator to synthesize
videos. However, the separate two-step manner may cause
issues such as error accumulation [13], increased model size
and latency [42, 69], and does not support text-conditional
optimization if extra video-text data is available, leading to
sub-optimal results. Moreover, the characteristics of scaling
potential on video generation are still under-explored.

In this work, we aim to train a single unified video
diffusion model that allows text-guided video generation
by exploiting the widely accessible text-free videos and
explore its scaling trend. To achieve this, we present a novel
two-branch framework named TF-T2V, where a content
branch is designed for spatial appearance generation, and a
motion branch specializes in temporal dynamics synthesis.
More specifically, we utilize the publicly available image-
text datasets such as LAION-5B [48] to learn text-guided

and image-guided spatial appearance generation. In the
motion branch, we harness the video-only data to conduct
image-conditioned video synthesis, allowing the temporal
modules to learn intricate motion patterns without relying
on textual annotations. Paired video-text data, if available,
can also be incorporated into co-optimization. Furthermore,
unlike previous methods that impose training loss on each
frame individually, we introduce a temporal coherence loss
to explicitly enforce the learning of correlations between
adjacent frames, enhancing the continuity of generated
videos. In this way, the proposed TF-T2V achieves text-to-
video generation by assembling contents and motions with a
unified model, overcoming the high cost of video captioning
and eliminating the need for complex cascading steps.

Notably, TF-T2V is a plug-and-play paradigm, which
can be integrated into existing text-to-video generation and
compositional video synthesis frameworks as shown in
Fig. 1. Different from most prior works that rely heavily on
video-text data and train models on the widely-used water-
marked and low-resolution (around 360P) WebVid10M [2],
TF-T2V opens up new possibilities for optimizing with
text-free videos or partially paired video-text data, making
it more scalable and versatile in widespread scenarios, such
as high-definition video generation. To study the scaling
trend, we double the scale of the training set with some
randomly collected text-free videos and are encouraged to
observe the performance improvement, with FID from 9.67
to 8.19 and FVD from 484 to 441. Extensive quantitative
and qualitative experiments collectively demonstrate the
effectiveness and scaling potential of the proposed TF-T2V
in terms of synthetic continuity, fidelity, and controllability.

2. Related Work

In this section, we provide a brief review of relevant liter-
ature on text-to-image generation, text-to-video generation,
and compositional video synthesis.

Text-to-image generation. Recently, text-to-image gen-
eration has made significant strides with the development
of large-scale image-text datasets such as LAION-5B [48],
allowing users to create high-resolution and photorealistic
images that accurately depict the given natural language
descriptions. Previous methods [16, 26, 49] primarily focus
on synthesizing images by adopting generative adversarial
networks (GANs) to estimate training sample distributions.
Distinguished by the promising stability and scalability,
diffusion-based generation models have attracted increasing
attention [27, 42–45]. Diffusion models utilize iterative
steps to gradually refine the generated image, resulting
in improved quality and realism. Typically, Imagen [45]
and GLIDE [38] explore text-conditional diffusion models
and boost sample quality by applying classifier-free guid-
ance [19]. DALL·E 2 [42] first leverages an image prior
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Figure 2. Overall pipeline of TF-T2V, which consists of two branches. In the content branch, paired image-text data is leveraged to
learn text-conditioned and image-conditioned spatial appearance generation. The motion branch supports the training of motion dynamic
synthesis by feeding text-free videos (or partially paired video-text data if available). During the training stage, both branches are optimized
jointly. Notably, TF-T2V can be seamlessly integrated into the compositional video synthesis framework by incorporating composable
conditions. In inference, TF-T2V enables text-guided video generation by taking text prompts and random noise sequences as input.

to bridge multi-modal embedding spaces and then learns a
diffusion decoder to synthesize images in the pixel space.
Stable Diffusion [43] introduces latent diffusion models that
conduct iterative denoising processes at the latent level to
save computational costs. There are also some works that
generate customized and desirable images by incorporating
additional spatial control signals [24, 36, 77].

Text-to-video generation. This task poses additional chal-
lenges compared to text-to-image generation due to the tem-
poral dynamics involved in videos. Various early techniques
have been proposed to tackle this problem, such as recurrent
neural networks combined with GANs [3, 51, 53, 61, 64]
or transformer-based autoregressive models [22, 73]. With
the subsequent advent of video diffusion models pretrained
on large-scale video-text datasets [2, 63, 71], video content
creation has demonstrated remarkable advances [1, 4, 6–9,
14, 15, 17, 18, 21, 23, 28, 31–33, 35, 37, 39, 56, 57, 62, 65,
67, 69, 74–76]. Imagen Video [21] learns cascaded pixel-
level diffusion models to produce high-resolution videos.
Following [42], Make-A-Video [50] introduces a two-step
strategy that first maps the input text to image embedding
by a large (∼1B parameters) diffusion prior model and then
embeds the resulting embedding into an image-conditional
video diffusion model to synthesize videos in pixel space.
VideoLDM [4] and ModelScopeT2V [54] extend 2D-UNet
into 3D-UNet by injecting temporal layers and operate a
latent denoising process to save computational resources. In
this paper, we present a single unified framework for text-to-
video generation and study the scaling trend by harnessing
widely accessible text-free videos.

Compositional video synthesis. Traditional text-to-video
methods solely rely on textual descriptions to control the
video generation process, limiting desired fine-grained cus-

tomization such as texture, object position, motion patterns,
etc. To tackle this constraint and pursue higher controlla-
bility, several controllable video synthesis methods [8, 9,
12, 29, 58, 68, 72, 79, 81] have been proposed. These
methods utilize additional control signals, such as depth
or sketch, to guide the generation of videos. By incor-
porating extra structured guidance, the generated content
can be precisely controlled and customized. Among these
approaches, VideoComposer [58] stands out as a pioneering
and versatile compositional technique. It integrates multiple
conditioning signals including textual, spatial and temporal
conditions within a unified framework, offering enhanced
controllability, compositionality, and realism in the gener-
ated videos. Despite the remarkable quality, these methods
still rely on high-quality video-text data to unleash powerful
and customizable synthesis. In contrast, our method can
be directly merged into existing controllable frameworks to
customize videos by exploiting text-free videos.

3. Method
We first provide a brief introduction to the preliminaries

of the video diffusion model. Then, we will elaborate on the
mechanisms of TF-T2V in detail. The overall framework
of the proposed TF-T2V is displayed in Fig. 2.

3.1. Preliminaries of video diffusion model

Diffusion models involve a forward diffusion process
and a reverse iterative denoising stage. The forward process
of diffusion models is gradually imposing random noise to
clean data x0 in a Markovian chain:

q(xt|xt−1) = N (xt;
√
1− βt−1xt−1, βtI), t = 1, ..., T

(1)
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where βt ∈ (0, 1) is a noise schedule and T is the total
time step. When T is sufficiently large, e.g. T = 1000,
the resulting xT is nearly a random Gaussian distribution
N (0, I). The role of diffusion model is to denoise xT and
learn to iteratively estimate the reversed process:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),
∑

θ(xt, t)) (2)

We usually train a denoising model x̂θ parameterized by
θ to approximate the original data x0 and optimize the
following v-prediction [21, 46] problem:

Lbase = Eθ[||v − x̂θ(xt, t, c)||22] (3)

where c is conditional information such as textual prompt,
and v is the parameterized prediction objective. In repre-
sentative video diffusion models [4, 54, 58], the denoising
model x̂θ is a latent 3D-UNet [4, 54] modified from its
2D version [43] by inserting additional temporal blocks,
which is optimized in the latent feature space by applying a
variational autoencoder [11], and Eq. (3) is applied on each
frame of the input video to train the whole model.

3.2. TF-T2V

The objective of TF-T2V is to learn a text-conditioned
video diffusion model to create visually appealing and
temporally coherent videos with text-free videos or partially
paired video-text data. Without loss of generality, we first
describe the workflow of our TF-T2V in the scenario where
only text-free video is used. With merely text-free videos
available for training, it is challenging to guide content
creation by textual information since there lacks text-visual
correspondence. To tackle this issue, we propose to resort
to web-scale and high-quality image-text datasets [47, 48],
which are publicly accessible on the Internet. However, this
raises another question: how can we leverage the image-text
data and text-free videos in a unified framework?

Recalling the network architecture in 3D-UNet, the
spatial modules mainly focus on appearance modeling, and
the temporal modules primarily aim to operate motion
coherence. The intuition is that we can utilize image-text
data to learn text-conditioned spatial appearance generation
and adopt high-quality text-free videos to guide consistent
motion dynamic synthesis. In this way, we can perform
text-to-video generation in a single model to synthesize
high-quality and consistent videos during the inference
stage. Based on this, the proposed TF-T2V consists of two
branches: a content branch for spatial appearance genera-
tion and a motion branch for motion dynamic synthesis.

3.2.1 Spatial appearance generation

Like previous text-to-image works [43, 77], the content
branch of TF-T2V takes a noised image Iimage ∈ H ×

W ×C as input, where H , W , C are the height, width, and
channel dimensions respectively, and employs conditional
signals (i.e., text and image embeddings) to offer semantic
guidance for content generation. This branch primarily
concentrates on optimizing the spatial modules in the video
diffusion model and plays a crucial role in determining
appealing visual quality. In order to ensure that each
condition can also control the created content separately,
we randomly drop text or image embeddings with a certain
probability during training. The text and image encoders
from CLIP [41] are adopted to encode embeddings.

3.2.2 Motion dynamic synthesis

The pursuit of producing highly temporally consistent
videos is a unique hallmark of video creation. Recent
advancements [4, 54, 57, 58] in the realm of video synthesis
usually utilize large-scale video-text datasets such as Web-
Vid10M [2] to achieve coherent video generation. However,
acquiring large-scale video-text pairs consumes extensive
manpower and time, hindering the scaling up of video
diffusion models. To make matters worse, the widely used
WebVid10M is a watermarked and low-resolution (around
360P) dataset, resulting in unsatisfactory video creation that
cannot meet the high-quality video synthesis requirements.

To mitigate the above issues, we propose to leverage
high-quality text-free videos that are easily accessible on
video media platforms, e.g., YouTube and TikTok. To fully
excavate the abundant motion dynamics within the text-free
videos, we train a image-conditioned model. By optimizing
this image-to-video generation task, the temporal modules
in the video diffusion model can learn to perceive and model
diverse motion dynamics. Specifically, given a noised video
Ivideo ∈ F × H × W × C, where F is the temporal
length, the motion branch of TF-T2V learns to recover the
undisturbed video guided by the image embedding. The
image embedding is extracted from the center frame of the
original video by applying CLIP’s image encoder [41].

Since large-scale image-text data used for training con-
tains abundant movement intentions [30], TF-T2V can
achieve text-to-video generation by assembling spatial ap-
pearances involving motion trends and predicted motion
dynamics. When extra paired video-text data is available,
we conduct both text-to-video and image-to-video genera-
tion based on video-text pairs to train TF-T2V and further
enhance the perception ability for desirable textual control.

In addition, we notice that previous works apply the
training loss (i.e., Eq. (3)) on each frame of the input video
individually without considering temporal correlations be-
tween frames, suffering from incoherent appearances and
motions. Inspired by the early study [25, 55, 59, 80] finding
that the difference between two adjacent frames usually
contains motion patterns, e.g., dynamic trajectory, we thus
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Table 1. Quantitative comparison with state-of-the-art methods for text-to-video task on MSR-VTT in terms of FID, FVD, and CLIPSIM.
Method Zero-shot Parameters FID (↓) FVD (↓) CLIPSIM (↑)
Nüwa [66] No - 47.68 - 0.2439
CogVideo (Chinese) [22] Yes 15.5B 24.78 - 0.2614
CogVideo (English) [22] Yes 15.5B 23.59 1294 0.2631
MagicVideo [82] Yes - - 1290 -
Make-A-Video [50] Yes 9.7B 13.17 - 0.3049
ModelScopeT2V [54] Yes 1.7B 11.09 550 0.2930
VideoComposer [58] Yes 1.9B 10.77 580 0.2932
Latent-Shift [1] Yes 1.5B 15.23 - 0.2773
VideoLDM [4] Yes 4.2B - - 0.2929
PYoCo [14] Yes - 9.73 - -
TF-T2V (WebVid10M) Yes 1.8B 9.67 484 0.2953
TF-T2V (WebVid10M+Internal10M) Yes 1.8B 8.19 441 0.2991

propose a temporal coherence loss that utilizes the frame
difference as an additional supervisory signal:

Lcoherence = Eθ[
∑F−1

j=1 ||(vj+1−vj)−(oj+1−oj)||22] (4)

where oj and vj are the predicted frame and corresponding
ground truth. This loss term measures the discrepancy
between the predicted frame differences and the ground
truth frame differences of the input parameterized video.
By minimizing Eq. (4), TF-T2V helps to alleviate frame
flickering and ensures that the generated videos exhibit
seamless transitions and promising temporal dynamics.

3.2.3 Training and inference

In order to mine the complementary advantages of spa-
tial appearance generation and motion dynamic synthesis,
we jointly optimize the entire model in an end-to-end
manner. The total loss can be formulated as:

Ltotal = Lbase + λLcoherence (5)

where Lbase is imposed on video and image together by
treating the image as a “single frame” video, and λ is a
balance coefficient that is set empirically to 0.1.

After training, we can perform text-guided video gen-
eration to synthesize temporally consistent video content
that aligns well with the given text prompt. Moreover,
TF-T2V is a general framework and can also be inserted
into existing compositional video synthesis paradigm [58]
by incorporating additional spatial and temporal structural
conditions, allowing for customized video creation.

4. Experiments
In this section, we present a comprehensive quantitative

and qualitative evaluation of the proposed TF-T2V on text-
to-video generation and composition video synthesis.

4.1. Experimental setup

Implementation details. TF-T2V is built on two typi-
cal open-source baselines, i.e., ModelScopeT2V [54] and

Table 2. Human preference results on text-to-video generation.

Method Text Visual Temporal
alignment quality coherence

ModelScopeT2V [54] 83.5% 74.0% 81.3%
TF-T2V 86.5% 87.0% 92.5%

VideoComposer [58]. DDPM sampler [20] with T = 1000
steps is adopted for training, and we employ DDIM [52]
with 50 steps for inference. We optimize TF-T2V using
AdamW optimizer with a learning rate of 5e-5. For input
videos, we sample 16 frames from each video at 4FPS and
crop a 448 × 256 region at the center as the basic setting.
Note that we can also easily train high-definition video
diffusion models by collecting high-quality text-free videos
(see examples in the Appendix). LAION-5B [48] is utilized
to provide image-text pairs. Unless otherwise stated, we
treat WebVid10M, which includes about 10.7M video-text
pairs, as a text-free dataset to train TF-T2V and do not
use any textual annotations. To study scaling trends, we
gathered about 10M high-quality videos without text labels
from internal data, termed the Internal10M dataset.

Metrics. (i) To evaluate text-to-video generation, following
previous works [4, 54], we leverage the standard Fréchet
Inception Distance (FID), Fréchet Video Distance (FVD),
and CLIP Similarity (CLIPSIM) as quantitative evaluation
metrics and report results on MSR-VTT dataset [70]. (ii)
For controllability evaluation, we leverage depth error,
sketch error, and end-point-error (EPE) [10] to verify
whether the generated videos obey the control of input
conditions. Depth error measures the divergence between
the input depth conditions and the eliminated depth of the
synthesized video. Similarly, sketch error examines the
sketch control. EPE evaluates the flow consistency between
the reference video and the generated video. In addition,
human evaluation is also introduced to validate our method.

4.2. Evaluation on text-to-video generation

Tab. 1 displays the comparative quantitative results with
existing state-of-the-art methods. We observe that TF-T2V
achieves remarkable performance under various metrics.
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“Female architect working with paper plan on desk in the office”

ModelScopeT2V

Text2video-Zero

ZeroScope

TF-T2V

“Portrait of smiling young woman outdoors”

“Two businessmen discussing team project working on computer”

ModelScopeT2V

Text2video-Zero

ZeroScope

TF-T2V

“Fruits and Vegetables with Juice”

Figure 3. Qualitative comparison on text-to-video generation. Three representative open-source text-to-video approaches are compared,
including ModelScopeT2V [54], Text2video-Zero [28] and ZeroScope [5]. Please refer to the Appendix for videos and more comparisons.

Table 3. Evaluation of structure control based on depth signals.
Method Condition Depth error (↓)
VideoComposer [58] Text 0.382
VideoComposer [58] Text and depth 0.217
TF-T2V Text and depth 0.209

Table 4. Evaluation of structure control based on sketch signals.
Method Condition Sketch error (↓)
VideoComposer [58] Text 0.1854
VideoComposer [58] Text and sketch 0.1161
TF-T2V Text and sketch 0.1146

Notably, TF-T2V trained on WebVid10M and Internal10M
obtains higher performance than the counterpart on Web-
Vid10M, revealing promising scalable capability. We show
the qualitative visualizations in Fig. 3. From the results,
we can find that compared with previous methods, TF-T2V
obtains impressive video creation in terms of both temporal
continuity and visual quality. The human assessment in
Tab. 2 also reveals the above observations. The user study
is performed on 100 randomly synthesized videos.

4.3. Evaluation on compositional video synthesis

We compare the controllability of TF-T2V and Video-
Composer on 1,000 generated videos in terms of depth
control (Tab. 3), sketch control (Tab. 4) and motion control

Table 5. Evaluation of motion control based on motion vectors.
Method Condition EPE (↓)
VideoComposer [58] Text 4.13
VideoComposer [58] Text and motion vector 1.98
TF-T2V Text and motion vector 1.88

Table 6. Human evaluations on compositional video synthesis.

Method Structure Visual Temporal
alignment quality coherence

VideoComposer [58] 79.0% 66.0% 77.5%
TF-T2V 89.0% 79.5% 84.5%

(Tab. 5). The above experimental evaluations highlight the
effectiveness of TF-T2V by leveraging text-free videos. In
Fig. 4 and 5, we show the comparison of TF-T2V and
existing methods on compositional video generation. We
notice that TF-T2V exhibits high-fidelity and consistent
video generation. In addition, we conduct a human evalua-
tion on 100 randomly sampled videos and report the results
in Tab. 6. The preference assessment provides further
evidence of the superiority of the proposed TF-T2V.

4.4. Ablation study

Effect of temporal coherence loss. To enhance temporal
consistency, we propose a temporal coherence loss. In
Tab. 7, we show the effectiveness of the proposed tem-
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Source video

Condition

TF-T2V

Text2video-Zero

Control-A-Video

VideoComposer

“Cropped cute little girl sitting reading a fairy-tale emotionaly” “Father and daughter enjoying and playing guitar together”

Gen-1

Figure 4. Qualitative comparison on compositional depth-to-video generation. The videos are generated by taking textual prompts and
structural guidance as conditions. Compared with existing methods, TF-T2V yields more structural compliance and high-fidelity results.

Source video

Condition

TF-T2V

Text2video-Zero

Control-A-Video

VideoComposer

“Man hands screw the bulb into the lamp. Isolated on black background.” “Female is applying foundation with a make-up brush on her face.”

Figure 5. Qualitative comparison on compositional sketch-to-video generation. The videos are generated by taking textual descriptions
and structural guidance as conditions. Compared with other methods, TF-T2V produces more realistic and consistent results.

poral coherence loss in terms of frame consistency. The
metric results are obtained by calculating the average CLIP
similarity of two consecutive frames in 1,000 videos. We
further display the qualitative comparative results in Fig. 6
and observe that temporal coherence loss helps to alleviate
temporal discontinuity such as color shift.

4.5. Evaluation on semi-supervised setting

Through the above experiments and observations, we
verify that text-free video can help improve the continuity

Table 7. Text-to-video evaluation on frame consistency.
Method Frame consistency (%) ↑
w/o temporal coherence loss 89.71
TF-T2V 91.06

and quality of generated video. As previously stated,
TF-T2V also supports the combination of annotated video-
text data and text-free videos to train the model, i.e., the
semi-supervised manner. The annotated text can provide
additional fine-grained motion signals, enhancing the align-
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“Multi-ethnic friends having fun on a winter day”

Source video

Condition

w/o temporal
coherence loss

TF-T2V

“Businessman signing contract, pen and document”

Figure 6. Qualitative ablation study. The videos are generated by taking textual descriptions and structural guidance as conditions.

ModelScopeT2V

ZeroScope

TF-T2V
(Semi-supervised)

AnimateDiff

VideoCrafter

“A dog is running away from the camera” “A man is running from right to left”

TF-T2V
(Language-free)

Figure 7. Qualitative evaluation on text-to-video generation with temporally-correlated text prompts involving the evolution of movement.

Table 8. Quantitative experiments on text-to-video generation.
TF-T2V-Semi means the semi-supervised setting where labeled
WebVid10M and text-free Internal10M are adopted.

Method FID (↓) FVD (↓) CLIPSIM (↑)
ModelScopeT2V [54] 11.09 550 0.2930
TF-T2V 8.19 441 0.2991
TF-T2V-Semi 7.64 366 0.3032

ment of generated videos and the provided prompts involv-
ing desired motion evolution. We show the comparison
results in Tab. 8 and find that the semi-supervised manner
reaches the best performance, indicating the effectiveness
of harnessing text-free videos. Notably, TF-T2V-Semi out-
performs ModelScopeT2V trained on labeled WebVid10M,
possessing good scalability. Moreover, the qualitative eval-
uations in Fig. 7 show that existing methods may struggle
to synthesize text-aligned consistent videos when textual
prompts involve desired temporal evolution. In contrast,

TF-T2V in the semi-supervised setting exhibits excellent
text-video alignment and temporally smooth generation.

5. Conclusion

In this paper, we present a novel and versatile video
generation framework named TF-T2V to exploit text-free
videos and explore its scaling trend. TF-T2V effectively
decomposes video generation into spatial appearance gener-
ation and motion dynamic synthesis. A temporal coherence
loss is introduced to explicitly constrain the learning of
correlations between adjacent frames. Experimental results
demonstrate the effectiveness and potential of TF-T2V in
terms of fidelity, controllability, and scalability.
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